code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import numpy as np
import qiskit
def UpperCamelCase ( __magic_name__ : int = 8 , __magic_name__ : int | None = None ) -> str:
"""simple docstring"""
lowercase__ = np.random.default_rng(seed=__magic_name__ )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
lowercase__ = 6 * key_len
# Measurement basis for Alice's qubits.
lowercase__ = rng.integers(2 , size=__magic_name__ )
# The set of states Alice will prepare.
lowercase__ = rng.integers(2 , size=__magic_name__ )
# Measurement basis for Bob's qubits.
lowercase__ = rng.integers(2 , size=__magic_name__ )
# Quantum Circuit to simulate BB84
lowercase__ = qiskit.QuantumCircuit(__magic_name__ , name="""BB84""" )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(__magic_name__ ):
if alice_state[index] == 1:
bbaa_circ.x(__magic_name__ )
if alice_basis[index] == 1:
bbaa_circ.h(__magic_name__ )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(__magic_name__ ):
if bob_basis[index] == 1:
bbaa_circ.h(__magic_name__ )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
lowercase__ = qiskit.Aer.get_backend("""aer_simulator""" )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
lowercase__ = qiskit.execute(__magic_name__ , __magic_name__ , shots=1 , seed_simulator=__magic_name__ )
# Returns the result of measurement.
lowercase__ = job.result().get_counts(__magic_name__ ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
lowercase__ = """""".join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
__magic_name__ , __magic_name__ , __magic_name__ )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
lowercase__ = gen_key[:key_len] if len(__magic_name__ ) >= key_len else gen_key.ljust(__magic_name__ , """0""" )
return key
if __name__ == "__main__":
print(F'The generated key is : {bbaa(8, seed=0)}')
from doctest import testmod
testmod()
| 15 |
from math import log
from scipy.constants import Boltzmann, physical_constants
A : Any = 3_0_0 # TEMPERATURE (unit = K)
def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float:
"""simple docstring"""
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def UpperCamelCase ( __magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = {}
lowercase__ = tokenizer(example["""content"""] , truncation=__magic_name__ )["""input_ids"""]
lowercase__ = len(example["""content"""] ) / len(output["""input_ids"""] )
return output
A : Dict = HfArgumentParser(PretokenizationArguments)
A : int = parser.parse_args()
if args.num_workers is None:
A : str = multiprocessing.cpu_count()
A : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir)
A : Tuple = time.time()
A : Optional[int] = load_dataset(args.dataset_name, split='train')
print(F'Dataset loaded in {time.time()-t_start:.2f}s')
A : List[Any] = time.time()
A : Any = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'repo_name',
'path',
'copies',
'size',
'content',
'license',
'hash',
'line_mean',
'line_max',
'alpha_frac',
'autogenerated',
],
)
print(F'Dataset tokenized in {time.time()-t_start:.2f}s')
A : int = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
| 15 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class A :
'''simple docstring'''
A__ = 42
A__ = None
A__ = None
def UpperCamelCase ( ) -> Node | None:
"""simple docstring"""
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> int:
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]:
"""simple docstring"""
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(__magic_name__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) )
lowercase__ = 0
return output
def UpperCamelCase ( ) -> None: # Main function for testing.
"""simple docstring"""
lowercase__ = make_tree()
print(f'''In-order Traversal: {inorder(__magic_name__ )}''' )
print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' )
print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" )
print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(__magic_name__ ) , """\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1 , height(__magic_name__ ) + 1 ):
print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(__magic_name__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 15 | 1 |
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A :
'''simple docstring'''
def __init__(self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=[10, 20, 30, 40] , _UpperCAmelCase : List[str]=[2, 2, 3, 2] , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : str=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[str]=["stage2", "stage3", "stage4"] , _UpperCAmelCase : Optional[Any]=[2, 3, 4] , _UpperCAmelCase : Union[str, Any]=None , ) -> Dict:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = image_size
lowercase__ = num_channels
lowercase__ = num_stages
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = num_labels
lowercase__ = initializer_range
lowercase__ = out_features
lowercase__ = out_indices
lowercase__ = scope
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.num_labels )
lowercase__ = self.get_config()
return config, pixel_values, labels
def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = ConvNextVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase__ (self : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
lowercase__ = ConvNextVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> int:
"""simple docstring"""
lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowercase__ = None
lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCamelCase__ (self : Any ) -> Tuple:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCamelCase__ (self : List[str] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
A__ = (
{'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
A__ = False
A__ = False
A__ = False
A__ = False
A__ = False
def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = ConvNextVaModelTester(self )
lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def lowerCamelCase__ (self : Optional[int] ) -> str:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase__ (self : Tuple ) -> str:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCamelCase__ (self : Dict ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCamelCase__ (self : Any ) -> List[str]:
"""simple docstring"""
pass
def lowerCamelCase__ (self : Any ) -> Tuple:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels()
lowercase__ = True
if model_class.__name__ in [
*get_values(_UpperCAmelCase ),
*get_values(_UpperCAmelCase ),
]:
continue
lowercase__ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.train()
lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
lowercase__ = model(**_UpperCAmelCase ).loss
loss.backward()
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels()
lowercase__ = False
lowercase__ = True
if (
model_class.__name__
in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
lowercase__ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.gradient_checkpointing_enable()
model.train()
lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
lowercase__ = model(**_UpperCAmelCase ).loss
loss.backward()
def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple ) -> List[Any]:
"""simple docstring"""
def check_hidden_states_output(_UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
lowercase__ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase__ = self.model_tester.num_stages
self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def lowerCamelCase__ (self : int ) -> Optional[Any]:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = ConvNextVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def UpperCamelCase ( ) -> int:
"""simple docstring"""
lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class A ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCamelCase__ (self : List[str] ) -> Any:
"""simple docstring"""
lowercase__ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(_UpperCAmelCase )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = preprocessor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )
# verify the logits
lowercase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
lowercase__ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 15 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Any = logging.get_logger(__name__)
A : Tuple = {
'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''poolformer'''
def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = stride
lowercase__ = padding
lowercase__ = pool_size
lowercase__ = hidden_sizes
lowercase__ = mlp_ratio
lowercase__ = depths
lowercase__ = patch_sizes
lowercase__ = strides
lowercase__ = num_encoder_blocks
lowercase__ = drop_path_rate
lowercase__ = hidden_act
lowercase__ = use_layer_scale
lowercase__ = layer_scale_init_value
lowercase__ = initializer_range
super().__init__(**_UpperCAmelCase )
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = version.parse('''1.11''' )
@property
def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase__ (self : Dict ) -> float:
"""simple docstring"""
return 2E-3
| 15 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Any = logging.get_logger(__name__)
A : Tuple = {
'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''poolformer'''
def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = stride
lowercase__ = padding
lowercase__ = pool_size
lowercase__ = hidden_sizes
lowercase__ = mlp_ratio
lowercase__ = depths
lowercase__ = patch_sizes
lowercase__ = strides
lowercase__ = num_encoder_blocks
lowercase__ = drop_path_rate
lowercase__ = hidden_act
lowercase__ = use_layer_scale
lowercase__ = layer_scale_init_value
lowercase__ = initializer_range
super().__init__(**_UpperCAmelCase )
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = version.parse('''1.11''' )
@property
def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase__ (self : Dict ) -> float:
"""simple docstring"""
return 2E-3
| 15 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@slow
@require_torch
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" )
lowercase__ = bertabert.config.encoder.vocab_size
lowercase__ = tokenizer.sep_token_id
lowercase__ = tokenizer.cls_token_id
lowercase__ = 128
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
lowercase__ = train_dataset.select(range(32 ) )
lowercase__ = val_dataset.select(range(16 ) )
lowercase__ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ):
# Tokenizer will automatically set [BOS] <text> [EOS]
lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 )
lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 )
lowercase__ = inputs.input_ids
lowercase__ = inputs.attention_mask
lowercase__ = outputs.input_ids
lowercase__ = outputs.input_ids.copy()
lowercase__ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
lowercase__ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase : List[Any] ):
lowercase__ = pred.label_ids
lowercase__ = pred.predictions
# all unnecessary tokens are removed
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
lowercase__ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
lowercase__ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
lowercase__ = self.get_auto_remove_tmp_dir()
lowercase__ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
lowercase__ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 15 | 1 |
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class A ( nn.Module ):
'''simple docstring'''
def __init__(self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : str = "geglu" , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : str = "layer_norm" , _UpperCAmelCase : bool = False , ) -> Dict:
"""simple docstring"""
super().__init__()
lowercase__ = only_cross_attention
lowercase__ = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero"""
lowercase__ = (num_embeds_ada_norm is not None) and norm_type == """ada_norm"""
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
lowercase__ = AdaLayerNorm(_UpperCAmelCase , _UpperCAmelCase )
elif self.use_ada_layer_norm_zero:
lowercase__ = AdaLayerNormZero(_UpperCAmelCase , _UpperCAmelCase )
else:
lowercase__ = nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase )
lowercase__ = Attention(
query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , dropout=_UpperCAmelCase , bias=_UpperCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_UpperCAmelCase , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
lowercase__ = (
AdaLayerNorm(_UpperCAmelCase , _UpperCAmelCase )
if self.use_ada_layer_norm
else nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase )
)
lowercase__ = Attention(
query_dim=_UpperCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , dropout=_UpperCAmelCase , bias=_UpperCAmelCase , upcast_attention=_UpperCAmelCase , ) # is self-attn if encoder_hidden_states is none
else:
lowercase__ = None
lowercase__ = None
# 3. Feed-forward
lowercase__ = nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase )
lowercase__ = FeedForward(_UpperCAmelCase , dropout=_UpperCAmelCase , activation_fn=_UpperCAmelCase , final_dropout=_UpperCAmelCase )
# let chunk size default to None
lowercase__ = None
lowercase__ = 0
def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
lowercase__ = chunk_size
lowercase__ = dim
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Dict[str, Any] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , ) -> List[str]:
"""simple docstring"""
if self.use_ada_layer_norm:
lowercase__ = self.norma(_UpperCAmelCase , _UpperCAmelCase )
elif self.use_ada_layer_norm_zero:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.norma(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hidden_dtype=hidden_states.dtype )
else:
lowercase__ = self.norma(_UpperCAmelCase )
lowercase__ = cross_attention_kwargs if cross_attention_kwargs is not None else {}
lowercase__ = self.attna(
_UpperCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
if self.use_ada_layer_norm_zero:
lowercase__ = gate_msa.unsqueeze(1 ) * attn_output
lowercase__ = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
lowercase__ = (
self.norma(_UpperCAmelCase , _UpperCAmelCase ) if self.use_ada_layer_norm else self.norma(_UpperCAmelCase )
)
lowercase__ = self.attna(
_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = attn_output + hidden_states
# 3. Feed-forward
lowercase__ = self.norma(_UpperCAmelCase )
if self.use_ada_layer_norm_zero:
lowercase__ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
lowercase__ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
lowercase__ = torch.cat(
[self.ff(_UpperCAmelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
lowercase__ = self.ff(_UpperCAmelCase )
if self.use_ada_layer_norm_zero:
lowercase__ = gate_mlp.unsqueeze(1 ) * ff_output
lowercase__ = ff_output + hidden_states
return hidden_states
class A ( nn.Module ):
'''simple docstring'''
def __init__(self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 4 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : str = "geglu" , _UpperCAmelCase : bool = False , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ = int(dim * mult )
lowercase__ = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
lowercase__ = GELU(_UpperCAmelCase , _UpperCAmelCase )
if activation_fn == "gelu-approximate":
lowercase__ = GELU(_UpperCAmelCase , _UpperCAmelCase , approximate="""tanh""" )
elif activation_fn == "geglu":
lowercase__ = GEGLU(_UpperCAmelCase , _UpperCAmelCase )
elif activation_fn == "geglu-approximate":
lowercase__ = ApproximateGELU(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = nn.ModuleList([] )
# project in
self.net.append(_UpperCAmelCase )
# project dropout
self.net.append(nn.Dropout(_UpperCAmelCase ) )
# project out
self.net.append(nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(_UpperCAmelCase ) )
def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
for module in self.net:
lowercase__ = module(_UpperCAmelCase )
return hidden_states
class A ( nn.Module ):
'''simple docstring'''
def __init__(self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str = "none" ) -> int:
"""simple docstring"""
super().__init__()
lowercase__ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = approximate
def lowerCamelCase__ (self : int , _UpperCAmelCase : List[str] ) -> List[Any]:
"""simple docstring"""
if gate.device.type != "mps":
return F.gelu(_UpperCAmelCase , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
lowercase__ = self.proj(_UpperCAmelCase )
lowercase__ = self.gelu(_UpperCAmelCase )
return hidden_states
class A ( nn.Module ):
'''simple docstring'''
def __init__(self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
lowercase__ = nn.Linear(_UpperCAmelCase , dim_out * 2 )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any ) -> Optional[int]:
"""simple docstring"""
if gate.device.type != "mps":
return F.gelu(_UpperCAmelCase )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Optional[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ , lowercase__ = self.proj(_UpperCAmelCase ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(_UpperCAmelCase )
class A ( nn.Module ):
'''simple docstring'''
def __init__(self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
lowercase__ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : int , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.proj(_UpperCAmelCase )
return x * torch.sigmoid(1.702 * x )
class A ( nn.Module ):
'''simple docstring'''
def __init__(self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
super().__init__()
lowercase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = nn.SiLU()
lowercase__ = nn.Linear(_UpperCAmelCase , embedding_dim * 2 )
lowercase__ = nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.linear(self.silu(self.emb(_UpperCAmelCase ) ) )
lowercase__ , lowercase__ = torch.chunk(_UpperCAmelCase , 2 )
lowercase__ = self.norm(_UpperCAmelCase ) * (1 + scale) + shift
return x
class A ( nn.Module ):
'''simple docstring'''
def __init__(self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> List[str]:
"""simple docstring"""
super().__init__()
lowercase__ = CombinedTimestepLabelEmbeddings(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = nn.SiLU()
lowercase__ = nn.Linear(_UpperCAmelCase , 6 * embedding_dim , bias=_UpperCAmelCase )
lowercase__ = nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase , eps=1E-6 )
def lowerCamelCase__ (self : int , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=None ) -> Any:
"""simple docstring"""
lowercase__ = self.linear(self.silu(self.emb(_UpperCAmelCase , _UpperCAmelCase , hidden_dtype=_UpperCAmelCase ) ) )
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = emb.chunk(6 , dim=1 )
lowercase__ = self.norm(_UpperCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class A ( nn.Module ):
'''simple docstring'''
def __init__(self : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : float = 1E-5 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
lowercase__ = num_groups
lowercase__ = eps
if act_fn is None:
lowercase__ = None
else:
lowercase__ = get_activation(_UpperCAmelCase )
lowercase__ = nn.Linear(_UpperCAmelCase , out_dim * 2 )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> int:
"""simple docstring"""
if self.act:
lowercase__ = self.act(_UpperCAmelCase )
lowercase__ = self.linear(_UpperCAmelCase )
lowercase__ = emb[:, :, None, None]
lowercase__ , lowercase__ = emb.chunk(2 , dim=1 )
lowercase__ = F.group_norm(_UpperCAmelCase , self.num_groups , eps=self.eps )
lowercase__ = x * (1 + scale) + shift
return x
| 15 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A : Union[str, Any] = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = ['ConvNextFeatureExtractor']
A : Optional[Any] = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 15 | 1 |
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=1E-1_2 ) -> str:
"""simple docstring"""
lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__magic_name__ , axis=1 ) , a_min=__magic_name__ ) ).T
lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__magic_name__ , axis=1 ) , a_min=__magic_name__ ) ).T
return jnp.matmul(__magic_name__ , norm_emb_a.T )
class A ( nn.Module ):
'''simple docstring'''
A__ = 42
A__ = jnp.floataa
def lowerCamelCase__ (self : Dict ) -> Dict:
"""simple docstring"""
lowercase__ = FlaxCLIPVisionModule(self.config.vision_config )
lowercase__ = nn.Dense(self.config.projection_dim , use_bias=_UpperCAmelCase , dtype=self.dtype )
lowercase__ = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
lowercase__ = self.param(
"""special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
lowercase__ = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) )
lowercase__ = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) )
def __call__(self : List[str] , _UpperCAmelCase : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ = self.vision_model(_UpperCAmelCase )[1]
lowercase__ = self.visual_projection(_UpperCAmelCase )
lowercase__ = jax_cosine_distance(_UpperCAmelCase , self.special_care_embeds )
lowercase__ = jax_cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
lowercase__ = 0.0
lowercase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
lowercase__ = jnp.round(_UpperCAmelCase , 3 )
lowercase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=_UpperCAmelCase )
# Use a lower threshold if an image has any special care concept
lowercase__ = is_special_care * 0.01
lowercase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
lowercase__ = jnp.round(_UpperCAmelCase , 3 )
lowercase__ = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = CLIPConfig
A__ = '''clip_input'''
A__ = FlaxStableDiffusionSafetyCheckerModule
def __init__(self : List[str] , _UpperCAmelCase : CLIPConfig , _UpperCAmelCase : Optional[Tuple] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : jnp.dtype = jnp.floataa , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> Dict:
"""simple docstring"""
if input_shape is None:
lowercase__ = (1, 224, 224, 3)
lowercase__ = self.module_class(config=_UpperCAmelCase , dtype=_UpperCAmelCase , **_UpperCAmelCase )
super().__init__(_UpperCAmelCase , _UpperCAmelCase , input_shape=_UpperCAmelCase , seed=_UpperCAmelCase , dtype=_UpperCAmelCase , _do_init=_do_init )
def lowerCamelCase__ (self : int , _UpperCAmelCase : jax.random.KeyArray , _UpperCAmelCase : Tuple , _UpperCAmelCase : FrozenDict = None ) -> FrozenDict:
"""simple docstring"""
lowercase__ = jax.random.normal(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ , lowercase__ = jax.random.split(_UpperCAmelCase )
lowercase__ = {"""params""": params_rng, """dropout""": dropout_rng}
lowercase__ = self.module.init(_UpperCAmelCase , _UpperCAmelCase )["""params"""]
return random_params
def __call__(self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : dict = None , ) -> Dict:
"""simple docstring"""
lowercase__ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
return self.module.apply(
{"""params""": params or self.params} , jnp.array(_UpperCAmelCase , dtype=jnp.floataa ) , rngs={} , )
| 15 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict:
"""simple docstring"""
lowercase__ = None
if token is not None:
lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
lowercase__ = """636036"""
lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json()
return result["workflow_runs"]
def UpperCamelCase ( __magic_name__ : str ) -> Dict:
"""simple docstring"""
lowercase__ = get_daily_ci_runs(__magic_name__ )
lowercase__ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
lowercase__ = workflow_run["""id"""]
break
return workflow_run_id
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
lowercase__ = get_last_daily_ci_runs(__magic_name__ )
if workflow_run_id is not None:
lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
lowercase__ = artifacts_links[artifact_name]
download_artifact(
artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ )
def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ )
lowercase__ = {}
for artifact_name in artifact_names:
lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' )
if os.path.isfile(__magic_name__ ):
lowercase__ = {}
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
with z.open(__magic_name__ ) as f:
lowercase__ = f.read().decode("""UTF-8""" )
return results
| 15 | 1 |
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = (UnCLIPScheduler,)
def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Union[str, Any] ) -> Dict:
"""simple docstring"""
lowercase__ = {
"""num_train_timesteps""": 1000,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**_UpperCAmelCase )
return config
def lowerCamelCase__ (self : Union[str, Any] ) -> str:
"""simple docstring"""
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple ) -> List[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> List[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> Union[str, Any]:
"""simple docstring"""
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_UpperCAmelCase , prev_timestep=_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(variance_type="""fixed_small_log""" )
lowercase__ = scheduler_class(**_UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5
def lowerCamelCase__ (self : Union[str, Any] ) -> int:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(variance_type="""learned_range""" )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = 0.5
assert scheduler._get_variance(1 , predicted_variance=_UpperCAmelCase ) - -10.1_712_790 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=_UpperCAmelCase ) - -5.7_998_052 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=_UpperCAmelCase ) - -0.0_010_011 < 1E-5
def lowerCamelCase__ (self : str ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = scheduler.timesteps
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
lowercase__ = torch.manual_seed(0 )
for i, t in enumerate(_UpperCAmelCase ):
# 1. predict noise residual
lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowercase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample
lowercase__ = pred_prev_sample
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2
assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3
def lowerCamelCase__ (self : str ) -> List[str]:
"""simple docstring"""
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(25 )
lowercase__ = scheduler.timesteps
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
lowercase__ = torch.manual_seed(0 )
for i, t in enumerate(_UpperCAmelCase ):
# 1. predict noise residual
lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase )
if i + 1 == timesteps.shape[0]:
lowercase__ = None
else:
lowercase__ = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
lowercase__ = scheduler.step(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , prev_timestep=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample
lowercase__ = pred_prev_sample
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2
assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3
def lowerCamelCase__ (self : Optional[int] ) -> int:
"""simple docstring"""
pass
def lowerCamelCase__ (self : List[str] ) -> str:
"""simple docstring"""
pass
| 15 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A ( unittest.TestCase ):
'''simple docstring'''
A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
lowercase__ = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 )
lowercase__ = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
] , )
@require_torch
def lowerCamelCase__ (self : str ) -> List[Any]:
"""simple docstring"""
lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
lowercase__ = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
lowercase__ = pipeline(
"""video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
] , )
@require_tf
def lowerCamelCase__ (self : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
| 15 | 1 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
A : str = False
class A ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class A ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase__ (self : Optional[Any] ) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ (self : Tuple ) -> int:
"""simple docstring"""
lowercase__ = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
lowercase__ = """A painting of a squirrel eating a burger """
lowercase__ = torch.manual_seed(0 )
lowercase__ = pipe(
prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_UpperCAmelCase )
lowercase__ = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
lowercase__ = generator.manual_seed(0 )
lowercase__ = pipe(
prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def lowerCamelCase__ (self : List[str] ) -> List[str]:
"""simple docstring"""
lowercase__ = VersatileDiffusionTextToImagePipeline.from_pretrained(
"""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
lowercase__ = """A painting of a squirrel eating a burger """
lowercase__ = torch.manual_seed(0 )
lowercase__ = pipe(
prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
lowercase__ = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowercase__ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 15 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A : Optional[Any] = 1_6
A : str = 3_2
def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]:
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowercase__ = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__magic_name__ : int ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
__magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__magic_name__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
__magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
lowercase__ = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A : Union[str, Any] = mocked_dataloaders # noqa: F811
def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict:
"""simple docstring"""
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1":
lowercase__ = 2
# New Code #
lowercase__ = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["""lr"""]
lowercase__ = int(config["""num_epochs"""] )
lowercase__ = int(config["""seed"""] )
lowercase__ = int(config["""batch_size"""] )
lowercase__ = evaluate.load("""glue""" , """mrpc""" )
set_seed(__magic_name__ )
lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Now we train the model
for epoch in range(__magic_name__ ):
model.train()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__magic_name__ ):
lowercase__ = model(**__magic_name__ )
lowercase__ = output.loss
accelerator.backward(__magic_name__ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**__magic_name__ )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__magic_name__ , references=__magic_name__ , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , __magic_name__ )
def UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
lowercase__ = parser.parse_args()
lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
main()
| 15 | 1 |
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
A : Union[str, Any] = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} )
A__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
A__ = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `max_length` value of the model configuration.'''
)
} , )
A__ = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '''
'''to the `num_beams` value of the model configuration.'''
)
} , )
A__ = field(
default=UpperCAmelCase__ , metadata={
'''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'''
} , )
def lowerCamelCase__ (self : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ = super().to_dict()
for k, v in d.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowercase__ = v.to_dict()
return d
| 15 |
import os
import sys
A : Tuple = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
A : Dict = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str:
"""simple docstring"""
return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModel.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int:
"""simple docstring"""
return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
| 15 | 1 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ) -> Dict:
"""simple docstring"""
lowercase__ = TapasConfig.from_json_file(__magic_name__ )
# set absolute/relative position embeddings parameter
lowercase__ = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
lowercase__ = TapasForQuestionAnswering(config=__magic_name__ )
elif task == "WTQ":
# run_task_main.py hparams
lowercase__ = 4
lowercase__ = True
# hparam_utils.py hparams
lowercase__ = 0.6_6_4_6_9_4
lowercase__ = 0.2_0_7_9_5_1
lowercase__ = 0.1_2_1_1_9_4
lowercase__ = True
lowercase__ = True
lowercase__ = False
lowercase__ = 0.0_3_5_2_5_1_3
lowercase__ = TapasForQuestionAnswering(config=__magic_name__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
lowercase__ = 4
lowercase__ = False
# hparam_utils.py hparams
lowercase__ = 3_6.4_5_1_9
lowercase__ = 0.9_0_3_4_2_1
lowercase__ = 2_2_2.0_8_8
lowercase__ = True
lowercase__ = True
lowercase__ = True
lowercase__ = 0.7_6_3_1_4_1
lowercase__ = TapasForQuestionAnswering(config=__magic_name__ )
elif task == "TABFACT":
lowercase__ = TapasForSequenceClassification(config=__magic_name__ )
elif task == "MLM":
lowercase__ = TapasForMaskedLM(config=__magic_name__ )
elif task == "INTERMEDIATE_PRETRAINING":
lowercase__ = TapasModel(config=__magic_name__ )
else:
raise ValueError(f'''Task {task} not supported.''' )
print(f'''Building PyTorch model from configuration: {config}''' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(__magic_name__ , __magic_name__ , __magic_name__ )
# Save pytorch-model (weights and configuration)
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(__magic_name__ )
# Save tokenizer files
print(f'''Save tokenizer files to {pytorch_dump_path}''' )
lowercase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 )
tokenizer.save_pretrained(__magic_name__ )
print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
A : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 15 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_lengths
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = gelu_activation
lowercase__ = sinusoidal_embeddings
lowercase__ = causal
lowercase__ = asm
lowercase__ = n_langs
lowercase__ = vocab_size
lowercase__ = n_special
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = summary_type
lowercase__ = use_proj
lowercase__ = scope
def lowerCamelCase__ (self : List[str] ) -> List[str]:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = None
if self.use_input_lengths:
lowercase__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ = ids_tensor([self.batch_size] , 2 ).float()
lowercase__ = ids_tensor([self.batch_size] , self.num_choices )
lowercase__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCamelCase__ (self : int ) -> Dict:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , )
((lowercase__) , ) = result_with_labels.to_tuple()
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
((lowercase__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ (self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) = config_and_inputs
lowercase__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
A__ = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowerCamelCase__ (self : str ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = FlaubertModelTester(self )
lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 )
def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase__ (self : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[Any] ) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> Any:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase )
@slow
def lowerCamelCase__ (self : int ) -> List[Any]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
@require_torch_gpu
def lowerCamelCase__ (self : Dict ) -> int:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
lowercase__ = True
lowercase__ = model_class(config=_UpperCAmelCase )
lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = torch.jit.trace(
_UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) )
lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase )
loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) )
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCamelCase__ (self : Tuple ) -> Dict:
"""simple docstring"""
lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
lowercase__ = model(_UpperCAmelCase )[0]
lowercase__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _UpperCAmelCase )
lowercase__ = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 15 | 1 |
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = ['''image_processor''', '''tokenizer''']
A__ = '''BlipImageProcessor'''
A__ = '''AutoTokenizer'''
def __init__(self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Any:
"""simple docstring"""
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
# add QFormer tokenizer
lowercase__ = qformer_tokenizer
def __call__(self : Optional[Any] , _UpperCAmelCase : ImageInput = None , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchFeature:
"""simple docstring"""
if images is None and text is None:
raise ValueError("""You have to specify at least images or text.""" )
lowercase__ = BatchFeature()
if text is not None:
lowercase__ = self.tokenizer(
text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
encoding.update(_UpperCAmelCase )
lowercase__ = self.qformer_tokenizer(
text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = qformer_text_encoding.pop("""input_ids""" )
lowercase__ = qformer_text_encoding.pop("""attention_mask""" )
if images is not None:
lowercase__ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase )
encoding.update(_UpperCAmelCase )
return encoding
def lowerCamelCase__ (self : Tuple , *_UpperCAmelCase : Any , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCamelCase__ (self : str , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Union[str, Any] ) -> int:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def lowerCamelCase__ (self : List[str] ) -> Dict:
"""simple docstring"""
lowercase__ = self.tokenizer.model_input_names
lowercase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ) -> int:
"""simple docstring"""
if os.path.isfile(_UpperCAmelCase ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
lowercase__ = os.path.join(_UpperCAmelCase , """qformer_tokenizer""" )
self.qformer_tokenizer.save_pretrained(_UpperCAmelCase )
return super().save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCamelCase__ (cls : Tuple , _UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ) -> List[Any]:
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , subfolder="""qformer_tokenizer""" )
lowercase__ = cls._get_arguments_from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
args.append(_UpperCAmelCase )
return cls(*_UpperCAmelCase )
| 15 |
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ , lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ )
lowercase__ = emb.weight.data
return lin_layer
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(__magic_name__ )
lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ )
if mbart_aa and finetuned:
lowercase__ = """relu"""
lowercase__ = state_dict["""decoder.embed_tokens.weight"""]
lowercase__ = MBartForConditionalGeneration(__magic_name__ )
model.model.load_state_dict(__magic_name__ )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
A : Any = parser.parse_args()
A : str = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 15 | 1 |
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class A ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=4 , ) -> Any:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_attention_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_choices
def lowerCamelCase__ (self : Dict ) -> List[str]:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ = None
if self.use_attention_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_UpperCAmelCase , )
return config, input_ids, attention_mask
def lowerCamelCase__ (self : Any ) -> List[Any]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ (self : List[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = FlaxDistilBertModelTester(self )
@slow
def lowerCamelCase__ (self : List[str] ) -> List[Any]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase__ = model_class_name.from_pretrained("""distilbert-base-uncased""" )
lowercase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(_UpperCAmelCase )
@require_flax
class A ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
lowercase__ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowercase__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
lowercase__ = (1, 11, 768)
self.assertEqual(output.shape , _UpperCAmelCase )
lowercase__ = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
| 15 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def UpperCamelCase ( __magic_name__ : Any ) -> int:
"""simple docstring"""
lowercase__ = model.config
lowercase__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
lowercase__ = MBartConfig(
is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , )
return encoder_config, decoder_config
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
if "encoder.model" in name:
lowercase__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
lowercase__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
lowercase__ = """encoder.""" + name
if "attn.proj" in name:
lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
lowercase__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
lowercase__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
lowercase__ = """encoder.layernorm.bias"""
return name
def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowercase__ = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
lowercase__ = key.split(""".""" )
lowercase__ = int(key_split[3] )
lowercase__ = int(key_split[5] )
lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase__ = val[:dim, :]
lowercase__ = val[dim : dim * 2, :]
lowercase__ = val[-dim:, :]
else:
lowercase__ = val[:dim]
lowercase__ = val[dim : dim * 2]
lowercase__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
lowercase__ = val
return orig_state_dict
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int:
"""simple docstring"""
lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval()
# load HuggingFace model
lowercase__ , lowercase__ = get_configs(__magic_name__ )
lowercase__ = DonutSwinModel(__magic_name__ )
lowercase__ = MBartForCausalLM(__magic_name__ )
lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ )
model.eval()
lowercase__ = original_model.state_dict()
lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# verify results on scanned document
lowercase__ = load_dataset("""hf-internal-testing/example-documents""" )
lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ )
lowercase__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ )
lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
lowercase__ = """When is the coffee break?"""
lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
lowercase__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
lowercase__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
lowercase__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
lowercase__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
lowercase__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[
"""input_ids"""
]
lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ )
lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ )
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
# verify encoder hidden states
lowercase__ = original_model.encoder(__magic_name__ )
lowercase__ = model.encoder(__magic_name__ ).last_hidden_state
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 )
# verify decoder hidden states
lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits
lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
A : Optional[int] = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 15 | 1 |
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
A : Union[str, Any] = 0B101100111110110010010000011110111011000110011110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
A : Any = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class A :
'''simple docstring'''
def __init__(self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = WATERMARK_BITS
lowercase__ = WatermarkEncoder()
self.encoder.set_watermark("""bits""" , self.watermark )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : torch.FloatTensor ) -> Optional[Any]:
"""simple docstring"""
if images.shape[-1] < 256:
return images
lowercase__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
lowercase__ = [self.encoder.encode(_UpperCAmelCase , """dwtDct""" ) for image in images]
lowercase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).permute(0 , 3 , 1 , 2 )
lowercase__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 )
return images
| 15 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
'The `inpainting.py` script is outdated. Please use directly `from diffusers import'
' StableDiffusionInpaintPipeline` instead.'
)
| 15 | 1 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
A : List[str] = logging.get_logger(__name__)
A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
A : str = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
A : List[Any] = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def UpperCamelCase ( ) -> Any:
"""simple docstring"""
lowercase__ = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
lowercase__ = bs[:]
lowercase__ = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__magic_name__ )
cs.append(2**8 + n )
n += 1
lowercase__ = [chr(__magic_name__ ) for n in cs]
return dict(zip(__magic_name__ , __magic_name__ ) )
def UpperCamelCase ( __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
lowercase__ = set()
lowercase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase__ = char
return pairs
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ['''input_ids''', '''attention_mask''']
def __init__(self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : str="replace" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : List[Any]="</s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Optional[int]="<s>" , _UpperCAmelCase : Tuple="<unk>" , _UpperCAmelCase : str="<pad>" , _UpperCAmelCase : Optional[Any]="<mask>" , _UpperCAmelCase : List[Any]=False , **_UpperCAmelCase : List[Any] , ) -> List[Any]:
"""simple docstring"""
lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token
lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token
lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token
lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token
lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
super().__init__(
errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , )
with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle:
lowercase__ = json.load(_UpperCAmelCase )
lowercase__ = {v: k for k, v in self.encoder.items()}
lowercase__ = errors # how to handle errors in decoding
lowercase__ = bytes_to_unicode()
lowercase__ = {v: k for k, v in self.byte_encoder.items()}
with open(_UpperCAmelCase , encoding="""utf-8""" ) as merges_handle:
lowercase__ = merges_handle.read().split("""\n""" )[1:-1]
lowercase__ = [tuple(merge.split() ) for merge in bpe_merges]
lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
lowercase__ = {}
lowercase__ = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowercase__ = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def lowerCamelCase__ (self : Tuple ) -> Tuple:
"""simple docstring"""
return len(self.encoder )
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowercase__ = tuple(_UpperCAmelCase )
lowercase__ = get_pairs(_UpperCAmelCase )
if not pairs:
return token
while True:
lowercase__ = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
lowercase__ , lowercase__ = bigram
lowercase__ = []
lowercase__ = 0
while i < len(_UpperCAmelCase ):
try:
lowercase__ = word.index(_UpperCAmelCase , _UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase__ = j
if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase__ = tuple(_UpperCAmelCase )
lowercase__ = new_word
if len(_UpperCAmelCase ) == 1:
break
else:
lowercase__ = get_pairs(_UpperCAmelCase )
lowercase__ = """ """.join(_UpperCAmelCase )
lowercase__ = word
return word
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[str] ) -> int:
"""simple docstring"""
lowercase__ = []
for token in re.findall(self.pat , _UpperCAmelCase ):
lowercase__ = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(""" """ ) )
return bpe_tokens
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> int:
"""simple docstring"""
return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] ) -> int:
"""simple docstring"""
return self.decoder.get(_UpperCAmelCase )
def lowerCamelCase__ (self : str , _UpperCAmelCase : Any ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = """""".join(_UpperCAmelCase )
lowercase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
lowercase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + """\n""" )
lowercase__ = 0
with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
lowercase__ = token_index
writer.write(""" """.join(_UpperCAmelCase ) + """\n""" )
index += 1
return vocab_file, merge_file
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1]
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any=False , **_UpperCAmelCase : Tuple ) -> Any:
"""simple docstring"""
lowercase__ = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()):
lowercase__ = """ """ + text
return (text, kwargs)
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> Any:
"""simple docstring"""
return token_ids_a + [self.eos_token_id]
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : "Conversation" ) -> List[int]:
"""simple docstring"""
lowercase__ = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(""" """ + text )
else:
# Generated responses should contain them already.
inputs.append(_UpperCAmelCase )
lowercase__ = """ """.join(_UpperCAmelCase )
lowercase__ = self.encode(_UpperCAmelCase )
if len(_UpperCAmelCase ) > self.model_max_length:
lowercase__ = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 15 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]:
"""simple docstring"""
super().__init__(
_UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , )
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , )
lowercase__ = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 15 | 1 |
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
A : Tuple = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model')
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = GPTSwaTokenizer
A__ = False
A__ = True
A__ = False
def lowerCamelCase__ (self : List[Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = GPTSwaTokenizer(_UpperCAmelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Any ) -> int:
"""simple docstring"""
lowercase__ = """This is a test"""
lowercase__ = """This is a test"""
return input_text, output_text
def lowerCamelCase__ (self : int ) -> List[Any]:
"""simple docstring"""
lowercase__ = """<s>"""
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> int:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """j""" )
self.assertEqual(len(_UpperCAmelCase ) , 2000 )
def lowerCamelCase__ (self : Tuple ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 2000 )
def lowerCamelCase__ (self : Dict ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = GPTSwaTokenizer(_UpperCAmelCase )
lowercase__ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [465, 287, 265, 631, 842] )
lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
# fmt: off
self.assertListEqual(
_UpperCAmelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , )
# fmt: on
lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , )
lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
# fmt: off
self.assertListEqual(
_UpperCAmelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] )
# fmt: on
def lowerCamelCase__ (self : Tuple ) -> List[str]:
"""simple docstring"""
lowercase__ = GPTSwaTokenizer(_UpperCAmelCase )
lowercase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""]
lowercase__ = [
[465, 287, 265, 631, 842],
[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertListEqual(tokenizer.encode_fast(_UpperCAmelCase ) , _UpperCAmelCase )
# Test that decode_fast returns the input text
for text, token_ids in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(tokenizer.decode_fast(_UpperCAmelCase ) , _UpperCAmelCase )
@slow
def lowerCamelCase__ (self : int ) -> List[Any]:
"""simple docstring"""
lowercase__ = [
"""<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""",
"""Hey there, how are you doing this fine day?""",
"""This is a text with a trailing spaces followed by a dot .""",
"""Häj sväjs lillebrör! =)""",
"""Det är inget fel på Mr. Cool""",
]
# fmt: off
lowercase__ = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=_UpperCAmelCase , )
| 15 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase__ (self : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ = """ylacombe/bark-small"""
lowercase__ = tempfile.mkdtemp()
lowercase__ = """en_speaker_1"""
lowercase__ = """This is a test string"""
lowercase__ = """speaker_embeddings_path.json"""
lowercase__ = """speaker_embeddings"""
def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ (self : Optional[int] ) -> List[str]:
"""simple docstring"""
lowercase__ = self.get_tokenizer()
lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase__ (self : str ) -> Tuple:
"""simple docstring"""
lowercase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase__ = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase__ (self : List[str] ) -> List[Any]:
"""simple docstring"""
lowercase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowercase__ = 35
lowercase__ = 2
lowercase__ = 8
lowercase__ = {
"""semantic_prompt""": np.ones(_UpperCAmelCase ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
lowercase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowercase__ = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
lowercase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = self.get_tokenizer()
lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase )
lowercase__ = processor(text=self.input_string )
lowercase__ = tokenizer(
self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 15 | 1 |
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
A : List[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
| 15 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
A : Optional[Any] = logging.get_logger(__name__)
A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Dict = {
'vocab_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Optional[int] = {
'vocab_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : int = {
'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2,
'facebook/dpr-ctx_encoder-multiset-base': 5_1_2,
}
A : Optional[Any] = {
'facebook/dpr-question_encoder-single-nq-base': 5_1_2,
'facebook/dpr-question_encoder-multiset-base': 5_1_2,
}
A : Any = {
'facebook/dpr-reader-single-nq-base': 5_1_2,
'facebook/dpr-reader-multiset-base': 5_1_2,
}
A : Union[str, Any] = {
'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True},
}
A : Tuple = {
'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True},
}
A : Any = {
'facebook/dpr-reader-single-nq-base': {'do_lower_case': True},
'facebook/dpr-reader-multiset-base': {'do_lower_case': True},
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRContextEncoderTokenizer
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRQuestionEncoderTokenizer
A : Any = collections.namedtuple(
'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text']
)
A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits'])
A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n '
@add_start_docstrings(UpperCAmelCase__ )
class A :
'''simple docstring'''
def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding:
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
elif titles is None or texts is None:
lowercase__ = titles if texts is None else texts
return super().__call__(
_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles]
lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages
assert len(_UpperCAmelCase ) == len(
_UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.'''
lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase )
]
}
if return_attention_mask is not False:
lowercase__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowercase__ = attention_mask
return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = reader_input["""input_ids"""]
lowercase__ , lowercase__ , lowercase__ = reader_output[:3]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ )
lowercase__ = []
for doc_id in sorted_docs:
lowercase__ = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowercase__ = sequence_ids.index(self.pad_token_id )
else:
lowercase__ = len(_UpperCAmelCase )
lowercase__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_UpperCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = []
for start_index, start_score in enumerate(_UpperCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
lowercase__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowercase__ = end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_UpperCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class A ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = READER_PRETRAINED_VOCAB_FILES_MAP
A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = READER_PRETRAINED_INIT_CONFIGURATION
A__ = ['''input_ids''', '''attention_mask''']
A__ = DPRReaderTokenizer
| 15 | 1 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]:
"""simple docstring"""
super().__init__(
_UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , )
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , )
lowercase__ = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 15 |
from __future__ import annotations
def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive
"""simple docstring"""
lowercase__ = len(__magic_name__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowercase__ = array[0]
lowercase__ = False
lowercase__ = 1
lowercase__ = []
while not is_found and i < array_length:
if array[i] < pivot:
lowercase__ = True
lowercase__ = [element for element in array[i:] if element >= array[i]]
lowercase__ = longest_subsequence(__magic_name__ )
if len(__magic_name__ ) > len(__magic_name__ ):
lowercase__ = temp_array
else:
i += 1
lowercase__ = [element for element in array[1:] if element >= pivot]
lowercase__ = [pivot, *longest_subsequence(__magic_name__ )]
if len(__magic_name__ ) > len(__magic_name__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
from ...configuration_utils import PretrainedConfig
A : Optional[int] = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''tapas'''
def __init__(self : Optional[int] , _UpperCAmelCase : int=3_0522 , _UpperCAmelCase : str=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=1024 , _UpperCAmelCase : Any=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Union[str, Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : List[str]=10.0 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : List[Any]=1.0 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str=False , _UpperCAmelCase : int=None , _UpperCAmelCase : List[str]=1.0 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any="ratio" , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : Dict , ) -> Dict:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_sizes
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
# Fine-tuning task hyperparameters
lowercase__ = positive_label_weight
lowercase__ = num_aggregation_labels
lowercase__ = aggregation_loss_weight
lowercase__ = use_answer_as_supervision
lowercase__ = answer_loss_importance
lowercase__ = use_normalized_answer_loss
lowercase__ = huber_loss_delta
lowercase__ = temperature
lowercase__ = aggregation_temperature
lowercase__ = use_gumbel_for_cells
lowercase__ = use_gumbel_for_aggregation
lowercase__ = average_approximation_function
lowercase__ = cell_selection_preference
lowercase__ = answer_loss_cutoff
lowercase__ = max_num_rows
lowercase__ = max_num_columns
lowercase__ = average_logits_per_cell
lowercase__ = select_one_column
lowercase__ = allow_empty_column_selection
lowercase__ = init_cell_selection_weights_to_zero
lowercase__ = reset_position_index_per_cell
lowercase__ = disable_per_token_loss
# Aggregation hyperparameters
lowercase__ = aggregation_labels
lowercase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , _UpperCAmelCase ):
lowercase__ = {int(_UpperCAmelCase ): v for k, v in aggregation_labels.items()}
| 15 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
A : List[Any] = None
A : Optional[Any] = logging.get_logger(__name__)
A : str = '▁'
A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
A : Optional[int] = {
'google/pegasus-xsum': 5_1_2,
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = PegasusTokenizer
A__ = ['''input_ids''', '''attention_mask''']
def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict:
"""simple docstring"""
lowercase__ = offset
if additional_special_tokens is not None:
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError(
f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is'''
f''' {type(_UpperCAmelCase )}''' )
lowercase__ = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 )
]
if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' )
lowercase__ = additional_special_tokens_extended
else:
lowercase__ = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )]
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"""There should be 3 special tokens: mask_token, pad_token, and eos_token +"""
f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' )
return [1 if x in all_special_ids else 0 for x in seq]
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return self._special_token_mask(_UpperCAmelCase )
elif token_ids_a is None:
return self._special_token_mask(_UpperCAmelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 15 | 1 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
A : Optional[int] = logging.get_logger(__name__)
def UpperCamelCase ( __magic_name__ : np.ndarray , __magic_name__ : Union[int, Iterable[int]] , __magic_name__ : bool , __magic_name__ : int ) -> Tuple[int, int]:
"""simple docstring"""
def constraint_to_multiple_of(__magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Dict=0 , __magic_name__ : Dict=None ):
lowercase__ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowercase__ = math.floor(val / multiple ) * multiple
if x < min_val:
lowercase__ = math.ceil(val / multiple ) * multiple
return x
lowercase__ = (output_size, output_size) if isinstance(__magic_name__ , __magic_name__ ) else output_size
lowercase__ , lowercase__ = get_image_size(__magic_name__ )
lowercase__ , lowercase__ = output_size
# determine new height and width
lowercase__ = output_height / input_height
lowercase__ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowercase__ = scale_width
else:
# fit height
lowercase__ = scale_height
lowercase__ = constraint_to_multiple_of(scale_height * input_height , multiple=__magic_name__ )
lowercase__ = constraint_to_multiple_of(scale_width * input_width , multiple=__magic_name__ )
return (new_height, new_width)
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = ['''pixel_values''']
def __init__(self : Any , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Tuple , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
lowercase__ = size if size is not None else {"""height""": 384, """width""": 384}
lowercase__ = get_size_dict(_UpperCAmelCase )
lowercase__ = do_resize
lowercase__ = size
lowercase__ = keep_aspect_ratio
lowercase__ = ensure_multiple_of
lowercase__ = resample
lowercase__ = do_rescale
lowercase__ = rescale_factor
lowercase__ = do_normalize
lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> np.ndarray:
"""simple docstring"""
lowercase__ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowercase__ = get_resize_output_image_size(
_UpperCAmelCase , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowerCamelCase__ (self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> int:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowerCamelCase__ (self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[Any] , ) -> PIL.Image.Image:
"""simple docstring"""
lowercase__ = do_resize if do_resize is not None else self.do_resize
lowercase__ = size if size is not None else self.size
lowercase__ = get_size_dict(_UpperCAmelCase )
lowercase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowercase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowercase__ = resample if resample is not None else self.resample
lowercase__ = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ = image_mean if image_mean is not None else self.image_mean
lowercase__ = image_std if image_std is not None else self.image_std
lowercase__ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
lowercase__ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
lowercase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
lowercase__ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
lowercase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
lowercase__ = {"""pixel_values""": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Tuple] = None ) -> Dict:
"""simple docstring"""
lowercase__ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(_UpperCAmelCase ):
lowercase__ = target_sizes.numpy()
lowercase__ = []
for idx in range(len(_UpperCAmelCase ) ):
lowercase__ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_UpperCAmelCase )
lowercase__ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_UpperCAmelCase )
else:
lowercase__ = logits.argmax(dim=1 )
lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 15 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
'''simple docstring'''
def lowerCamelCase__ (self : Dict ) -> Union[str, Any]:
"""simple docstring"""
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int:
"""simple docstring"""
lowercase__ = len(references[0] )
if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )]
lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 15 | 1 |
from PIL import Image
def UpperCamelCase ( __magic_name__ : Image , __magic_name__ : float ) -> Image:
"""simple docstring"""
def brightness(__magic_name__ : int ) -> float:
return 128 + level + (c - 128)
if not -2_5_5.0 <= level <= 2_5_5.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__magic_name__ )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
A : Union[str, Any] = change_brightness(img, 1_0_0)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 15 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : List[Any] ) -> Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PegasusTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCamelCase__ (self : Dict ) -> Optional[int]:
"""simple docstring"""
lowercase__ = """</s>"""
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] ) -> str:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(_UpperCAmelCase ) , 1103 )
def lowerCamelCase__ (self : str ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def lowerCamelCase__ (self : Any ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> int:
"""simple docstring"""
lowercase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowercase__ = """To ensure a smooth flow of bank resolutions."""
lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
lowercase__ = self._large_tokenizer(
text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask.
@slow
def lowerCamelCase__ (self : List[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : Any ) -> int:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ (self : Any ) -> str:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCamelCase__ (self : Any ) -> int:
"""simple docstring"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
@require_torch
def lowerCamelCase__ (self : List[str] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
lowercase__ = self._large_tokenizer(
text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask.
def lowerCamelCase__ (self : Optional[int] ) -> Any:
"""simple docstring"""
lowercase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids
self.assertListEqual(
_UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
| 15 | 1 |
import argparse
import copy
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = {}
with open(snake_case ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
__magic_name__ :Tuple = []
_list.append([line.split()[1], line.split()[2]] )
__magic_name__ :Dict = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
__magic_name__ :Optional[Any] = []
_list.append([line.split()[0], line.split()[2]] )
__magic_name__ :Optional[Any] = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
with open(snake_case ) as f:
__magic_name__ :Optional[Any] = f.read(1 )
__magic_name__ :List[Any] = start_node
__magic_name__ :int = []
__magic_name__ :str = start_node
__magic_name__ :Optional[Any] = 0
while visiting not in first_solution:
__magic_name__ :List[str] = 1_0_0_0_0
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case ) and k[0] not in first_solution:
__magic_name__ :Optional[Any] = k[1]
__magic_name__ :int = k[0]
first_solution.append(snake_case )
__magic_name__ :Dict = distance_of_first_solution + int(snake_case )
__magic_name__ :int = best_node
first_solution.append(snake_case )
__magic_name__ :Tuple = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
__magic_name__ :Optional[int] = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0_0_0_0
)
return first_solution, distance_of_first_solution
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = []
for n in solution[1:-1]:
__magic_name__ :List[str] = solution.index(snake_case )
for kn in solution[1:-1]:
__magic_name__ :str = solution.index(snake_case )
if n == kn:
continue
__magic_name__ :Union[str, Any] = copy.deepcopy(snake_case )
__magic_name__ :List[str] = kn
__magic_name__ :Optional[int] = n
__magic_name__ :Any = 0
for k in _tmp[:-1]:
__magic_name__ :Tuple = _tmp[_tmp.index(snake_case ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
__magic_name__ :List[str] = distance + int(i[1] )
_tmp.append(snake_case )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
__magic_name__ :Optional[int] = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = 1
__magic_name__ :Dict = first_solution
__magic_name__ :Optional[Any] = []
__magic_name__ :Optional[Any] = distance_of_first_solution
__magic_name__ :str = solution
while count <= iters:
__magic_name__ :Dict = find_neighborhood(snake_case, snake_case )
__magic_name__ :Any = 0
__magic_name__ :Union[str, Any] = neighborhood[index_of_best_solution]
__magic_name__ :Union[str, Any] = len(snake_case ) - 1
__magic_name__ :str = False
while not found:
__magic_name__ :List[str] = 0
while i < len(snake_case ):
if best_solution[i] != solution[i]:
__magic_name__ :List[str] = best_solution[i]
__magic_name__ :Any = solution[i]
break
__magic_name__ :Any = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
__magic_name__ :List[str] = True
__magic_name__ :List[str] = best_solution[:-1]
__magic_name__ :int = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
__magic_name__ :Union[str, Any] = cost
__magic_name__ :List[str] = solution
else:
__magic_name__ :Optional[int] = index_of_best_solution + 1
__magic_name__ :Optional[Any] = neighborhood[index_of_best_solution]
if len(snake_case ) >= size:
tabu_list.pop(0 )
__magic_name__ :List[Any] = count + 1
return best_solution_ever, best_cost
def __lowercase ( snake_case=None ):
"""simple docstring"""
__magic_name__ :str = generate_neighbours(args.File )
__magic_name__ , __magic_name__ :List[str] = generate_first_solution(
args.File, snake_case )
__magic_name__ , __magic_name__ :List[Any] = tabu_search(
snake_case, snake_case, snake_case, args.Iterations, args.Size, )
print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser(description="""Tabu Search""")
parser.add_argument(
"""-f""",
"""--File""",
type=str,
help="""Path to the file containing the data""",
required=True,
)
parser.add_argument(
"""-i""",
"""--Iterations""",
type=int,
help="""How many iterations the algorithm should perform""",
required=True,
)
parser.add_argument(
"""-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 0 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowercase__ = load_file(__magic_name__ )
lowercase__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
lowercase__ = pipeline.text_encoder
else:
lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
lowercase__ = pipeline.unet
# find the target layer
lowercase__ = layer_infos.pop(0 )
while len(__magic_name__ ) > -1:
try:
lowercase__ = curr_layer.__getattr__(__magic_name__ )
if len(__magic_name__ ) > 0:
lowercase__ = layer_infos.pop(0 )
elif len(__magic_name__ ) == 0:
break
except Exception:
if len(__magic_name__ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowercase__ = layer_infos.pop(0 )
lowercase__ = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(__magic_name__ )
else:
pair_keys.append(__magic_name__ )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowercase__ = state_dict[pair_keys[0]].to(torch.floataa )
lowercase__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ )
# update visited list
for item in pair_keys:
visited.append(__magic_name__ )
return pipeline
if __name__ == "__main__":
A : int = argparse.ArgumentParser()
parser.add_argument(
'--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.'
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors'
)
parser.add_argument(
'--lora_prefix_text_encoder',
default='lora_te',
type=str,
help='The prefix of text encoder weight in safetensors',
)
parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW')
parser.add_argument(
'--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.'
)
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
A : str = parser.parse_args()
A : Tuple = args.base_model_path
A : List[str] = args.checkpoint_path
A : Optional[int] = args.dump_path
A : Optional[int] = args.lora_prefix_unet
A : Any = args.lora_prefix_text_encoder
A : Any = args.alpha
A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
A : int = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 15 | 0 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'''
},
'''merges_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'''
},
}
__snake_case = {'''allegro/herbert-base-cased''': 5_1_4}
__snake_case = {}
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_INIT_CONFIGURATION
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = HerbertTokenizer
def __init__( self: str,A_: str=None,A_: Optional[int]=None,A_: Union[str, Any]=None,A_: Union[str, Any]="<s>",A_: str="<unk>",A_: Optional[Any]="<pad>",A_: Optional[int]="<mask>",A_: Optional[int]="</s>",**A_: Dict,):
'''simple docstring'''
super().__init__(
A_,A_,tokenizer_file=A_,cls_token=A_,unk_token=A_,pad_token=A_,mask_token=A_,sep_token=A_,**A_,)
def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.cls_token_id]
__UpperCamelCase = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ )
if token_ids_a is None:
return [1] + ([0] * len(A_ )) + [1]
return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1]
def snake_case_ ( self: Union[str, Any],A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case_ ( self: Any,A_: str,A_: Optional[str] = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(A_,name=A_ )
return tuple(A_ )
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : List[str] = logging.get_logger(__name__)
A : Tuple = {
'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json',
'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json',
'kssteven/ibert-roberta-large-mnli': (
'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'
),
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''ibert'''
def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = quant_mode
lowercase__ = force_dequant
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@property
def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 15 | 0 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any]=13 , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : int=[1, 2, 1] , __lowerCAmelCase : int=[2, 2, 4] , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : int=2.0 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[str]=10 , __lowerCAmelCase : Dict=8 , ) -> Optional[int]:
_A = parent
_A = batch_size
_A = image_size
_A = patch_size
_A = num_channels
_A = embed_dim
_A = depths
_A = num_heads
_A = window_size
_A = mlp_ratio
_A = qkv_bias
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = drop_path_rate
_A = hidden_act
_A = use_absolute_embeddings
_A = patch_norm
_A = layer_norm_eps
_A = initializer_range
_A = is_training
_A = scope
_A = use_labels
_A = type_sequence_label_size
_A = encoder_stride
def snake_case_ ( self : List[str] ) -> str:
_A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = self.get_config()
return config, pixel_values, labels
def snake_case_ ( self : int ) -> List[Any]:
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def snake_case_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> Union[str, Any]:
_A = SwinvaModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_A = model(__lowerCAmelCase )
_A = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_A = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def snake_case_ ( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ) -> Optional[int]:
_A = SwinvaForMaskedImageModeling(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_A = model(__lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_A = 1
_A = SwinvaForMaskedImageModeling(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def snake_case_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ) -> Any:
_A = self.type_sequence_label_size
_A = SwinvaForImageClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_A = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def snake_case_ ( self : Tuple ) -> Tuple:
_A = self.prepare_config_and_inputs()
_A , _A , _A = config_and_inputs
_A = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( _A , _A , unittest.TestCase):
"""simple docstring"""
a__ : int = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
a__ : Any = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
a__ : Union[str, Any] = False
a__ : Optional[int] = False
a__ : Any = False
a__ : Optional[int] = False
def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]:
_A = SwinvaModelTester(self )
_A = ConfigTester(self , config_class=__lowerCAmelCase , embed_dim=37 )
def snake_case_ ( self : Tuple ) -> Any:
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case_ ( self : Dict ) -> Tuple:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
@unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' )
def snake_case_ ( self : Optional[int] ) -> Union[str, Any]:
pass
@unittest.skip(reason='''Swinv2 does not use inputs_embeds''' )
def snake_case_ ( self : str ) -> str:
pass
def snake_case_ ( self : List[Any] ) -> Optional[int]:
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) )
def snake_case_ ( self : Union[str, Any] ) -> Tuple:
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(__lowerCAmelCase )
_A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A = [*signature.parameters.keys()]
_A = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowerCAmelCase )
def snake_case_ ( self : Dict ) -> Any:
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = True
for model_class in self.all_model_classes:
_A = True
_A = False
_A = True
_A = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
_A = outputs.attentions
_A = len(self.model_tester.depths )
self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_A = True
_A = config.window_size**2
_A = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
_A = outputs.attentions
self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
_A = len(__lowerCAmelCase )
# Check attention is always last and order is fine
_A = True
_A = True
_A = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
if hasattr(self.model_tester , '''num_hidden_states_types''' ):
_A = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
_A = 2
self.assertEqual(out_len + added_hidden_states , len(__lowerCAmelCase ) )
_A = outputs.attentions
self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def snake_case_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]:
_A = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
_A = outputs.hidden_states
_A = getattr(
self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase )
# Swinv2 has a different seq_length
_A = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
_A = outputs.reshaped_hidden_states
self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase )
_A , _A , _A , _A = reshaped_hidden_states[0].shape
_A = (
reshaped_hidden_states[0].view(__lowerCAmelCase , __lowerCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def snake_case_ ( self : int ) -> Tuple:
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_A = True
self.check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A = True
self.check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def snake_case_ ( self : Optional[int] ) -> Optional[int]:
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = 3
_A = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_A = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_A = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_A = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_A = True
self.check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A = True
self.check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , (padded_height, padded_width) )
def snake_case_ ( self : List[Any] ) -> Optional[int]:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase )
def snake_case_ ( self : Tuple ) -> List[str]:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase )
@slow
def snake_case_ ( self : Optional[Any] ) -> Tuple:
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = SwinvaModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def snake_case_ ( self : str ) -> Optional[Any]:
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = _config_zero_init(__lowerCAmelCase )
for model_class in self.all_model_classes:
_A = model_class(config=__lowerCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class lowerCamelCase__ ( unittest.TestCase):
"""simple docstring"""
@cached_property
def snake_case_ ( self : List[Any] ) -> int:
return (
AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' )
if is_vision_available()
else None
)
@slow
def snake_case_ ( self : str ) -> Dict:
_A = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to(
__lowerCAmelCase )
_A = self.default_image_processor
_A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_A = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase )
# forward pass
with torch.no_grad():
_A = model(**__lowerCAmelCase )
# verify the logits
_A = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
_A = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
| 2 |
from math import log
from scipy.constants import Boltzmann, physical_constants
A : Any = 3_0_0 # TEMPERATURE (unit = K)
def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float:
"""simple docstring"""
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
'''simple docstring'''
from random import shuffle
import tensorflow as tf
from numpy import array
def A_( A : Any , A : List[Any]):
UpperCamelCase = int(A)
assert noofclusters < len(A)
# Find out the dimensionality
UpperCamelCase = len(vectors[0])
# Will help select random centroids from among the available vectors
UpperCamelCase = list(range(len(A)))
shuffle(A)
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCamelCase = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCamelCase = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCamelCase = [
tf.Variable(vectors[vector_indices[i]]) for i in range(A)
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCamelCase = tf.placeholder('float64' , [dim])
UpperCamelCase = []
for centroid in centroids:
cent_assigns.append(tf.assign(A , A))
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCamelCase = [tf.Variable(0) for i in range(len(A))]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCamelCase = tf.placeholder('int32')
UpperCamelCase = []
for assignment in assignments:
cluster_assigns.append(tf.assign(A , A))
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCamelCase = tf.placeholder('float' , [None, dim])
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCamelCase = tf.reduce_mean(A , 0)
##Node for computing Euclidean distances
# Placeholders for input
UpperCamelCase = tf.placeholder('float' , [dim])
UpperCamelCase = tf.placeholder('float' , [dim])
UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A , A) , 2)))
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCamelCase = tf.placeholder('float' , [noofclusters])
UpperCamelCase = tf.argmin(A , 0)
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCamelCase = tf.initialize_all_variables()
# Initialize all variables
sess.run(A)
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCamelCase = 100
for _ in range(A):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(A)):
UpperCamelCase = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCamelCase = [
sess.run(A , feed_dict={va: vect, va: sess.run(A)})
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCamelCase = sess.run(
A , feed_dict={centroid_distances: distances})
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment})
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(A):
# Collect all the vectors assigned to this cluster
UpperCamelCase = [
vectors[i]
for i in range(len(A))
if sess.run(assignments[i]) == cluster_n
]
# Compute new centroid location
UpperCamelCase = sess.run(
A , feed_dict={mean_input: array(A)})
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location})
# Return centroids and assignments
UpperCamelCase = sess.run(A)
UpperCamelCase = sess.run(A)
return centroids, assignments
| 3 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class A :
'''simple docstring'''
A__ = 42
A__ = None
A__ = None
def UpperCamelCase ( ) -> Node | None:
"""simple docstring"""
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> int:
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]:
"""simple docstring"""
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(__magic_name__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) )
lowercase__ = 0
return output
def UpperCamelCase ( ) -> None: # Main function for testing.
"""simple docstring"""
lowercase__ = make_tree()
print(f'''In-order Traversal: {inorder(__magic_name__ )}''' )
print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' )
print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" )
print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(__magic_name__ ) , """\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1 , height(__magic_name__ ) + 1 ):
print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(__magic_name__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 15 | 0 |
"""simple docstring"""
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCamelCase : Dict = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None ):
# Recurse if needed
if "." in tensor_name:
lowerCAmelCase = tensor_name.split('.' )
for split in splits[:-1]:
lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase )
if new_module is None:
raise ValueError(F'{module} has no attribute {split}.' )
lowerCAmelCase = new_module
lowerCAmelCase = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' )
lowerCAmelCase = tensor_name in module._buffers
lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' )
lowerCAmelCase = False
lowerCAmelCase = False
if is_buffer or not is_bitsandbytes_available():
lowerCAmelCase = False
lowerCAmelCase = False
else:
lowerCAmelCase = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
lowerCAmelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
lowerCAmelCase = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
lowerCAmelCase = old_value.to(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , torch.Tensor ):
lowerCAmelCase = value.to('cpu' )
if value.dtype == torch.inta:
lowerCAmelCase = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
lowerCAmelCase = torch.tensor(_UpperCAmelCase , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , _UpperCAmelCase ) and fpaa_statistics is None:
lowerCAmelCase = new_value.T
lowerCAmelCase = old_value.__dict__
if is_abit:
lowerCAmelCase = bnb.nn.IntaParams(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase )
elif is_abit:
lowerCAmelCase = bnb.nn.Paramsabit(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase )
lowerCAmelCase = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(_UpperCAmelCase ) )
else:
if value is None:
lowerCAmelCase = old_value.to(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , torch.Tensor ):
lowerCAmelCase = value.to(_UpperCAmelCase )
else:
lowerCAmelCase = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase )
if is_buffer:
lowerCAmelCase = new_value
else:
lowerCAmelCase = nn.Parameter(_UpperCAmelCase , requires_grad=old_value.requires_grad )
lowerCAmelCase = new_value
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=False ):
for name, module in model.named_children():
if current_key_name is None:
lowerCAmelCase = []
current_key_name.append(_UpperCAmelCase )
if (isinstance(_UpperCAmelCase , nn.Linear ) or isinstance(_UpperCAmelCase , _UpperCAmelCase )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(_UpperCAmelCase ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase ,lowerCAmelCase = module.weight.shape
else:
lowerCAmelCase = module.in_features
lowerCAmelCase = module.out_features
if quantization_config.quantization_method() == "llm_int8":
lowerCAmelCase = bnb.nn.LinearabitLt(
_UpperCAmelCase , _UpperCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
lowerCAmelCase = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
lowerCAmelCase = bnb.nn.Linearabit(
_UpperCAmelCase , _UpperCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
lowerCAmelCase = True
# Store the module class in case we need to transpose the weight later
lowerCAmelCase = type(_UpperCAmelCase )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(_UpperCAmelCase )
if len(list(module.children() ) ) > 0:
lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , has_been_replaced=_UpperCAmelCase , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None ):
lowerCAmelCase = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ):
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , _UpperCAmelCase , )
return replace_with_bnb_linear(*_UpperCAmelCase , **_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[int] ):
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , _UpperCAmelCase , )
return set_module_quantized_tensor_to_device(*_UpperCAmelCase , **_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
lowerCAmelCase = deepcopy(_UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
lowerCAmelCase = find_tied_parameters(_UpperCAmelCase )
# For compatibility with Accelerate < 0.18
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
lowerCAmelCase = sum(_UpperCAmelCase , [] )
lowerCAmelCase = len(_UpperCAmelCase ) > 0
# Check if it is a base model
lowerCAmelCase = not hasattr(_UpperCAmelCase , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowerCAmelCase = list(model.named_children() )
lowerCAmelCase = [list_modules[-1][0]]
# add last module together with tied weights
lowerCAmelCase = set(_UpperCAmelCase ) - set(_UpperCAmelCase )
lowerCAmelCase = list(set(_UpperCAmelCase ) ) + list(_UpperCAmelCase )
# remove ".weight" from the keys
lowerCAmelCase = ['.weight', '.bias']
lowerCAmelCase = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowerCAmelCase = name.replace(_UpperCAmelCase , '' )
filtered_module_names.append(_UpperCAmelCase )
return filtered_module_names
| 4 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Any = logging.get_logger(__name__)
A : Tuple = {
'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''poolformer'''
def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = stride
lowercase__ = padding
lowercase__ = pool_size
lowercase__ = hidden_sizes
lowercase__ = mlp_ratio
lowercase__ = depths
lowercase__ = patch_sizes
lowercase__ = strides
lowercase__ = num_encoder_blocks
lowercase__ = drop_path_rate
lowercase__ = hidden_act
lowercase__ = use_layer_scale
lowercase__ = layer_scale_init_value
lowercase__ = initializer_range
super().__init__(**_UpperCAmelCase )
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = version.parse('''1.11''' )
@property
def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase__ (self : Dict ) -> float:
"""simple docstring"""
return 2E-3
| 15 | 0 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
_lowercase = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def A ():
_lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] )
_lowerCAmelCase = g.get_repo("""huggingface/diffusers""" )
_lowerCAmelCase = repo.get_issues(state="""open""" )
for issue in open_issues:
_lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase )
_lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="""closed""" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="""open""" )
issue.remove_from_labels("""stale""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
issue.add_to_labels("""stale""" )
if __name__ == "__main__":
main()
| 5 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@slow
@require_torch
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" )
lowercase__ = bertabert.config.encoder.vocab_size
lowercase__ = tokenizer.sep_token_id
lowercase__ = tokenizer.cls_token_id
lowercase__ = 128
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
lowercase__ = train_dataset.select(range(32 ) )
lowercase__ = val_dataset.select(range(16 ) )
lowercase__ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ):
# Tokenizer will automatically set [BOS] <text> [EOS]
lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 )
lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 )
lowercase__ = inputs.input_ids
lowercase__ = inputs.attention_mask
lowercase__ = outputs.input_ids
lowercase__ = outputs.input_ids.copy()
lowercase__ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
lowercase__ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase : List[Any] ):
lowercase__ = pred.label_ids
lowercase__ = pred.predictions
# all unnecessary tokens are removed
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
lowercase__ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
lowercase__ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
lowercase__ = self.get_auto_remove_tmp_dir()
lowercase__ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
lowercase__ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 15 | 0 |
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_lowerCamelCase = 'src/diffusers'
_lowerCamelCase = '.'
# This is to make sure the diffusers module imported is the one in the repo.
_lowerCamelCase = importlib.util.spec_from_file_location(
'diffusers',
os.path.join(DIFFUSERS_PATH, '__init__.py'),
submodule_search_locations=[DIFFUSERS_PATH],
)
_lowerCamelCase = spec.loader.load_module()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] ):
return line.startswith(UpperCamelCase__ ) or len(UpperCamelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCamelCase__ ) is not None
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = object_name.split(""".""" )
SCREAMING_SNAKE_CASE__ = 0
# First let's find the module where our object lives.
SCREAMING_SNAKE_CASE__ = parts[i]
while i < len(UpperCamelCase__ ) and not os.path.isfile(os.path.join(UpperCamelCase__ , f'''{module}.py''' ) ):
i += 1
if i < len(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , parts[i] )
if i >= len(UpperCamelCase__ ):
raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' )
with open(os.path.join(UpperCamelCase__ , f'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
SCREAMING_SNAKE_CASE__ = f.readlines()
# Now let's find the class / func in the code!
SCREAMING_SNAKE_CASE__ = """"""
SCREAMING_SNAKE_CASE__ = 0
for name in parts[i + 1 :]:
while (
line_index < len(UpperCamelCase__ ) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(UpperCamelCase__ ):
raise ValueError(f''' {object_name} does not match any function or class in {module}.''' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
SCREAMING_SNAKE_CASE__ = line_index
while line_index < len(UpperCamelCase__ ) and _should_continue(lines[line_index] , UpperCamelCase__ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
SCREAMING_SNAKE_CASE__ = lines[start_index:line_index]
return "".join(UpperCamelCase__ )
_lowerCamelCase = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)')
_lowerCamelCase = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)')
_lowerCamelCase = re.compile(R'<FILL\s+[^>]*>')
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = code.split("""\n""" )
SCREAMING_SNAKE_CASE__ = 0
while idx < len(UpperCamelCase__ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(UpperCamelCase__ ):
return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0]
return ""
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = len(get_indent(UpperCamelCase__ ) ) > 0
if has_indent:
SCREAMING_SNAKE_CASE__ = f'''class Bla:\n{code}'''
SCREAMING_SNAKE_CASE__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = black.format_str(UpperCamelCase__ , mode=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = style_docstrings_in_code(UpperCamelCase__ )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: str=False ):
with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
SCREAMING_SNAKE_CASE__ = f.readlines()
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = search.groups()
SCREAMING_SNAKE_CASE__ = find_code_in_diffusers(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = get_indent(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = line_index + 1 if indent == theoretical_indent else line_index + 2
SCREAMING_SNAKE_CASE__ = theoretical_indent
SCREAMING_SNAKE_CASE__ = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
SCREAMING_SNAKE_CASE__ = True
while line_index < len(UpperCamelCase__ ) and should_continue:
line_index += 1
if line_index >= len(UpperCamelCase__ ):
break
SCREAMING_SNAKE_CASE__ = lines[line_index]
SCREAMING_SNAKE_CASE__ = _should_continue(UpperCamelCase__ , UpperCamelCase__ ) and re.search(f'''^{indent}# End copy''' , UpperCamelCase__ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
SCREAMING_SNAKE_CASE__ = lines[start_index:line_index]
SCREAMING_SNAKE_CASE__ = """""".join(UpperCamelCase__ )
# Remove any nested `Copied from` comments to avoid circular copies
SCREAMING_SNAKE_CASE__ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCamelCase__ ) is None]
SCREAMING_SNAKE_CASE__ = """\n""".join(UpperCamelCase__ )
# Before comparing, use the `replace_pattern` on the original code.
if len(UpperCamelCase__ ) > 0:
SCREAMING_SNAKE_CASE__ = replace_pattern.replace("""with""" , """""" ).split(""",""" )
SCREAMING_SNAKE_CASE__ = [_re_replace_pattern.search(UpperCamelCase__ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pattern.groups()
SCREAMING_SNAKE_CASE__ = re.sub(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if option.strip() == "all-casing":
SCREAMING_SNAKE_CASE__ = re.sub(obja.lower() , obja.lower() , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = re.sub(obja.upper() , obja.upper() , UpperCamelCase__ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
SCREAMING_SNAKE_CASE__ = blackify(lines[start_index - 1] + theoretical_code )
SCREAMING_SNAKE_CASE__ = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
SCREAMING_SNAKE_CASE__ = lines[:start_index] + [theoretical_code] + lines[line_index:]
SCREAMING_SNAKE_CASE__ = start_index + 1
if overwrite and len(UpperCamelCase__ ) > 0:
# Warn the user a file has been modified.
print(f'''Detected changes, rewriting {filename}.''' )
with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(UpperCamelCase__ )
return diffs
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: bool = False ):
SCREAMING_SNAKE_CASE__ = glob.glob(os.path.join(UpperCamelCase__ , """**/*.py""" ) , recursive=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = []
for filename in all_files:
SCREAMING_SNAKE_CASE__ = is_copy_consistent(UpperCamelCase__ , UpperCamelCase__ )
diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs]
if not overwrite and len(UpperCamelCase__ ) > 0:
SCREAMING_SNAKE_CASE__ = """\n""".join(UpperCamelCase__ )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
_lowerCamelCase = parser.parse_args()
check_copies(args.fix_and_overwrite) | 6 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A : Union[str, Any] = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = ['ConvNextFeatureExtractor']
A : Optional[Any] = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 15 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : List[Any] = XGLMConfig
UpperCAmelCase : List[str] = {}
UpperCAmelCase : Dict = '''gelu'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int=14 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : List[str]=0.02 , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_labels
_A = vocab_size
_A = d_model
_A = num_hidden_layers
_A = num_attention_heads
_A = ffn_dim
_A = activation_function
_A = activation_dropout
_A = attention_dropout
_A = max_position_embeddings
_A = initializer_range
_A = None
_A = 0
_A = 2
_A = 1
def lowerCAmelCase_ ( self : Any ):
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowerCAmelCase_ ( self : str ):
_A = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = self.get_config()
_A = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowerCAmelCase_ ( self : Dict ):
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_UpperCAmelCase , )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Any = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCAmelCase : str = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = False
UpperCAmelCase : int = False
def lowerCAmelCase_ ( self : List[Any] ):
_A = TFXGLMModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , n_embd=37 )
def lowerCAmelCase_ ( self : List[str] ):
self.config_tester.run_common_tests()
@slow
def lowerCAmelCase_ ( self : List[Any] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFXGLMModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowerCAmelCase_ ( self : List[str] ):
super().test_resize_token_embeddings()
@require_tf
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str=True ):
_A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
_A = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_A = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
_A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
_A = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
_A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
_A = tokenizer('Today is a nice day and' , return_tensors='tf' )
_A = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
_A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , seed=[7, 0] )
_A = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase )
_A = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
_A = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
_A = 'left'
# use different length sentences to test batching
_A = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
_A = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase )
_A = inputs['input_ids']
_A = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
_A = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_A = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 )
_A = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_A = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 )
_A = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase )
_A = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 7 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict:
"""simple docstring"""
lowercase__ = None
if token is not None:
lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
lowercase__ = """636036"""
lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json()
return result["workflow_runs"]
def UpperCamelCase ( __magic_name__ : str ) -> Dict:
"""simple docstring"""
lowercase__ = get_daily_ci_runs(__magic_name__ )
lowercase__ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
lowercase__ = workflow_run["""id"""]
break
return workflow_run_id
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
lowercase__ = get_last_daily_ci_runs(__magic_name__ )
if workflow_run_id is not None:
lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
lowercase__ = artifacts_links[artifact_name]
download_artifact(
artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ )
def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ )
lowercase__ = {}
for artifact_name in artifact_names:
lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' )
if os.path.isfile(__magic_name__ ):
lowercase__ = {}
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
with z.open(__magic_name__ ) as f:
lowercase__ = f.read().decode("""UTF-8""" )
return results
| 15 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : int = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Any = [
'''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMSNModel''',
'''ViTMSNForImageClassification''',
'''ViTMSNPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowercase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 8 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A ( unittest.TestCase ):
'''simple docstring'''
A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
lowercase__ = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 )
lowercase__ = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
] , )
@require_torch
def lowerCamelCase__ (self : str ) -> List[Any]:
"""simple docstring"""
lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
lowercase__ = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
lowercase__ = pipeline(
"""video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
] , )
@require_tf
def lowerCamelCase__ (self : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
| 15 | 0 |
from __future__ import annotations
from typing import Any
def A ( __UpperCamelCase ) -> int:
if not postfix_notation:
return 0
A__ = {'+', '-', '*', '/'}
A__ = []
for token in postfix_notation:
if token in operations:
A__ , A__ = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(__UpperCamelCase ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A : Optional[Any] = 1_6
A : str = 3_2
def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]:
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowercase__ = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__magic_name__ : int ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
__magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__magic_name__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
__magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
lowercase__ = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A : Union[str, Any] = mocked_dataloaders # noqa: F811
def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict:
"""simple docstring"""
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1":
lowercase__ = 2
# New Code #
lowercase__ = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["""lr"""]
lowercase__ = int(config["""num_epochs"""] )
lowercase__ = int(config["""seed"""] )
lowercase__ = int(config["""batch_size"""] )
lowercase__ = evaluate.load("""glue""" , """mrpc""" )
set_seed(__magic_name__ )
lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Now we train the model
for epoch in range(__magic_name__ ):
model.train()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__magic_name__ ):
lowercase__ = model(**__magic_name__ )
lowercase__ = output.loss
accelerator.backward(__magic_name__ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**__magic_name__ )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__magic_name__ , references=__magic_name__ , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , __magic_name__ )
def UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
lowercase__ = parser.parse_args()
lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
main()
| 15 | 0 |
import logging
import os
from .state import PartialState
class lowerCAmelCase_ ( logging.LoggerAdapter ):
@staticmethod
def UpperCamelCase_ ( _A : Any ):
_UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ):
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCamelCase = kwargs.pop('''main_process_only''' , _A )
_UpperCamelCase = kwargs.pop('''in_order''' , _A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
elif in_order:
_UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCamelCase , _UpperCamelCase = self.process(_A , _A )
self.logger.log(_A , _A , *_A , **_A )
state.wait_for_everyone()
def _snake_case ( __snake_case , __snake_case = None ):
if log_level is None:
_UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case )
_UpperCamelCase = logging.getLogger(__snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__snake_case , {} )
| 10 |
import os
import sys
A : Tuple = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
A : Dict = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str:
"""simple docstring"""
return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModel.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int:
"""simple docstring"""
return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
| 15 | 0 |
'''simple docstring'''
import copy
import re
class __A :
'''simple docstring'''
__lowerCamelCase : List[Any] = 'hp'
__lowerCamelCase : str = {}
__lowerCamelCase : Tuple = None
@classmethod
def a__ (cls , A , A ) -> int:
"""simple docstring"""
_a = prefix
_a = defaults
cls.build_naming_info()
@staticmethod
def a__ (A , A ) -> Union[str, Any]:
"""simple docstring"""
if len(A ) == 0:
return ""
_a = None
if any(char.isdigit() for char in word ):
raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(A ) + 1 ):
_a = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
_a = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(A ):
_a = ''''''
while integer != 0:
_a = chr(ord('''A''' ) + integer % 10 ) + s
integer //= 10
return s
_a = 0
while True:
_a = word + '''#''' + int_to_alphabetic(A )
if sword in info["reverse_short_word"]:
continue
else:
_a = sword
break
_a = short_word
_a = word
return short_word
@staticmethod
def a__ (A , A ) -> Optional[int]:
"""simple docstring"""
_a = param_name.split('''_''' )
_a = [TrialShortNamer.shortname_for_word(A , A ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
_a = ['''''', '''_''']
for separator in separators:
_a = separator.join(A )
if shortname not in info["reverse_short_param"]:
_a = shortname
_a = param_name
return shortname
return param_name
@staticmethod
def a__ (A , A ) -> Optional[Any]:
"""simple docstring"""
_a = TrialShortNamer.shortname_for_key(A , A )
_a = short_name
_a = param_name
@classmethod
def a__ (cls ) -> Dict:
"""simple docstring"""
if cls.NAMING_INFO is not None:
return
_a = {
'''short_word''': {},
'''reverse_short_word''': {},
'''short_param''': {},
'''reverse_short_param''': {},
}
_a = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(A , A )
_a = info
@classmethod
def a__ (cls , A ) -> Tuple:
"""simple docstring"""
cls.build_naming_info()
assert cls.PREFIX is not None
_a = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
_a = cls.NAMING_INFO['''short_param'''][k]
if isinstance(A , A ):
_a = 1 if v else 0
_a = '''''' if isinstance(A , (int, float) ) else '''-'''
_a = f'''{key}{sep}{v}'''
name.append(A )
return "_".join(A )
@classmethod
def a__ (cls , A ) -> List[Any]:
"""simple docstring"""
_a = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
_a = []
else:
_a = repr.split('''_''' )
_a = {}
for value in values:
if "-" in value:
_a , _a = value.split('''-''' )
else:
_a = re.sub('''[0-9.]''' , '''''' , A )
_a = float(re.sub('''[^0-9.]''' , '''''' , A ) )
_a = cls.NAMING_INFO['''reverse_short_param'''][p_k]
_a = p_v
for k in cls.DEFAULTS:
if k not in parameters:
_a = cls.DEFAULTS[k]
return parameters
| 11 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_lengths
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = gelu_activation
lowercase__ = sinusoidal_embeddings
lowercase__ = causal
lowercase__ = asm
lowercase__ = n_langs
lowercase__ = vocab_size
lowercase__ = n_special
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = summary_type
lowercase__ = use_proj
lowercase__ = scope
def lowerCamelCase__ (self : List[str] ) -> List[str]:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = None
if self.use_input_lengths:
lowercase__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ = ids_tensor([self.batch_size] , 2 ).float()
lowercase__ = ids_tensor([self.batch_size] , self.num_choices )
lowercase__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCamelCase__ (self : int ) -> Dict:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , )
((lowercase__) , ) = result_with_labels.to_tuple()
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
((lowercase__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ (self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) = config_and_inputs
lowercase__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
A__ = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowerCamelCase__ (self : str ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = FlaubertModelTester(self )
lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 )
def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase__ (self : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[Any] ) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> Any:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase )
@slow
def lowerCamelCase__ (self : int ) -> List[Any]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
@require_torch_gpu
def lowerCamelCase__ (self : Dict ) -> int:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
lowercase__ = True
lowercase__ = model_class(config=_UpperCAmelCase )
lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = torch.jit.trace(
_UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) )
lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase )
loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) )
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCamelCase__ (self : Tuple ) -> Dict:
"""simple docstring"""
lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
lowercase__ = model(_UpperCAmelCase )[0]
lowercase__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _UpperCAmelCase )
lowercase__ = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 15 | 0 |
from unittest import TestCase
from datasets import Sequence, Value
from datasets.arrow_dataset import Dataset
class _snake_case ( UpperCAmelCase_ ):
def lowercase__ ( self):
'''simple docstring'''
return [
{"col_1": 3, "col_2": "a"},
{"col_1": 2, "col_2": "b"},
{"col_1": 1, "col_2": "c"},
{"col_1": 0, "col_2": "d"},
]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]}
return Dataset.from_dict(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self._create_example_records()
lowercase__ : Union[str, Any] = Dataset.from_list(SCREAMING_SNAKE_CASE_)
self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""])
for i, r in enumerate(SCREAMING_SNAKE_CASE_):
self.assertDictEqual(SCREAMING_SNAKE_CASE_ , example_records[i])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self._create_example_records()
lowercase__ : Tuple = Dataset.from_list(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]})
self.assertEqual(dset.info , dset_from_dict.info)
def lowercase__ ( self): # checks what happens with missing columns
'''simple docstring'''
lowercase__ : Optional[int] = [{"""col_1""": 1}, {"""col_2""": """x"""}]
lowercase__ : Dict = Dataset.from_list(SCREAMING_SNAKE_CASE_)
self.assertDictEqual(dset[0] , {"""col_1""": 1})
self.assertDictEqual(dset[1] , {"""col_1""": None}) # NB: first record is used for columns
def lowercase__ ( self): # checks if the type can be inferred from the second record
'''simple docstring'''
lowercase__ : Union[str, Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}]
lowercase__ : List[Any] = Dataset.from_list(SCREAMING_SNAKE_CASE_)
self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""")))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = Dataset.from_list([])
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , 0)
self.assertListEqual(dset.column_names , [])
| 12 |
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ , lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ )
lowercase__ = emb.weight.data
return lin_layer
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(__magic_name__ )
lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ )
if mbart_aa and finetuned:
lowercase__ = """relu"""
lowercase__ = state_dict["""decoder.embed_tokens.weight"""]
lowercase__ = MBartForConditionalGeneration(__magic_name__ )
model.model.load_state_dict(__magic_name__ )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
A : Any = parser.parse_args()
A : str = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 15 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
A__ : List[str] = {
"""configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = [
"""GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTBigCodeForSequenceClassification""",
"""GPTBigCodeForTokenClassification""",
"""GPTBigCodeForCausalLM""",
"""GPTBigCodeModel""",
"""GPTBigCodePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
A__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def UpperCamelCase ( __magic_name__ : Any ) -> int:
"""simple docstring"""
lowercase__ = model.config
lowercase__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
lowercase__ = MBartConfig(
is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , )
return encoder_config, decoder_config
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
if "encoder.model" in name:
lowercase__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
lowercase__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
lowercase__ = """encoder.""" + name
if "attn.proj" in name:
lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
lowercase__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
lowercase__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
lowercase__ = """encoder.layernorm.bias"""
return name
def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowercase__ = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
lowercase__ = key.split(""".""" )
lowercase__ = int(key_split[3] )
lowercase__ = int(key_split[5] )
lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase__ = val[:dim, :]
lowercase__ = val[dim : dim * 2, :]
lowercase__ = val[-dim:, :]
else:
lowercase__ = val[:dim]
lowercase__ = val[dim : dim * 2]
lowercase__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
lowercase__ = val
return orig_state_dict
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int:
"""simple docstring"""
lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval()
# load HuggingFace model
lowercase__ , lowercase__ = get_configs(__magic_name__ )
lowercase__ = DonutSwinModel(__magic_name__ )
lowercase__ = MBartForCausalLM(__magic_name__ )
lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ )
model.eval()
lowercase__ = original_model.state_dict()
lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# verify results on scanned document
lowercase__ = load_dataset("""hf-internal-testing/example-documents""" )
lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ )
lowercase__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ )
lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
lowercase__ = """When is the coffee break?"""
lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
lowercase__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
lowercase__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
lowercase__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
lowercase__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
lowercase__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[
"""input_ids"""
]
lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ )
lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ )
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
# verify encoder hidden states
lowercase__ = original_model.encoder(__magic_name__ )
lowercase__ = model.encoder(__magic_name__ ).last_hidden_state
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 )
# verify decoder hidden states
lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits
lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
A : Optional[int] = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 15 | 0 |
import os
from datetime import datetime as dt
from github import Github
a__ = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''enhancement''',
'''new pipeline/model''',
'''new scheduler''',
'''wip''',
]
def __UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
_a : List[str] = Github(os.environ['''GITHUB_TOKEN'''] )
_a : Tuple = g.get_repo('''huggingface/diffusers''' )
_a : str = repo.get_issues(state='''open''' )
for issue in open_issues:
_a : Optional[int] = sorted(issue.get_comments() ,key=lambda __a : i.created_at ,reverse=__a )
_a : Union[str, Any] = comments[0] if len(__a ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 14 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
'The `inpainting.py` script is outdated. Please use directly `from diffusers import'
' StableDiffusionInpaintPipeline` instead.'
)
| 15 | 0 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__A : Union[str, Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
__A : List[Any] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias'))
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias'))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append(
(
f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight',
f'decoder.layers.{i}.encoder_attn.out_proj.weight',
)
)
rename_keys.append(
(
f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias',
f'decoder.layers.{i}.encoder_attn.out_proj.bias',
)
)
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias'))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('input_proj.weight', 'input_projection.weight'),
('input_proj.bias', 'input_projection.bias'),
('query_embed.weight', 'query_position_embeddings.weight'),
('transformer.decoder.norm.weight', 'decoder.layernorm.weight'),
('transformer.decoder.norm.bias', 'decoder.layernorm.bias'),
('class_embed.weight', 'class_labels_classifier.weight'),
('class_embed.bias', 'class_labels_classifier.bias'),
('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'),
('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'),
('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'),
('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'),
('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'),
('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'),
('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'),
('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'),
('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'),
('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'),
('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'),
('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'),
('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'),
('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'),
('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'),
('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'),
]
)
def __a ( A__ : Dict , A__ : Dict , A__ : Any ):
SCREAMING_SNAKE_CASE = state_dict.pop(A__ )
SCREAMING_SNAKE_CASE = val
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" )
SCREAMING_SNAKE_CASE = value
else:
SCREAMING_SNAKE_CASE = value
return new_state_dict
def __a ( A__ : Optional[Any] , A__ : Tuple=False ):
SCREAMING_SNAKE_CASE = ""
if is_panoptic:
SCREAMING_SNAKE_CASE = "conditional_detr."
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" )
SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE = in_proj_weight[:256, :]
SCREAMING_SNAKE_CASE = in_proj_bias[:256]
SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :]
SCREAMING_SNAKE_CASE = in_proj_bias[256:512]
SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :]
SCREAMING_SNAKE_CASE = in_proj_bias[-256:]
def __a ( ):
SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg"
SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw )
return im
@torch.no_grad()
def __a ( A__ : List[str] , A__ : Union[str, Any] ):
SCREAMING_SNAKE_CASE = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
SCREAMING_SNAKE_CASE = "resnet101"
if "dc5" in model_name:
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = "panoptic" in model_name
if is_panoptic:
SCREAMING_SNAKE_CASE = 250
else:
SCREAMING_SNAKE_CASE = 91
SCREAMING_SNAKE_CASE = "huggingface/label-files"
SCREAMING_SNAKE_CASE = "coco-detection-id2label.json"
SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) )
SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE = idalabel
SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
# load image processor
SCREAMING_SNAKE_CASE = "coco_panoptic" if is_panoptic else "coco_detection"
SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=A__ )
# prepare image
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" )
SCREAMING_SNAKE_CASE = encoding["pixel_values"]
logger.info(F"Converting model {model_name}..." )
# load original model from torch hub
SCREAMING_SNAKE_CASE = torch.hub.load("DeppMeng/ConditionalDETR" , A__ , pretrained=A__ ).eval()
SCREAMING_SNAKE_CASE = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
SCREAMING_SNAKE_CASE = "conditional_detr." + src
rename_key(A__ , A__ , A__ )
SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ )
# query, key and value matrices need special treatment
read_in_q_k_v(A__ , is_panoptic=A__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
SCREAMING_SNAKE_CASE = "conditional_detr.model." if is_panoptic else "model."
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("conditional_detr" )
and not key.startswith("class_labels_classifier" )
and not key.startswith("bbox_predictor" )
):
SCREAMING_SNAKE_CASE = state_dict.pop(A__ )
SCREAMING_SNAKE_CASE = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
SCREAMING_SNAKE_CASE = state_dict.pop(A__ )
SCREAMING_SNAKE_CASE = val
elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ):
continue
else:
SCREAMING_SNAKE_CASE = state_dict.pop(A__ )
SCREAMING_SNAKE_CASE = val
else:
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
SCREAMING_SNAKE_CASE = state_dict.pop(A__ )
SCREAMING_SNAKE_CASE = val
# finally, create HuggingFace model and load state dict
SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ )
model.load_state_dict(A__ )
model.eval()
model.push_to_hub(repo_id=A__ , organization="DepuMeng" , commit_message="Add model" )
# verify our conversion
SCREAMING_SNAKE_CASE = conditional_detr(A__ )
SCREAMING_SNAKE_CASE = model(A__ )
assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 )
# Save model and image processor
logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(A__ ).mkdir(exist_ok=A__ )
model.save_pretrained(A__ )
image_processor.save_pretrained(A__ )
if __name__ == "__main__":
__A : str = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='conditional_detr_resnet50',
type=str,
help='Name of the CONDITIONAL_DETR model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__A : int = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path) | 16 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]:
"""simple docstring"""
super().__init__(
_UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , )
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , )
lowercase__ = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 15 | 0 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ : Union[str, Any] = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Union[str, Any] = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 17 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase__ (self : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ = """ylacombe/bark-small"""
lowercase__ = tempfile.mkdtemp()
lowercase__ = """en_speaker_1"""
lowercase__ = """This is a test string"""
lowercase__ = """speaker_embeddings_path.json"""
lowercase__ = """speaker_embeddings"""
def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ (self : Optional[int] ) -> List[str]:
"""simple docstring"""
lowercase__ = self.get_tokenizer()
lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase__ (self : str ) -> Tuple:
"""simple docstring"""
lowercase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase__ = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase__ (self : List[str] ) -> List[Any]:
"""simple docstring"""
lowercase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowercase__ = 35
lowercase__ = 2
lowercase__ = 8
lowercase__ = {
"""semantic_prompt""": np.ones(_UpperCAmelCase ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
lowercase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowercase__ = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
lowercase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = self.get_tokenizer()
lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase )
lowercase__ = processor(text=self.input_string )
lowercase__ = tokenizer(
self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 15 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = "megatron-bert"
def __init__( self , _lowerCAmelCase=29056 , _lowerCAmelCase=1024 , _lowerCAmelCase=24 , _lowerCAmelCase=16 , _lowerCAmelCase=4096 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]:
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = position_embedding_type
_lowerCAmelCase = use_cache
| 18 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
A : Optional[Any] = logging.get_logger(__name__)
A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Dict = {
'vocab_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Optional[int] = {
'vocab_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : int = {
'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2,
'facebook/dpr-ctx_encoder-multiset-base': 5_1_2,
}
A : Optional[Any] = {
'facebook/dpr-question_encoder-single-nq-base': 5_1_2,
'facebook/dpr-question_encoder-multiset-base': 5_1_2,
}
A : Any = {
'facebook/dpr-reader-single-nq-base': 5_1_2,
'facebook/dpr-reader-multiset-base': 5_1_2,
}
A : Union[str, Any] = {
'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True},
}
A : Tuple = {
'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True},
}
A : Any = {
'facebook/dpr-reader-single-nq-base': {'do_lower_case': True},
'facebook/dpr-reader-multiset-base': {'do_lower_case': True},
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRContextEncoderTokenizer
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRQuestionEncoderTokenizer
A : Any = collections.namedtuple(
'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text']
)
A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits'])
A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n '
@add_start_docstrings(UpperCAmelCase__ )
class A :
'''simple docstring'''
def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding:
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
elif titles is None or texts is None:
lowercase__ = titles if texts is None else texts
return super().__call__(
_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles]
lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages
assert len(_UpperCAmelCase ) == len(
_UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.'''
lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase )
]
}
if return_attention_mask is not False:
lowercase__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowercase__ = attention_mask
return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = reader_input["""input_ids"""]
lowercase__ , lowercase__ , lowercase__ = reader_output[:3]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ )
lowercase__ = []
for doc_id in sorted_docs:
lowercase__ = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowercase__ = sequence_ids.index(self.pad_token_id )
else:
lowercase__ = len(_UpperCAmelCase )
lowercase__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_UpperCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = []
for start_index, start_score in enumerate(_UpperCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
lowercase__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowercase__ = end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_UpperCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class A ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = READER_PRETRAINED_VOCAB_FILES_MAP
A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = READER_PRETRAINED_INIT_CONFIGURATION
A__ = ['''input_ids''', '''attention_mask''']
A__ = DPRReaderTokenizer
| 15 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
_a = logging.get_logger(__name__)
_a = """Hello, World!"""
_a = """en_XX"""
def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str:
"""simple docstring"""
_UpperCamelCase = Path('''data_bin''' )
_UpperCamelCase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(__snake_case ).parent ), checkpoint_file=Path(__snake_case ).name, _name='''xmod_base''', arch='''xmod_base''', task='''multilingual_masked_lm''', data_name_or_path=str(__snake_case ), bpe='''sentencepiece''', sentencepiece_model=str(Path(__snake_case ).parent / '''sentencepiece.bpe.model''' ), src_dict=str(data_dir / '''dict.txt''' ), )
xmod.eval() # disable dropout
print(__snake_case )
_UpperCamelCase = xmod.model.encoder.sentence_encoder
_UpperCamelCase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings, hidden_size=xmod.cfg.model.encoder_embed_dim, num_hidden_layers=xmod.cfg.model.encoder_layers, num_attention_heads=xmod.cfg.model.encoder_attention_heads, intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim, max_position_embeddings=5_14, type_vocab_size=1, layer_norm_eps=1e-5, pre_norm=xmod.cfg.model.encoder_normalize_before, adapter_reduction_factor=getattr(xmod.cfg.model, '''bottleneck''', 2 ), adapter_layer_norm=xmod.cfg.model.adapter_layer_norm, adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm, ln_before_adapter=xmod.cfg.model.ln_before_adapter, languages=xmod.cfg.model.languages, )
if classification_head:
_UpperCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''', __snake_case )
_UpperCamelCase = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case )
model.eval()
# Now let's copy all the weights.
# Embeddings
_UpperCamelCase = xmod_sent_encoder.embed_tokens.weight
_UpperCamelCase = xmod_sent_encoder.embed_positions.weight
_UpperCamelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
_UpperCamelCase = xmod_sent_encoder.layernorm_embedding.weight
_UpperCamelCase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
_UpperCamelCase = model.roberta.encoder.layer[i]
_UpperCamelCase = xmod_sent_encoder.layers[i]
# self attention
_UpperCamelCase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
_UpperCamelCase = xmod_layer.self_attn.q_proj.weight
_UpperCamelCase = xmod_layer.self_attn.q_proj.bias
_UpperCamelCase = xmod_layer.self_attn.k_proj.weight
_UpperCamelCase = xmod_layer.self_attn.k_proj.bias
_UpperCamelCase = xmod_layer.self_attn.v_proj.weight
_UpperCamelCase = xmod_layer.self_attn.v_proj.bias
# self-attention output
_UpperCamelCase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
_UpperCamelCase = xmod_layer.self_attn.out_proj.weight
_UpperCamelCase = xmod_layer.self_attn.out_proj.bias
_UpperCamelCase = xmod_layer.self_attn_layer_norm.weight
_UpperCamelCase = xmod_layer.self_attn_layer_norm.bias
# intermediate
_UpperCamelCase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
_UpperCamelCase = xmod_layer.fca.weight
_UpperCamelCase = xmod_layer.fca.bias
# output
_UpperCamelCase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
_UpperCamelCase = xmod_layer.fca.weight
_UpperCamelCase = xmod_layer.fca.bias
_UpperCamelCase = xmod_layer.final_layer_norm.weight
_UpperCamelCase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
_UpperCamelCase = xmod_layer.adapter_layer_norm.weight
_UpperCamelCase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
_UpperCamelCase = bert_output.adapter_modules[lang_code]
_UpperCamelCase = xmod_layer.adapter_modules[lang_code]
_UpperCamelCase = from_adapter.fca.weight
_UpperCamelCase = from_adapter.fca.bias
_UpperCamelCase = from_adapter.fca.weight
_UpperCamelCase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
_UpperCamelCase = xmod_sent_encoder.layer_norm.weight
_UpperCamelCase = xmod_sent_encoder.layer_norm.bias
if classification_head:
_UpperCamelCase = xmod.model.classification_heads['''mnli'''].dense.weight
_UpperCamelCase = xmod.model.classification_heads['''mnli'''].dense.bias
_UpperCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight
_UpperCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
_UpperCamelCase = xmod.model.encoder.lm_head.dense.weight
_UpperCamelCase = xmod.model.encoder.lm_head.dense.bias
_UpperCamelCase = xmod.model.encoder.lm_head.layer_norm.weight
_UpperCamelCase = xmod.model.encoder.lm_head.layer_norm.bias
_UpperCamelCase = xmod.model.encoder.lm_head.weight
_UpperCamelCase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
_UpperCamelCase = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(__snake_case )
_UpperCamelCase = model(__snake_case )[0]
if classification_head:
_UpperCamelCase = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__snake_case ) )
else:
_UpperCamelCase = xmod.model(__snake_case, lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape, their_output.shape )
_UpperCamelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
_UpperCamelCase = torch.allclose(__snake_case, __snake_case, atol=1e-3 )
print('''Do both models output the same tensors?''', '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(__snake_case ).mkdir(parents=__snake_case, exist_ok=__snake_case )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
_a = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 19 |
from __future__ import annotations
def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive
"""simple docstring"""
lowercase__ = len(__magic_name__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowercase__ = array[0]
lowercase__ = False
lowercase__ = 1
lowercase__ = []
while not is_found and i < array_length:
if array[i] < pivot:
lowercase__ = True
lowercase__ = [element for element in array[i:] if element >= array[i]]
lowercase__ = longest_subsequence(__magic_name__ )
if len(__magic_name__ ) > len(__magic_name__ ):
lowercase__ = temp_array
else:
i += 1
lowercase__ = [element for element in array[1:] if element >= pivot]
lowercase__ = [pivot, *longest_subsequence(__magic_name__ )]
if len(__magic_name__ ) > len(__magic_name__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class lowercase_ (lowercase__ ):
def __init__( self , lowercase_ , lowercase_) -> Tuple:
a__ =params
a__ =np.array(lowercase_)
a__ =np.array([len(lowercase_) for t in data])
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self , lowercase_) -> List[str]:
return (self.token_ids[index], self.lengths[index])
def __len__( self) -> Any:
return len(self.lengths)
def __UpperCamelCase ( self) -> Any:
assert len(self.token_ids) == len(self.lengths)
assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths)))
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =self.params.max_model_input_size
a__ =self.lengths > max_len
logger.info(F"""Splitting {sum(lowercase_)} too long sequences.""")
def divide_chunks(lowercase_ , lowercase_):
return [l[i : i + n] for i in range(0 , len(lowercase_) , lowercase_)]
a__ =[]
a__ =[]
if self.params.mlm:
a__ , a__ =self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
a__ , a__ =self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_)
new_lengths.append(len_)
else:
a__ =[]
for sub_s in divide_chunks(seq_ , max_len - 2):
if sub_s[0] != cls_id:
a__ =np.insert(lowercase_ , 0 , lowercase_)
if sub_s[-1] != sep_id:
a__ =np.insert(lowercase_ , len(lowercase_) , lowercase_)
assert len(lowercase_) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(lowercase_)
new_tok_ids.extend(lowercase_)
new_lengths.extend([len(lowercase_) for l in sub_seqs])
a__ =np.array(lowercase_)
a__ =np.array(lowercase_)
def __UpperCamelCase ( self) -> Tuple:
a__ =len(self)
a__ =self.lengths > 11
a__ =self.token_ids[indices]
a__ =self.lengths[indices]
a__ =len(self)
logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""")
def __UpperCamelCase ( self) -> Any:
if "unk_token" not in self.params.special_tok_ids:
return
else:
a__ =self.params.special_tok_ids['unk_token']
a__ =len(self)
a__ =np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids])
a__ =(unk_occs / self.lengths) < 0.5
a__ =self.token_ids[indices]
a__ =self.lengths[indices]
a__ =len(self)
logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""")
def __UpperCamelCase ( self) -> List[str]:
if not self.params.is_master:
return
logger.info(F"""{len(self)} sequences""")
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def __UpperCamelCase ( self , lowercase_) -> str:
a__ =[t[0] for t in batch]
a__ =[t[1] for t in batch]
assert len(lowercase_) == len(lowercase_)
# Max for paddings
a__ =max(lowercase_)
# Pad token ids
if self.params.mlm:
a__ =self.params.special_tok_ids['pad_token']
else:
a__ =self.params.special_tok_ids['unk_token']
a__ =[list(t.astype(lowercase_)) + [pad_idx] * (max_seq_len_ - len(lowercase_)) for t in token_ids]
assert len(tk_) == len(lowercase_)
assert all(len(lowercase_) == max_seq_len_ for t in tk_)
a__ =torch.tensor(tk_) # (bs, max_seq_len_)
a__ =torch.tensor(lowercase_) # (bs)
return tk_t, lg_t
| 20 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
A : List[Any] = None
A : Optional[Any] = logging.get_logger(__name__)
A : str = '▁'
A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
A : Optional[int] = {
'google/pegasus-xsum': 5_1_2,
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = PegasusTokenizer
A__ = ['''input_ids''', '''attention_mask''']
def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict:
"""simple docstring"""
lowercase__ = offset
if additional_special_tokens is not None:
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError(
f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is'''
f''' {type(_UpperCAmelCase )}''' )
lowercase__ = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 )
]
if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' )
lowercase__ = additional_special_tokens_extended
else:
lowercase__ = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )]
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"""There should be 3 special tokens: mask_token, pad_token, and eos_token +"""
f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' )
return [1 if x in all_special_ids else 0 for x in seq]
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return self._special_token_mask(_UpperCAmelCase )
elif token_ids_a is None:
return self._special_token_mask(_UpperCAmelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 15 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase_ : Union[str, Any] = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Tuple = ["ConditionalDetrFeatureExtractor"]
UpperCAmelCase_ : str = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[Any] = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
'''simple docstring'''
def lowerCamelCase__ (self : Dict ) -> Union[str, Any]:
"""simple docstring"""
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int:
"""simple docstring"""
lowercase__ = len(references[0] )
if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )]
lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 15 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A ( _a ):
lowercase_ = ['image_processor', 'tokenizer']
lowercase_ = 'BlipImageProcessor'
lowercase_ = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ) -> List[str]:
"""simple docstring"""
_a = False
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ )
_a = self.image_processor
def __call__( self : str , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> BatchEncoding:
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None:
_a = self.tokenizer
_a = self.tokenizer(
text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , )
return text_encoding
# add pixel_values
_a = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ )
if text is not None:
_a = self.tokenizer(
text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , )
else:
_a = None
if text_encoding is not None:
encoding_image_processor.update(lowerCAmelCase_ )
return encoding_image_processor
def __lowerCAmelCase ( self : List[str] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any , *lowerCAmelCase_ : str , **lowerCAmelCase_ : int ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_a = self.tokenizer.model_input_names
_a = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 22 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : List[Any] ) -> Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PegasusTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCamelCase__ (self : Dict ) -> Optional[int]:
"""simple docstring"""
lowercase__ = """</s>"""
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] ) -> str:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(_UpperCAmelCase ) , 1103 )
def lowerCamelCase__ (self : str ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def lowerCamelCase__ (self : Any ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> int:
"""simple docstring"""
lowercase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowercase__ = """To ensure a smooth flow of bank resolutions."""
lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
lowercase__ = self._large_tokenizer(
text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask.
@slow
def lowerCamelCase__ (self : List[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : Any ) -> int:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ (self : Any ) -> str:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCamelCase__ (self : Any ) -> int:
"""simple docstring"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
@require_torch
def lowerCamelCase__ (self : List[str] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
lowercase__ = self._large_tokenizer(
text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask.
def lowerCamelCase__ (self : Optional[int] ) -> Any:
"""simple docstring"""
lowercase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids
self.assertListEqual(
_UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
| 15 | 0 |
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _a ( UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = TextToVideoSDPipeline
A_ = TEXT_TO_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
A_ = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def _UpperCAmelCase ( self ) -> List[str]:
torch.manual_seed(0 )
UpperCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , )
UpperCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
UpperCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
UpperCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , )
UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase )
UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCamelCase_ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> Optional[Any]:
if str(_UpperCAmelCase ).startswith('mps' ):
UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCamelCase_ = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase_ = self.get_dummy_components()
UpperCamelCase_ = TextToVideoSDPipeline(**_UpperCAmelCase )
UpperCamelCase_ = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCamelCase_ = self.get_dummy_inputs(_UpperCAmelCase )
UpperCamelCase_ = 'np'
UpperCamelCase_ = sd_pipe(**_UpperCAmelCase ).frames
UpperCamelCase_ = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
UpperCamelCase_ = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _UpperCAmelCase ( self ) -> Any:
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def _UpperCAmelCase ( self ) -> List[Any]:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=1e-2 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def _UpperCAmelCase ( self ) -> List[Any]:
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def _UpperCAmelCase ( self ) -> Dict:
pass
def _UpperCAmelCase ( self ) -> Tuple:
return super().test_progress_bar()
@slow
@skip_mps
class _a ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' )
UpperCamelCase_ = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' )
UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
UpperCamelCase_ = pipe.to('cuda' )
UpperCamelCase_ = 'Spiderman is surfing'
UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase_ = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type='pt' ).frames
UpperCamelCase_ = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def _UpperCAmelCase ( self ) -> List[Any]:
UpperCamelCase_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' )
UpperCamelCase_ = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' )
UpperCamelCase_ = pipe.to('cuda' )
UpperCamelCase_ = 'Spiderman is surfing'
UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase_ = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='pt' ).frames
UpperCamelCase_ = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 23 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowercase__ = load_file(__magic_name__ )
lowercase__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
lowercase__ = pipeline.text_encoder
else:
lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
lowercase__ = pipeline.unet
# find the target layer
lowercase__ = layer_infos.pop(0 )
while len(__magic_name__ ) > -1:
try:
lowercase__ = curr_layer.__getattr__(__magic_name__ )
if len(__magic_name__ ) > 0:
lowercase__ = layer_infos.pop(0 )
elif len(__magic_name__ ) == 0:
break
except Exception:
if len(__magic_name__ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowercase__ = layer_infos.pop(0 )
lowercase__ = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(__magic_name__ )
else:
pair_keys.append(__magic_name__ )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowercase__ = state_dict[pair_keys[0]].to(torch.floataa )
lowercase__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ )
# update visited list
for item in pair_keys:
visited.append(__magic_name__ )
return pipeline
if __name__ == "__main__":
A : int = argparse.ArgumentParser()
parser.add_argument(
'--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.'
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors'
)
parser.add_argument(
'--lora_prefix_text_encoder',
default='lora_te',
type=str,
help='The prefix of text encoder weight in safetensors',
)
parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW')
parser.add_argument(
'--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.'
)
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
A : str = parser.parse_args()
A : Tuple = args.base_model_path
A : List[str] = args.checkpoint_path
A : Optional[int] = args.dump_path
A : Optional[int] = args.lora_prefix_unet
A : Any = args.lora_prefix_text_encoder
A : Any = args.alpha
A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
A : int = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 15 | 0 |
'''simple docstring'''
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def _UpperCamelCase (_lowerCamelCase : Any )-> Any:
'''simple docstring'''
__snake_case = tmp_path / '''file.csv'''
__snake_case = textwrap.dedent(
'''\
header1,header2
1,2
10,20
''' )
with open(_lowerCamelCase , '''w''' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
@pytest.fixture
def _UpperCamelCase (_lowerCamelCase : int )-> int:
'''simple docstring'''
__snake_case = tmp_path / '''malformed_file.csv'''
__snake_case = textwrap.dedent(
'''\
header1,header2
1,2
10,20,
''' )
with open(_lowerCamelCase , '''w''' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
@pytest.fixture
def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple )-> List[str]:
'''simple docstring'''
__snake_case = tmp_path / '''csv_with_image.csv'''
__snake_case = textwrap.dedent(
f'''\
image
{image_file}
''' )
with open(_lowerCamelCase , '''w''' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
@pytest.fixture
def _UpperCamelCase (_lowerCamelCase : Any )-> Tuple:
'''simple docstring'''
__snake_case = tmp_path / '''csv_with_label.csv'''
__snake_case = textwrap.dedent(
'''\
label
good
bad
good
''' )
with open(_lowerCamelCase , '''w''' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
@pytest.fixture
def _UpperCamelCase (_lowerCamelCase : Any )-> Union[str, Any]:
'''simple docstring'''
__snake_case = tmp_path / '''csv_with_int_list.csv'''
__snake_case = textwrap.dedent(
'''\
int_list
1 2 3
4 5 6
7 8 9
''' )
with open(_lowerCamelCase , '''w''' ) as f:
f.write(_lowerCamelCase )
return str(_lowerCamelCase )
def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any )-> Union[str, Any]:
'''simple docstring'''
__snake_case = Csv()
__snake_case = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(_lowerCamelCase , match='''Error tokenizing data''' ):
for _ in generator:
pass
assert any(
record.levelname == '''ERROR'''
and '''Failed to read file''' in record.message
and os.path.basename(_lowerCamelCase ) in record.message
for record in caplog.records )
@require_pil
def _UpperCamelCase (_lowerCamelCase : Dict )-> Optional[Any]:
'''simple docstring'''
with open(_lowerCamelCase , encoding='''utf-8''' ) as f:
__snake_case = f.read().splitlines()[1]
__snake_case = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) )
__snake_case = csv._generate_tables([[csv_file_with_image]] )
__snake_case = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('''image''' ).type == Image()()
__snake_case = pa_table.to_pydict()['''image''']
assert generated_content == [{"path": image_file, "bytes": None}]
def _UpperCamelCase (_lowerCamelCase : Any )-> int:
'''simple docstring'''
with open(_lowerCamelCase , encoding='''utf-8''' ) as f:
__snake_case = f.read().splitlines()[1:]
__snake_case = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) )
__snake_case = csv._generate_tables([[csv_file_with_label]] )
__snake_case = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )()
__snake_case = pa_table.to_pydict()['''label''']
assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(_lowerCamelCase ) for label in labels]
def _UpperCamelCase (_lowerCamelCase : Tuple )-> Any:
'''simple docstring'''
__snake_case = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda _lowerCamelCase : [int(_lowerCamelCase ) for i in x.split()]} )
__snake_case = csv._generate_tables([[csv_file_with_int_list]] )
__snake_case = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type )
__snake_case = pa_table.to_pydict()['''int_list''']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 24 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : List[str] = logging.get_logger(__name__)
A : Tuple = {
'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json',
'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json',
'kssteven/ibert-roberta-large-mnli': (
'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'
),
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''ibert'''
def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = quant_mode
lowercase__ = force_dequant
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@property
def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 15 | 0 |
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a_ = logging.get_logger(__name__)
class _UpperCamelCase ( __A ):
'''simple docstring'''
def __init__( self : List[str] , *a : Optional[int] , **a : Dict ) -> None:
"""simple docstring"""
warnings.warn(
"The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use LayoutLMv2ImageProcessor instead." , a , )
super().__init__(*a , **a ) | 25 |
from math import log
from scipy.constants import Boltzmann, physical_constants
A : Any = 3_0_0 # TEMPERATURE (unit = K)
def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float:
"""simple docstring"""
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def _a ( _lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase )
if k.startswith("""encoder""" ):
__snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" )
__snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" )
__snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
__snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" )
__snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" )
__snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" )
return k
def _a ( _lowerCamelCase ) -> Any:
"""simple docstring"""
__snake_case : Optional[int] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
__snake_case : Optional[Any] = sd.pop(_lowerCamelCase )
__snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
__snake_case : Union[str, Any] = v
__UpperCamelCase = ["START"]
@torch.no_grad()
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" )
__snake_case : Dict = model["""model"""]
__snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase )
__snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase )
__snake_case : List[Any] = m.model.state_dict().keys()
__snake_case : int = []
__snake_case : Union[str, Any] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__snake_case : str = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(_lowerCamelCase )
m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
m.half()
m.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
__UpperCamelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 26 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class A :
'''simple docstring'''
A__ = 42
A__ = None
A__ = None
def UpperCamelCase ( ) -> Node | None:
"""simple docstring"""
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> int:
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]:
"""simple docstring"""
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(__magic_name__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) )
lowercase__ = 0
return output
def UpperCamelCase ( ) -> None: # Main function for testing.
"""simple docstring"""
lowercase__ = make_tree()
print(f'''In-order Traversal: {inorder(__magic_name__ )}''' )
print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' )
print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" )
print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(__magic_name__ ) , """\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1 , height(__magic_name__ ) + 1 ):
print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(__magic_name__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 15 | 0 |
from ..utils import DummyObject, requires_backends
class lowerCamelCase( metaclass=__snake_case ):
'''simple docstring'''
__magic_name__ = ['onnx']
def __init__( self , *snake_case_ , **snake_case_ ):
requires_backends(self , ['onnx'] )
@classmethod
def lowerCAmelCase__ ( cls , *snake_case_ , **snake_case_ ):
requires_backends(cls , ['onnx'] )
@classmethod
def lowerCAmelCase__ ( cls , *snake_case_ , **snake_case_ ):
requires_backends(cls , ['onnx'] )
| 27 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Any = logging.get_logger(__name__)
A : Tuple = {
'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''poolformer'''
def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = stride
lowercase__ = padding
lowercase__ = pool_size
lowercase__ = hidden_sizes
lowercase__ = mlp_ratio
lowercase__ = depths
lowercase__ = patch_sizes
lowercase__ = strides
lowercase__ = num_encoder_blocks
lowercase__ = drop_path_rate
lowercase__ = hidden_act
lowercase__ = use_layer_scale
lowercase__ = layer_scale_init_value
lowercase__ = initializer_range
super().__init__(**_UpperCAmelCase )
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = version.parse('''1.11''' )
@property
def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase__ (self : Dict ) -> float:
"""simple docstring"""
return 2E-3
| 15 | 0 |
'''simple docstring'''
from __future__ import annotations
def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: list[int] ,__UpperCamelCase: list[int] ,__UpperCamelCase: list[list[str]] ,__UpperCamelCase: int ,):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = len(__UpperCamelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(__UpperCamelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] ,[*diagonal_right_collisions, row - col] ,[*diagonal_left_collisions, row + col] ,__UpperCamelCase ,__UpperCamelCase ,)
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : list[list[str]] = []
depth_first_search([] ,[] ,[] ,__UpperCamelCase ,__UpperCamelCase )
# Print all the boards
for board in boards:
for column in board:
print(__UpperCamelCase )
print('' )
print(len(__UpperCamelCase ) ,'solutions were found.' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 28 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@slow
@require_torch
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" )
lowercase__ = bertabert.config.encoder.vocab_size
lowercase__ = tokenizer.sep_token_id
lowercase__ = tokenizer.cls_token_id
lowercase__ = 128
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
lowercase__ = train_dataset.select(range(32 ) )
lowercase__ = val_dataset.select(range(16 ) )
lowercase__ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ):
# Tokenizer will automatically set [BOS] <text> [EOS]
lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 )
lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 )
lowercase__ = inputs.input_ids
lowercase__ = inputs.attention_mask
lowercase__ = outputs.input_ids
lowercase__ = outputs.input_ids.copy()
lowercase__ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
lowercase__ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase : List[Any] ):
lowercase__ = pred.label_ids
lowercase__ = pred.predictions
# all unnecessary tokens are removed
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
lowercase__ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
lowercase__ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
lowercase__ = self.get_auto_remove_tmp_dir()
lowercase__ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
lowercase__ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 15 | 0 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ):
if not nums: # Makes sure that the list is not empty
raise ValueError('''List is empty''' )
lowerCamelCase_ = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A : Union[str, Any] = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = ['ConvNextFeatureExtractor']
A : Optional[Any] = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 15 | 0 |
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
__a = None
__a = '<' if sys.byteorder == 'little' else '>'
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
__a = [
np.dtype('|b1'),
np.dtype('|u1'),
np.dtype('<u2'),
np.dtype('>u2'),
np.dtype('<i2'),
np.dtype('>i2'),
np.dtype('<u4'),
np.dtype('>u4'),
np.dtype('<i4'),
np.dtype('>i4'),
np.dtype('<f4'),
np.dtype('>f4'),
np.dtype('<f8'),
np.dtype('>f8'),
]
@dataclass
class __a:
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = None
# Automatically constructed
lowerCAmelCase = "PIL.Image.Image"
lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} )
lowerCAmelCase = field(default='''Image''' , init=_a , repr=_a )
def __call__( self ) -> Tuple:
return self.pa_type
def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
UpperCAmelCase_ : List[str] = np.array(_SCREAMING_SNAKE_CASE )
if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
return {"path": value, "bytes": None}
elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
return {"path": None, "bytes": value}
elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(_SCREAMING_SNAKE_CASE )
elif isinstance(_SCREAMING_SNAKE_CASE ,PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(_SCREAMING_SNAKE_CASE )
elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get('''path''' )}
elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image":
if not self.decode:
raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support decoding images, please install \'Pillow\'.''' )
if token_per_repo_id is None:
UpperCAmelCase_ : Dict = {}
UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = value['''path'''], value['''bytes''']
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(_SCREAMING_SNAKE_CASE ):
UpperCAmelCase_ : Tuple = PIL.Image.open(_SCREAMING_SNAKE_CASE )
else:
UpperCAmelCase_ : Dict = path.split('''::''' )[-1]
try:
UpperCAmelCase_ : Optional[int] = string_to_dict(_SCREAMING_SNAKE_CASE ,config.HUB_DATASETS_URL )['''repo_id''']
UpperCAmelCase_ : Tuple = token_per_repo_id.get(_SCREAMING_SNAKE_CASE )
except ValueError:
UpperCAmelCase_ : Optional[Any] = None
with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ,use_auth_token=_SCREAMING_SNAKE_CASE ) as f:
UpperCAmelCase_ : List[str] = BytesIO(f.read() )
UpperCAmelCase_ : Optional[Any] = PIL.Image.open(bytes_ )
else:
UpperCAmelCase_ : List[Any] = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
return (
self
if self.decode
else {
"bytes": Value('''binary''' ),
"path": Value('''string''' ),
}
)
def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray:
if pa.types.is_string(storage.type ):
UpperCAmelCase_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() )
UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() )
UpperCAmelCase_ : Tuple = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('''bytes''' ) >= 0:
UpperCAmelCase_ : Dict = storage.field('''bytes''' )
else:
UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() )
if storage.type.get_field_index('''path''' ) >= 0:
UpperCAmelCase_ : int = storage.field('''path''' )
else:
UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() )
UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
UpperCAmelCase_ : Optional[Any] = pa.array(
[encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,)
UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() )
UpperCAmelCase_ : Dict = pa.StructArray.from_arrays(
[bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() )
return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type )
def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray:
@no_op_if_value_is_null
def path_to_bytes(_SCREAMING_SNAKE_CASE ):
with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ) as f:
UpperCAmelCase_ : Any = f.read()
return bytes_
UpperCAmelCase_ : Union[str, Any] = pa.array(
[
(path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None
for x in storage.to_pylist()
] ,type=pa.binary() ,)
UpperCAmelCase_ : List[str] = pa.array(
[os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,)
UpperCAmelCase_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() )
return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type )
def lowerCamelCase__ ( ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
UpperCAmelCase_ : Optional[int] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = BytesIO()
if image.format in list_image_compression_formats():
UpperCAmelCase_ : int = image.format
else:
UpperCAmelCase_ : List[Any] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF'''
image.save(_lowercase , format=_lowercase )
return buffer.getvalue()
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
if hasattr(_lowercase , '''filename''' ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(_lowercase )}
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
UpperCAmelCase_ : Tuple = array.dtype
UpperCAmelCase_ : List[str] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER
UpperCAmelCase_ : Dict = dtype.kind
UpperCAmelCase_ : Union[str, Any] = dtype.itemsize
UpperCAmelCase_ : Optional[Any] = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
UpperCAmelCase_ : Tuple = np.dtype('''|u1''' )
if dtype_kind not in ["u", "i"]:
raise TypeError(
f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
UpperCAmelCase_ : Union[str, Any] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
UpperCAmelCase_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(_lowercase )
UpperCAmelCase_ : str = np.dtype(_lowercase )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
UpperCAmelCase_ : Any = PIL.Image.fromarray(array.astype(_lowercase ) )
return {"path": None, "bytes": image_to_bytes(_lowercase )}
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
if objs:
UpperCAmelCase_, UpperCAmelCase_ : Tuple = first_non_null_value(_lowercase )
if isinstance(_lowercase , _lowercase ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(_lowercase , np.ndarray ):
UpperCAmelCase_ : Any = no_op_if_value_is_null(_lowercase )
return [obj_to_image_dict_func(_lowercase ) for obj in objs]
elif isinstance(_lowercase , PIL.Image.Image ):
UpperCAmelCase_ : Union[str, Any] = no_op_if_value_is_null(_lowercase )
return [obj_to_image_dict_func(_lowercase ) for obj in objs]
else:
return objs
else:
return objs | 30 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict:
"""simple docstring"""
lowercase__ = None
if token is not None:
lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
lowercase__ = """636036"""
lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json()
return result["workflow_runs"]
def UpperCamelCase ( __magic_name__ : str ) -> Dict:
"""simple docstring"""
lowercase__ = get_daily_ci_runs(__magic_name__ )
lowercase__ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
lowercase__ = workflow_run["""id"""]
break
return workflow_run_id
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
lowercase__ = get_last_daily_ci_runs(__magic_name__ )
if workflow_run_id is not None:
lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
lowercase__ = artifacts_links[artifact_name]
download_artifact(
artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ )
def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ )
lowercase__ = {}
for artifact_name in artifact_names:
lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' )
if os.path.isfile(__magic_name__ ):
lowercase__ = {}
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
with z.open(__magic_name__ ) as f:
lowercase__ = f.read().decode("""UTF-8""" )
return results
| 15 | 0 |
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = CLIPTokenizer
lowercase_ = CLIPTokenizerFast
lowercase_ = True
lowercase_ = {}
lowercase_ = False
def lowerCAmelCase_ ( self : Optional[Any] ):
super().setUp()
# fmt: off
SCREAMING_SNAKE_CASE_ = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
SCREAMING_SNAKE_CASE_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
SCREAMING_SNAKE_CASE_ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>']
SCREAMING_SNAKE_CASE_ = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(_lowerCAmelCase ) )
def lowerCAmelCase_ ( self : str , **_lowerCAmelCase : Optional[Any] ):
kwargs.update(self.special_tokens_map )
return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def lowerCAmelCase_ ( self : Tuple , **_lowerCAmelCase : int ):
kwargs.update(self.special_tokens_map )
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ):
SCREAMING_SNAKE_CASE_ = 'lower newer'
SCREAMING_SNAKE_CASE_ = 'lower newer'
return input_text, output_text
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
SCREAMING_SNAKE_CASE_ = 'lower newer'
SCREAMING_SNAKE_CASE_ = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>']
SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE_ = [10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
@require_ftfy
def lowerCAmelCase_ ( self : Dict ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.'
SCREAMING_SNAKE_CASE_ = tokenizer_s.tokenize(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = tokenizer_r.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
SCREAMING_SNAKE_CASE_ = 'xa\u0303y' + ' ' + 'x\xe3y'
SCREAMING_SNAKE_CASE_ = tokenizer_s.tokenize(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = tokenizer_r.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
# Test that the tokenization is identical on unicode of space type
SCREAMING_SNAKE_CASE_ = [
'\u0009', # (horizontal tab, '\t')
'\u000B', # (vertical tab)
'\u000C', # (form feed)
'\u0020', # (space, ' ')
'\u200E', # (left-to-right mark):w
'\u200F', # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
SCREAMING_SNAKE_CASE_ = tokenizer_s.tokenize(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = tokenizer_r.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
# Test that the tokenization is identical on unicode of line break type
SCREAMING_SNAKE_CASE_ = [
'\u000A', # (line feed, '\n')
'\r\n', # (carriage return and line feed, '\r\n')
'\u000D', # (carriage return, '\r')
'\r', # (carriage return, '\r')
'\u000D', # (carriage return, '\r')
'\u2028', # (line separator)
'\u2029', # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
SCREAMING_SNAKE_CASE_ = tokenizer_s.tokenize(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = tokenizer_r.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE_ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE_ = F"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase , use_fast=_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , )
SCREAMING_SNAKE_CASE_ = F" {text}"
SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase , use_fast=_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ) + 1, 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , )
def lowerCAmelCase_ ( self : Optional[int] ):
# Test related to the breaking change introduced in transformers v4.17.0
# We need to check that an error in raised when the user try to load a previous version of the tokenizer.
with self.assertRaises(_lowerCAmelCase ) as context:
self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' )
self.assertTrue(
context.exception.args[0].startswith(
'The `backend_tokenizer` provided does not match the expected format.' ) )
@require_ftfy
def lowerCAmelCase_ ( self : Dict ):
super().test_tokenization_python_rust_equals()
def lowerCAmelCase_ ( self : Any ):
# CLIP always lower cases letters
pass | 31 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A ( unittest.TestCase ):
'''simple docstring'''
A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
lowercase__ = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 )
lowercase__ = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
] , )
@require_torch
def lowerCamelCase__ (self : str ) -> List[Any]:
"""simple docstring"""
lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
lowercase__ = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
lowercase__ = pipeline(
"""video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
] , )
@require_tf
def lowerCamelCase__ (self : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
| 15 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ = {
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A : Optional[Any] = 1_6
A : str = 3_2
def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]:
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowercase__ = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__magic_name__ : int ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
__magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__magic_name__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
__magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
lowercase__ = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A : Union[str, Any] = mocked_dataloaders # noqa: F811
def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict:
"""simple docstring"""
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1":
lowercase__ = 2
# New Code #
lowercase__ = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["""lr"""]
lowercase__ = int(config["""num_epochs"""] )
lowercase__ = int(config["""seed"""] )
lowercase__ = int(config["""batch_size"""] )
lowercase__ = evaluate.load("""glue""" , """mrpc""" )
set_seed(__magic_name__ )
lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Now we train the model
for epoch in range(__magic_name__ ):
model.train()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__magic_name__ ):
lowercase__ = model(**__magic_name__ )
lowercase__ = output.loss
accelerator.backward(__magic_name__ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**__magic_name__ )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__magic_name__ , references=__magic_name__ , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , __magic_name__ )
def UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
lowercase__ = parser.parse_args()
lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
main()
| 15 | 0 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
lowerCamelCase__ : Tuple = """\
@inproceedings{lin-2004-rouge,
title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",
author = \"Lin, Chin-Yew\",
booktitle = \"Text Summarization Branches Out\",
month = jul,
year = \"2004\",
address = \"Barcelona, Spain\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W04-1013\",
pages = \"74--81\",
}
"""
lowerCamelCase__ : List[str] = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
lowerCamelCase__ : Optional[int] = """
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,
`\"rougeL\"`: Longest common subsequence based scoring.
`\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric('rouge')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results[\"rouge1\"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results[\"rouge1\"].mid.fmeasure)
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/ROUGE_(metric)''',
'''https://github.com/google-research/google-research/tree/master/rouge''',
] , )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:Union[str, Any] , _a:List[Any] , _a:str=None , _a:Optional[int]=True , _a:Optional[Any]=False ):
if rouge_types is None:
snake_case__ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum''']
snake_case__ = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a )
if use_aggregator:
snake_case__ = scoring.BootstrapAggregator()
else:
snake_case__ = []
for ref, pred in zip(_a , _a ):
snake_case__ = scorer.score(_a , _a )
if use_aggregator:
aggregator.add_scores(_a )
else:
scores.append(_a )
if use_aggregator:
snake_case__ = aggregator.aggregate()
else:
snake_case__ = {}
for key in scores[0]:
snake_case__ = [score[key] for score in scores]
return result
| 33 |
import os
import sys
A : Tuple = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
A : Dict = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str:
"""simple docstring"""
return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModel.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int:
"""simple docstring"""
return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
| 15 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE_ = {
'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'],
'tokenization_lxmert': ['LxmertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = ['LxmertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'LxmertEncoder',
'LxmertForPreTraining',
'LxmertForQuestionAnswering',
'LxmertModel',
'LxmertPreTrainedModel',
'LxmertVisualFeatureEncoder',
'LxmertXLayer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLxmertForPreTraining',
'TFLxmertMainLayer',
'TFLxmertModel',
'TFLxmertPreTrainedModel',
'TFLxmertVisualFeatureEncoder',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 34 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_lengths
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = gelu_activation
lowercase__ = sinusoidal_embeddings
lowercase__ = causal
lowercase__ = asm
lowercase__ = n_langs
lowercase__ = vocab_size
lowercase__ = n_special
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = summary_type
lowercase__ = use_proj
lowercase__ = scope
def lowerCamelCase__ (self : List[str] ) -> List[str]:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = None
if self.use_input_lengths:
lowercase__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ = ids_tensor([self.batch_size] , 2 ).float()
lowercase__ = ids_tensor([self.batch_size] , self.num_choices )
lowercase__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCamelCase__ (self : int ) -> Dict:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , )
((lowercase__) , ) = result_with_labels.to_tuple()
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
((lowercase__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ (self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) = config_and_inputs
lowercase__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
A__ = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowerCamelCase__ (self : str ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = FlaubertModelTester(self )
lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 )
def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase__ (self : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[Any] ) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> Any:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase )
@slow
def lowerCamelCase__ (self : int ) -> List[Any]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
@require_torch_gpu
def lowerCamelCase__ (self : Dict ) -> int:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
lowercase__ = True
lowercase__ = model_class(config=_UpperCAmelCase )
lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = torch.jit.trace(
_UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) )
lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase )
loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) )
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCamelCase__ (self : Tuple ) -> Dict:
"""simple docstring"""
lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
lowercase__ = model(_UpperCAmelCase )[0]
lowercase__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _UpperCAmelCase )
lowercase__ = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 15 | 0 |
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowercase :
@staticmethod
def lowercase__ ( *_lowercase : List[Any] , **_lowercase : List[str] ):
pass
def a ( A__ ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def a ( A__ ) -> Dict:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array(A__ )
SCREAMING_SNAKE_CASE__ : Dict = npimg.shape
return {"hash": hashimage(A__ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
lowerCamelCase : Dict = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
lowerCamelCase : Union[str, Any] = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def lowercase__ ( self : List[str] , _lowercase : Any , _lowercase : str , _lowercase : Tuple ):
SCREAMING_SNAKE_CASE__ : Dict = MaskGenerationPipeline(model=_lowercase , image_processor=_lowercase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowercase__ ( self : List[Any] , _lowercase : int , _lowercase : Dict ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def lowercase__ ( self : Tuple ):
pass
@slow
@require_torch
def lowercase__ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE__ : str = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
SCREAMING_SNAKE_CASE__ : List[Any] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=2_56 )
# Shortening by hashing
SCREAMING_SNAKE_CASE__ : Union[str, Any] = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(_lowercase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(_lowercase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_80, 6_40)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_80, 6_40)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_80, 6_40)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def lowercase__ ( self : Tuple ):
SCREAMING_SNAKE_CASE__ : Tuple = '''facebook/sam-vit-huge'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''mask-generation''' , model=_lowercase )
SCREAMING_SNAKE_CASE__ : Dict = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=2_56 )
# Shortening by hashing
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(_lowercase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(_lowercase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0053},
] , )
| 35 |
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ , lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ )
lowercase__ = emb.weight.data
return lin_layer
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(__magic_name__ )
lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ )
if mbart_aa and finetuned:
lowercase__ = """relu"""
lowercase__ = state_dict["""decoder.embed_tokens.weight"""]
lowercase__ = MBartForConditionalGeneration(__magic_name__ )
model.model.load_state_dict(__magic_name__ )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
A : Any = parser.parse_args()
A : str = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 15 | 0 |
from ... import PretrainedConfig
__lowercase : Union[str, Any] = {
'''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''',
}
class _A ( snake_case ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
__lowerCamelCase : int = '''nezha'''
def __init__( self ,SCREAMING_SNAKE_CASE_=21128 ,SCREAMING_SNAKE_CASE_=768 ,SCREAMING_SNAKE_CASE_=12 ,SCREAMING_SNAKE_CASE_=12 ,SCREAMING_SNAKE_CASE_=3072 ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=64 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=1E-12 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=True ,**SCREAMING_SNAKE_CASE_ ,):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
snake_case : int = vocab_size
snake_case : str = hidden_size
snake_case : Tuple = num_hidden_layers
snake_case : Optional[Any] = num_attention_heads
snake_case : int = hidden_act
snake_case : str = intermediate_size
snake_case : Tuple = hidden_dropout_prob
snake_case : Tuple = attention_probs_dropout_prob
snake_case : Union[str, Any] = max_position_embeddings
snake_case : Tuple = max_relative_position
snake_case : List[Any] = type_vocab_size
snake_case : Union[str, Any] = initializer_range
snake_case : Optional[int] = layer_norm_eps
snake_case : Optional[int] = classifier_dropout
snake_case : Optional[int] = use_cache
| 36 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def UpperCamelCase ( __magic_name__ : Any ) -> int:
"""simple docstring"""
lowercase__ = model.config
lowercase__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
lowercase__ = MBartConfig(
is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , )
return encoder_config, decoder_config
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
if "encoder.model" in name:
lowercase__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
lowercase__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
lowercase__ = """encoder.""" + name
if "attn.proj" in name:
lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
lowercase__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
lowercase__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
lowercase__ = """encoder.layernorm.bias"""
return name
def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowercase__ = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
lowercase__ = key.split(""".""" )
lowercase__ = int(key_split[3] )
lowercase__ = int(key_split[5] )
lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase__ = val[:dim, :]
lowercase__ = val[dim : dim * 2, :]
lowercase__ = val[-dim:, :]
else:
lowercase__ = val[:dim]
lowercase__ = val[dim : dim * 2]
lowercase__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
lowercase__ = val
return orig_state_dict
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int:
"""simple docstring"""
lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval()
# load HuggingFace model
lowercase__ , lowercase__ = get_configs(__magic_name__ )
lowercase__ = DonutSwinModel(__magic_name__ )
lowercase__ = MBartForCausalLM(__magic_name__ )
lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ )
model.eval()
lowercase__ = original_model.state_dict()
lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# verify results on scanned document
lowercase__ = load_dataset("""hf-internal-testing/example-documents""" )
lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ )
lowercase__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ )
lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
lowercase__ = """When is the coffee break?"""
lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
lowercase__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
lowercase__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
lowercase__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
lowercase__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
lowercase__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[
"""input_ids"""
]
lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ )
lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ )
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
# verify encoder hidden states
lowercase__ = original_model.encoder(__magic_name__ )
lowercase__ = model.encoder(__magic_name__ ).last_hidden_state
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 )
# verify decoder hidden states
lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits
lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
A : Optional[int] = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 15 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase : List[str] = {
"""configuration_bridgetower""": [
"""BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BridgeTowerConfig""",
"""BridgeTowerTextConfig""",
"""BridgeTowerVisionConfig""",
],
"""processing_bridgetower""": ["""BridgeTowerProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : int = ["""BridgeTowerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = [
"""BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BridgeTowerForContrastiveLearning""",
"""BridgeTowerForImageAndTextRetrieval""",
"""BridgeTowerForMaskedLM""",
"""BridgeTowerModel""",
"""BridgeTowerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 37 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
'The `inpainting.py` script is outdated. Please use directly `from diffusers import'
' StableDiffusionInpaintPipeline` instead.'
)
| 15 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=None , ):
snake_case__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 1_8}
snake_case__ : Tuple = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case__ : Dict = parent
snake_case__ : str = batch_size
snake_case__ : str = num_channels
snake_case__ : Optional[int] = num_frames
snake_case__ : Tuple = image_size
snake_case__ : List[str] = min_resolution
snake_case__ : int = max_resolution
snake_case__ : str = do_resize
snake_case__ : Union[str, Any] = size
snake_case__ : str = do_normalize
snake_case__ : int = image_mean
snake_case__ : List[str] = image_std
snake_case__ : Any = crop_size
def __UpperCamelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = VivitImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = VivitImageProcessingTester(self )
@property
def __UpperCamelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_center_crop""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8} )
self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} )
snake_case__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} )
self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
snake_case__ : str = prepare_video_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for video in video_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
snake_case__ : Any = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for video in video_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
snake_case__ : Optional[Any] = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for video in video_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
snake_case__ : Any = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case__ : Tuple = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 38 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]:
"""simple docstring"""
super().__init__(
_UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , )
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , )
lowercase__ = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 15 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ):
snake_case_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ):
for i in range(config.num_hidden_layers ):
if base_model:
snake_case_ = ''''''
else:
snake_case_ = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
snake_case_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case_ = in_proj_weight[
: config.hidden_size, :
]
snake_case_ = in_proj_bias[: config.hidden_size]
snake_case_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case_ = in_proj_weight[
-config.hidden_size :, :
]
snake_case_ = in_proj_bias[-config.hidden_size :]
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = dct.pop(SCREAMING_SNAKE_CASE__ )
snake_case_ = val
def __SCREAMING_SNAKE_CASE ():
snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw )
return im
@torch.no_grad()
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True ):
snake_case_ = ViTConfig()
# patch_size
if model_name[-1] == "8":
snake_case_ = 8
# set labels if required
if not base_model:
snake_case_ = 1000
snake_case_ = '''huggingface/label-files'''
snake_case_ = '''imagenet-1k-id2label.json'''
snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) )
snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
snake_case_ = 384
snake_case_ = 1536
snake_case_ = 12
snake_case_ = 6
# load original model from torch hub
snake_case_ = torch.hub.load('''facebookresearch/dino:main''' , SCREAMING_SNAKE_CASE__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case_ = original_model.state_dict()
if base_model:
remove_classification_head_(SCREAMING_SNAKE_CASE__ )
snake_case_ = create_rename_keys(SCREAMING_SNAKE_CASE__ , base_model=SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# load HuggingFace model
if base_model:
snake_case_ = ViTModel(SCREAMING_SNAKE_CASE__ , add_pooling_layer=SCREAMING_SNAKE_CASE__ ).eval()
else:
snake_case_ = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# Check outputs on an image, prepared by ViTImageProcessor
snake_case_ = ViTImageProcessor()
snake_case_ = image_processor(images=prepare_img() , return_tensors='''pt''' )
snake_case_ = encoding['''pixel_values''']
snake_case_ = model(SCREAMING_SNAKE_CASE__ )
if base_model:
snake_case_ = original_model(SCREAMING_SNAKE_CASE__ )
assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
snake_case_ = original_model(SCREAMING_SNAKE_CASE__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.logits , atol=1E-3 )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''dino_vitb16''',
type=str,
help='''Name of the model trained with DINO you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--base_model''',
action='''store_true''',
help='''Whether to only convert the base model (no projection head weights).''',
)
parser.set_defaults(base_model=True)
lowerCAmelCase_ = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model) | 39 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase__ (self : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ = """ylacombe/bark-small"""
lowercase__ = tempfile.mkdtemp()
lowercase__ = """en_speaker_1"""
lowercase__ = """This is a test string"""
lowercase__ = """speaker_embeddings_path.json"""
lowercase__ = """speaker_embeddings"""
def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ (self : Optional[int] ) -> List[str]:
"""simple docstring"""
lowercase__ = self.get_tokenizer()
lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase__ (self : str ) -> Tuple:
"""simple docstring"""
lowercase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase__ = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase__ (self : List[str] ) -> List[Any]:
"""simple docstring"""
lowercase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowercase__ = 35
lowercase__ = 2
lowercase__ = 8
lowercase__ = {
"""semantic_prompt""": np.ones(_UpperCAmelCase ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
lowercase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowercase__ = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
lowercase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = self.get_tokenizer()
lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase )
lowercase__ = processor(text=self.input_string )
lowercase__ = tokenizer(
self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 15 | 0 |
import argparse
import os
import re
import packaging.version
__UpperCAmelCase = '''examples/'''
__UpperCAmelCase = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
__UpperCAmelCase = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
__UpperCAmelCase = '''README.md'''
def UpperCamelCase ( snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Tuple ) -> Dict:
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase : List[str] = f.read()
UpperCamelCase , UpperCamelCase : List[Any] = REPLACE_PATTERNS[pattern]
UpperCamelCase : Any = replace.replace('VERSION' , snake_case__ )
UpperCamelCase : str = re_pattern.sub(snake_case__ , snake_case__ )
with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(snake_case__ )
def UpperCamelCase ( snake_case__ : Any ) -> int:
for folder, directories, fnames in os.walk(snake_case__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(snake_case__ , snake_case__ ) , snake_case__ , pattern='examples' )
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int=False ) -> Dict:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(snake_case__ , snake_case__ , snake_case__ )
if not patch:
update_version_in_examples(snake_case__ )
def UpperCamelCase ( ) -> Union[str, Any]:
UpperCamelCase : Optional[int] = '🤗 Transformers currently provides the following architectures'
UpperCamelCase : Dict = '1. Want to contribute a new model?'
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase : Tuple = f.readlines()
# Find the start of the list.
UpperCamelCase : Any = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCamelCase : Dict = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
UpperCamelCase : Union[str, Any] = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(snake_case__ )
def UpperCamelCase ( ) -> Dict:
with open(REPLACE_FILES['init'] , 'r' ) as f:
UpperCamelCase : Any = f.read()
UpperCamelCase : Optional[int] = REPLACE_PATTERNS['init'][0].search(snake_case__ ).groups()[0]
return packaging.version.parse(snake_case__ )
def UpperCamelCase ( snake_case__ : Any=False ) -> Tuple:
UpperCamelCase : Dict = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
UpperCamelCase : List[str] = default_version.base_version
elif patch:
UpperCamelCase : Union[str, Any] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
UpperCamelCase : str = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
UpperCamelCase : Optional[int] = input(F"""Which version are you releasing? [{default_version}]""" )
if len(snake_case__ ) == 0:
UpperCamelCase : Optional[int] = default_version
print(F"""Updating version to {version}.""" )
global_version_update(snake_case__ , patch=snake_case__ )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def UpperCamelCase ( ) -> Optional[Any]:
UpperCamelCase : Optional[Any] = get_version()
UpperCamelCase : Optional[Any] = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
UpperCamelCase : Union[str, Any] = current_version.base_version
# Check with the user we got that right.
UpperCamelCase : Dict = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(snake_case__ ) == 0:
UpperCamelCase : Any = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(snake_case__ )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
__UpperCAmelCase = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 40 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
A : Optional[Any] = logging.get_logger(__name__)
A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Dict = {
'vocab_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Optional[int] = {
'vocab_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : int = {
'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2,
'facebook/dpr-ctx_encoder-multiset-base': 5_1_2,
}
A : Optional[Any] = {
'facebook/dpr-question_encoder-single-nq-base': 5_1_2,
'facebook/dpr-question_encoder-multiset-base': 5_1_2,
}
A : Any = {
'facebook/dpr-reader-single-nq-base': 5_1_2,
'facebook/dpr-reader-multiset-base': 5_1_2,
}
A : Union[str, Any] = {
'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True},
}
A : Tuple = {
'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True},
}
A : Any = {
'facebook/dpr-reader-single-nq-base': {'do_lower_case': True},
'facebook/dpr-reader-multiset-base': {'do_lower_case': True},
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRContextEncoderTokenizer
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRQuestionEncoderTokenizer
A : Any = collections.namedtuple(
'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text']
)
A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits'])
A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n '
@add_start_docstrings(UpperCAmelCase__ )
class A :
'''simple docstring'''
def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding:
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
elif titles is None or texts is None:
lowercase__ = titles if texts is None else texts
return super().__call__(
_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles]
lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages
assert len(_UpperCAmelCase ) == len(
_UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.'''
lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase )
]
}
if return_attention_mask is not False:
lowercase__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowercase__ = attention_mask
return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = reader_input["""input_ids"""]
lowercase__ , lowercase__ , lowercase__ = reader_output[:3]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ )
lowercase__ = []
for doc_id in sorted_docs:
lowercase__ = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowercase__ = sequence_ids.index(self.pad_token_id )
else:
lowercase__ = len(_UpperCAmelCase )
lowercase__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_UpperCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = []
for start_index, start_score in enumerate(_UpperCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
lowercase__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowercase__ = end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_UpperCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class A ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = READER_PRETRAINED_VOCAB_FILES_MAP
A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = READER_PRETRAINED_INIT_CONFIGURATION
A__ = ['''input_ids''', '''attention_mask''']
A__ = DPRReaderTokenizer
| 15 | 0 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ = {
'''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''],
'''processing_mgp_str''': ['''MgpstrProcessor'''],
'''tokenization_mgp_str''': ['''MgpstrTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MgpstrModel''',
'''MgpstrPreTrainedModel''',
'''MgpstrForSceneTextRecognition''',
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 41 |
from __future__ import annotations
def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive
"""simple docstring"""
lowercase__ = len(__magic_name__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowercase__ = array[0]
lowercase__ = False
lowercase__ = 1
lowercase__ = []
while not is_found and i < array_length:
if array[i] < pivot:
lowercase__ = True
lowercase__ = [element for element in array[i:] if element >= array[i]]
lowercase__ = longest_subsequence(__magic_name__ )
if len(__magic_name__ ) > len(__magic_name__ ):
lowercase__ = temp_array
else:
i += 1
lowercase__ = [element for element in array[1:] if element >= pivot]
lowercase__ = [pivot, *longest_subsequence(__magic_name__ )]
if len(__magic_name__ ) > len(__magic_name__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
'''simple docstring'''
def _UpperCamelCase ( __UpperCamelCase ) -> set:
lowerCamelCase_ = set()
# edges = list of graph's edges
lowerCamelCase_ = get_edges(__UpperCamelCase )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
lowerCamelCase_ ,lowerCamelCase_ = edges.pop()
chosen_vertices.add(__UpperCamelCase )
chosen_vertices.add(__UpperCamelCase )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(__UpperCamelCase )
return chosen_vertices
def _UpperCamelCase ( __UpperCamelCase ) -> set:
lowerCamelCase_ = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 42 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
A : List[Any] = None
A : Optional[Any] = logging.get_logger(__name__)
A : str = '▁'
A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
A : Optional[int] = {
'google/pegasus-xsum': 5_1_2,
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = PegasusTokenizer
A__ = ['''input_ids''', '''attention_mask''']
def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict:
"""simple docstring"""
lowercase__ = offset
if additional_special_tokens is not None:
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError(
f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is'''
f''' {type(_UpperCAmelCase )}''' )
lowercase__ = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 )
]
if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' )
lowercase__ = additional_special_tokens_extended
else:
lowercase__ = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )]
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"""There should be 3 special tokens: mask_token, pad_token, and eos_token +"""
f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' )
return [1 if x in all_special_ids else 0 for x in seq]
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return self._special_token_mask(_UpperCAmelCase )
elif token_ids_a is None:
return self._special_token_mask(_UpperCAmelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 15 | 0 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase = 16
lowerCAmelCase = 32
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 ):
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE )
lowercase__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase = mocked_dataloaders # noqa: F811
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE ) == "1":
lowercase__ = 2
# New Code #
lowercase__ = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config['''lr''']
lowercase__ = int(config['''num_epochs'''] )
lowercase__ = int(config['''seed'''] )
lowercase__ = int(config['''batch_size'''] )
lowercase__ = evaluate.load('''glue''' , '''mrpc''' )
set_seed(SCREAMING_SNAKE_CASE )
lowercase__ , lowercase__ = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Now we train the model
for epoch in range(SCREAMING_SNAKE_CASE ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(SCREAMING_SNAKE_CASE ):
lowercase__ = model(**SCREAMING_SNAKE_CASE )
lowercase__ = output.loss
accelerator.backward(SCREAMING_SNAKE_CASE )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**SCREAMING_SNAKE_CASE )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE )
def _a ( ):
"""simple docstring"""
lowercase__ = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
# New Code #
parser.add_argument(
'''--gradient_accumulation_steps''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ = parser.parse_args()
lowercase__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 43 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
'''simple docstring'''
def lowerCamelCase__ (self : Dict ) -> Union[str, Any]:
"""simple docstring"""
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int:
"""simple docstring"""
lowercase__ = len(references[0] )
if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )]
lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 15 | 0 |
'''simple docstring'''
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase__ ( A ):
def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ):
_lowerCamelCase : List[str] = tokenizer
_lowerCamelCase : Dict = tokenizer.bos_token_id
_lowerCamelCase : Tuple = dataset
_lowerCamelCase : Any = seq_length
_lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self : Tuple ):
_lowerCamelCase : Union[str, Any] = iter(self.dataset )
_lowerCamelCase : str = True
while more_examples:
_lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(__A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
_lowerCamelCase : Tuple = False
break
_lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"]
_lowerCamelCase : int = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0,len(__A ),self.seq_length ):
_lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length]
if len(__A ) == self.seq_length:
yield torch.tensor(__A )
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = {"streaming": True}
_lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase )
_lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length )
_lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size )
return eval_dataloader
def A_ ( _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
model.eval()
_lowerCamelCase : Optional[int] = []
for step, batch in enumerate(_lowerCAmelCase ):
with torch.no_grad():
_lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase )
_lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(_lowerCAmelCase ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
_lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) )
try:
_lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase )
except OverflowError:
_lowerCamelCase : Optional[int] = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
UpperCAmelCase_ : List[str] = Accelerator()
# Parse configuration
UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments)
UpperCAmelCase_ : Dict = parser.parse_args()
set_seed(args.seed)
# Logging
UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
UpperCAmelCase_ : int = create_dataloader(args)
# Prepare everything with our `accelerator`.
UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''') | 44 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : List[Any] ) -> Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PegasusTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCamelCase__ (self : Dict ) -> Optional[int]:
"""simple docstring"""
lowercase__ = """</s>"""
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] ) -> str:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(_UpperCAmelCase ) , 1103 )
def lowerCamelCase__ (self : str ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def lowerCamelCase__ (self : Any ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> int:
"""simple docstring"""
lowercase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowercase__ = """To ensure a smooth flow of bank resolutions."""
lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
lowercase__ = self._large_tokenizer(
text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask.
@slow
def lowerCamelCase__ (self : List[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : Any ) -> int:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ (self : Any ) -> str:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCamelCase__ (self : Any ) -> int:
"""simple docstring"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
@require_torch
def lowerCamelCase__ (self : List[str] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
lowercase__ = self._large_tokenizer(
text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask.
def lowerCamelCase__ (self : Optional[int] ) -> Any:
"""simple docstring"""
lowercase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids
self.assertListEqual(
_UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
| 15 | 0 |
UpperCamelCase = range(2, 20 + 1)
UpperCamelCase = [10**k for k in range(ks[-1] + 1)]
UpperCamelCase = {}
def A ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Optional[Any] ) -> Any:
UpperCamelCase__ :List[Any] = sum(a_i[j] for j in range(lowercase__ , len(lowercase__ ) ) )
UpperCamelCase__ :str = sum(a_i[j] * base[j] for j in range(min(len(lowercase__ ) , lowercase__ ) ) )
UpperCamelCase__ , UpperCamelCase__ :List[str] = 0, 0
UpperCamelCase__ :Union[str, Any] = n - i
UpperCamelCase__ :str = memo.get(lowercase__ )
if sub_memo is not None:
UpperCamelCase__ :Tuple = sub_memo.get(lowercase__ )
if jumps is not None and len(lowercase__ ) > 0:
# find and make the largest jump without going over
UpperCamelCase__ :List[Any] = -1
for _k in range(len(lowercase__ ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
UpperCamelCase__ :str = _k
break
if max_jump >= 0:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = jumps[max_jump]
# since the difference between jumps is cached, add c
UpperCamelCase__ :Tuple = diff + c
for j in range(min(lowercase__ , len(lowercase__ ) ) ):
UpperCamelCase__ , UpperCamelCase__ :Any = divmod(lowercase__ , 10 )
if new_c > 0:
add(lowercase__ , lowercase__ , lowercase__ )
else:
UpperCamelCase__ :Dict = []
else:
UpperCamelCase__ :int = {c: []}
UpperCamelCase__ :int = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
UpperCamelCase__ , UpperCamelCase__ :Dict = next_term(lowercase__ , k - 1 , i + dn , lowercase__ )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
UpperCamelCase__ , UpperCamelCase__ :Dict = compute(lowercase__ , lowercase__ , i + dn , lowercase__ )
diff += _diff
dn += terms_jumped
UpperCamelCase__ :Union[str, Any] = sub_memo[c]
# keep jumps sorted by # of terms skipped
UpperCamelCase__ :Optional[Any] = 0
while j < len(lowercase__ ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(lowercase__ , (diff, dn, k) )
return (diff, dn)
def A ( lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : int ) -> Tuple:
if i >= n:
return 0, i
if k > len(lowercase__ ):
a_i.extend([0 for _ in range(k - len(lowercase__ ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
UpperCamelCase__ :Optional[Any] = i
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = 0, 0, 0
for j in range(len(lowercase__ ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
UpperCamelCase__ :Any = ds_c + ds_b
diff += addend
UpperCamelCase__ :int = 0
for j in range(lowercase__ ):
UpperCamelCase__ :Union[str, Any] = a_i[j] + addend
UpperCamelCase__ , UpperCamelCase__ :str = divmod(lowercase__ , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(lowercase__ , lowercase__ , lowercase__ )
return diff, i - start_i
def A ( lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : List[str] ) -> Any:
for j in range(lowercase__ , len(lowercase__ ) ):
UpperCamelCase__ :Union[str, Any] = digits[j] + addend
if s >= 10:
UpperCamelCase__ , UpperCamelCase__ :int = divmod(lowercase__ , 10 )
UpperCamelCase__ :Optional[int] = addend // 10 + quotient
else:
UpperCamelCase__ :Union[str, Any] = s
UpperCamelCase__ :Dict = addend // 10
if addend == 0:
break
while addend > 0:
UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = divmod(lowercase__ , 10 )
digits.append(lowercase__ )
def A ( lowercase__ : int = 10**15 ) -> int:
UpperCamelCase__ :Any = [1]
UpperCamelCase__ :Any = 1
UpperCamelCase__ :Dict = 0
while True:
UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = next_term(lowercase__ , 20 , i + dn , lowercase__ )
dn += terms_jumped
if dn == n - i:
break
UpperCamelCase__ :Tuple = 0
for j in range(len(lowercase__ ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f'''{solution() = }''') | 45 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowercase__ = load_file(__magic_name__ )
lowercase__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
lowercase__ = pipeline.text_encoder
else:
lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
lowercase__ = pipeline.unet
# find the target layer
lowercase__ = layer_infos.pop(0 )
while len(__magic_name__ ) > -1:
try:
lowercase__ = curr_layer.__getattr__(__magic_name__ )
if len(__magic_name__ ) > 0:
lowercase__ = layer_infos.pop(0 )
elif len(__magic_name__ ) == 0:
break
except Exception:
if len(__magic_name__ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowercase__ = layer_infos.pop(0 )
lowercase__ = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(__magic_name__ )
else:
pair_keys.append(__magic_name__ )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowercase__ = state_dict[pair_keys[0]].to(torch.floataa )
lowercase__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ )
# update visited list
for item in pair_keys:
visited.append(__magic_name__ )
return pipeline
if __name__ == "__main__":
A : int = argparse.ArgumentParser()
parser.add_argument(
'--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.'
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors'
)
parser.add_argument(
'--lora_prefix_text_encoder',
default='lora_te',
type=str,
help='The prefix of text encoder weight in safetensors',
)
parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW')
parser.add_argument(
'--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.'
)
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
A : str = parser.parse_args()
A : Tuple = args.base_model_path
A : List[str] = args.checkpoint_path
A : Optional[int] = args.dump_path
A : Optional[int] = args.lora_prefix_unet
A : Any = args.lora_prefix_text_encoder
A : Any = args.alpha
A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
A : int = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 15 | 0 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = SpeechTaTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = True
def _lowercase ( self: List[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase )
_lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self: List[str] ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = "this is a test"
_lowerCamelCase : Optional[Any] = "this is a test"
return input_text, output_text
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "<pad>"
_lowerCamelCase : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<s>" )
self.assertEqual(vocab_keys[1] ,"<pad>" )
self.assertEqual(vocab_keys[-4] ,"œ" )
self.assertEqual(vocab_keys[-2] ,"<mask>" )
self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" )
self.assertEqual(len(__lowerCAmelCase ) ,81 )
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,79 )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Optional[Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"]
_lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.vocab_size
_lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) )
_lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
_lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
_lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase )
_lowerCamelCase : int = tokenizer.vocab_size
_lowerCamelCase : str = len(__lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase ,0 )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) )
self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase )
self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 )
self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] ,tokens[1] )
self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] ,tokens[-4] )
self.assertEqual(tokens[0] ,tokenizer.eos_token_id )
self.assertEqual(tokens[-3] ,tokenizer.pad_token_id )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,)
_lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
_lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
# fmt: off
self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
@slow
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = [
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
"general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
"Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained "
"models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.",
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
"conditioning on both left and right context in all layers.",
"The quick brown fox jumps over the lazy dog.",
]
# fmt: off
_lowerCamelCase : Tuple = {
"input_ids": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,) | 46 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : List[str] = logging.get_logger(__name__)
A : Tuple = {
'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json',
'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json',
'kssteven/ibert-roberta-large-mnli': (
'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'
),
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''ibert'''
def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = quant_mode
lowercase__ = force_dequant
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@property
def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 15 | 0 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def UpperCAmelCase__ ( lowerCamelCase_ : str ):
# word like '180' or '身高' or '神'
for char in word:
__a : Optional[int] = ord(lowerCamelCase_ )
if not _is_chinese_char(lowerCamelCase_ ):
return 0
return 1
def UpperCAmelCase__ ( lowerCamelCase_ : List[str] ):
__a : Union[str, Any] = set()
for token in tokens:
__a : Any = len(lowerCamelCase_ ) > 1 and is_chinese(lowerCamelCase_ )
if chinese_word:
word_set.add(lowerCamelCase_ )
__a : str = list(lowerCamelCase_ )
return word_list
def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : set() ):
if not chinese_word_set:
return bert_tokens
__a : Tuple = max([len(lowerCamelCase_ ) for w in chinese_word_set] )
__a : List[str] = bert_tokens
__a , __a : Tuple = 0, len(lowerCamelCase_ )
while start < end:
__a : List[str] = True
if is_chinese(bert_word[start] ):
__a : List[str] = min(end - start , lowerCamelCase_ )
for i in range(lowerCamelCase_ , 1 , -1 ):
__a : Optional[int] = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
__a : Optional[Any] = '##' + bert_word[j]
__a : List[Any] = start + i
__a : Tuple = False
break
if single_word:
start += 1
return bert_word
def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : LTP , lowerCamelCase_ : BertTokenizer ):
__a : Union[str, Any] = []
for i in range(0 , len(lowerCamelCase_ ) , 1_0_0 ):
__a : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws
__a : Optional[int] = [get_chinese_word(lowerCamelCase_ ) for r in res]
ltp_res.extend(lowerCamelCase_ )
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ )
__a : Optional[Any] = []
for i in range(0 , len(lowerCamelCase_ ) , 1_0_0 ):
__a : Union[str, Any] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=5_1_2 )
bert_res.extend(res['input_ids'] )
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ )
__a : Union[str, Any] = []
for input_ids, chinese_word in zip(lowerCamelCase_ , lowerCamelCase_ ):
__a : str = []
for id in input_ids:
__a : Optional[int] = bert_tokenizer._convert_id_to_token(lowerCamelCase_ )
input_tokens.append(lowerCamelCase_ )
__a : int = add_sub_symbol(lowerCamelCase_ , lowerCamelCase_ )
__a : List[Any] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(lowerCamelCase_ ):
if token[:2] == "##":
__a : Dict = token[2:]
# save chinese tokens' pos
if len(lowerCamelCase_ ) == 1 and _is_chinese_char(ord(lowerCamelCase_ ) ):
ref_id.append(lowerCamelCase_ )
ref_ids.append(lowerCamelCase_ )
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ )
return ref_ids
def UpperCAmelCase__ ( lowerCamelCase_ : str ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
__a : int = f.readlines()
__a : Optional[Any] = [line.strip() for line in data if len(lowerCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
__a : int = LTP(args.ltp ) # faster in GPU device
__a : Dict = BertTokenizer.from_pretrained(args.bert )
__a : Union[str, Any] = prepare_ref(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
__a : Union[str, Any] = [json.dumps(lowerCamelCase_ ) + '\n' for ref in ref_ids]
f.writelines(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
main(args)
| 47 |
from math import log
from scipy.constants import Boltzmann, physical_constants
A : Any = 3_0_0 # TEMPERATURE (unit = K)
def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float:
"""simple docstring"""
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Optional[Any] = DebertaTokenizer
snake_case__ :int = True
snake_case__ :Dict = DebertaTokenizerFast
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCAmelCase__ = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"[UNK]",
]
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
lowerCAmelCase__ = {"unk_token": "[UNK]"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__magic_name__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = "lower newer"
return input_text, output_text
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
lowerCAmelCase__ = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = tokenizer("Hello" , "World" )
lowerCAmelCase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd["token_type_ids"] , __magic_name__ )
@slow
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" )
lowerCAmelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ )
lowerCAmelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ )
lowerCAmelCase__ = tokenizer.encode(
"sequence builders" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
lowerCAmelCase__ = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
lowerCAmelCase__ = tokenizer_class.from_pretrained("microsoft/deberta-base" )
lowerCAmelCase__ = [
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations",
"ALBERT incorporates two parameter reduction techniques",
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary"
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"
" vocabulary embedding.",
]
lowerCAmelCase__ = tokenizer(__magic_name__ , padding=__magic_name__ )
lowerCAmelCase__ = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["input_ids"]]
# fmt: off
lowerCAmelCase__ = {
"input_ids": [
[1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2]
],
"token_type_ids": [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
lowerCAmelCase__ = [
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations",
"ALBERT incorporates two parameter reduction techniques",
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary"
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"
" vocabulary embedding.",
]
self.assertDictEqual(encoding.data , __magic_name__ )
for expected, decoded in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(__magic_name__ , __magic_name__ )
| 48 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class A :
'''simple docstring'''
A__ = 42
A__ = None
A__ = None
def UpperCamelCase ( ) -> Node | None:
"""simple docstring"""
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> int:
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]:
"""simple docstring"""
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(__magic_name__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) )
lowercase__ = 0
return output
def UpperCamelCase ( ) -> None: # Main function for testing.
"""simple docstring"""
lowercase__ = make_tree()
print(f'''In-order Traversal: {inorder(__magic_name__ )}''' )
print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' )
print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" )
print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(__magic_name__ ) , """\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1 , height(__magic_name__ ) + 1 ):
print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(__magic_name__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 15 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : int = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : Tuple = 25_00_04
_lowercase : Optional[Any] = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Union[str, Any] = True
a__ : Optional[Any] = True
def a ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Any ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : List[str] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Union[str, Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : List[Any] ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : List[str] ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : Any ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : Tuple = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Optional[Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : List[str] = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Dict = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Tuple ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : int ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Union[str, Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Any ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Dict ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Any ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Optional[int] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : List[str] ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 49 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Any = logging.get_logger(__name__)
A : Tuple = {
'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''poolformer'''
def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = stride
lowercase__ = padding
lowercase__ = pool_size
lowercase__ = hidden_sizes
lowercase__ = mlp_ratio
lowercase__ = depths
lowercase__ = patch_sizes
lowercase__ = strides
lowercase__ = num_encoder_blocks
lowercase__ = drop_path_rate
lowercase__ = hidden_act
lowercase__ = use_layer_scale
lowercase__ = layer_scale_init_value
lowercase__ = initializer_range
super().__init__(**_UpperCAmelCase )
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = version.parse('''1.11''' )
@property
def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase__ (self : Dict ) -> float:
"""simple docstring"""
return 2E-3
| 15 | 0 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def A__ ( __lowerCAmelCase : Dict ):
lowerCamelCase__ , lowerCamelCase__ = image.size
lowerCamelCase__ , lowerCamelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCamelCase__ = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] )
lowerCamelCase__ = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0
lowerCamelCase__ = image[None].transpose(0 , 3 , 1 , 2 )
lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase )
return 2.0 * image - 1.0
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
super().__init__()
self.register_modules(vqvae=_lowerCAmelCase ,unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase )
@torch.no_grad()
def __call__( self ,_lowerCAmelCase = None ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,):
if isinstance(_lowerCAmelCase ,PIL.Image.Image ):
lowerCamelCase__ = 1
elif isinstance(_lowerCAmelCase ,torch.Tensor ):
lowerCamelCase__ = image.shape[0]
else:
raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_lowerCAmelCase )}''' )
if isinstance(_lowerCAmelCase ,PIL.Image.Image ):
lowerCamelCase__ = preprocess(_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
lowerCamelCase__ = (batch_size, self.unet.config.in_channels // 2, height, width)
lowerCamelCase__ = next(self.unet.parameters() ).dtype
lowerCamelCase__ = randn_tensor(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase )
lowerCamelCase__ = image.to(device=self.device ,dtype=_lowerCAmelCase )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_lowerCAmelCase ,device=self.device )
lowerCamelCase__ = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
lowerCamelCase__ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowerCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowerCamelCase__ = {}
if accepts_eta:
lowerCamelCase__ = eta
for t in self.progress_bar(_lowerCAmelCase ):
# concat latents and low resolution image in the channel dimension.
lowerCamelCase__ = torch.cat([latents, image] ,dim=1 )
lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase )
# predict the noise residual
lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
lowerCamelCase__ = self.scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample
# decode the image latents with the VQVAE
lowerCamelCase__ = self.vqvae.decode(_lowerCAmelCase ).sample
lowerCamelCase__ = torch.clamp(_lowerCAmelCase ,-1.0 ,1.0 )
lowerCamelCase__ = image / 2 + 0.5
lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowerCAmelCase )
| 50 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@slow
@require_torch
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" )
lowercase__ = bertabert.config.encoder.vocab_size
lowercase__ = tokenizer.sep_token_id
lowercase__ = tokenizer.cls_token_id
lowercase__ = 128
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
lowercase__ = train_dataset.select(range(32 ) )
lowercase__ = val_dataset.select(range(16 ) )
lowercase__ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ):
# Tokenizer will automatically set [BOS] <text> [EOS]
lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 )
lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 )
lowercase__ = inputs.input_ids
lowercase__ = inputs.attention_mask
lowercase__ = outputs.input_ids
lowercase__ = outputs.input_ids.copy()
lowercase__ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
lowercase__ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase : List[Any] ):
lowercase__ = pred.label_ids
lowercase__ = pred.predictions
# all unnecessary tokens are removed
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
lowercase__ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
lowercase__ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
lowercase__ = self.get_auto_remove_tmp_dir()
lowercase__ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
lowercase__ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 15 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple ):
UpperCAmelCase = {}
def __snake_case ( self : Any , a__ : str ):
UpperCAmelCase = {}
def __snake_case ( self : Optional[Any] , a__ : str , a__ : str , a__ : float ):
if nodea not in self.connections:
self.add_node(a__ )
if nodea not in self.connections:
self.add_node(a__ )
UpperCAmelCase = probability
def __snake_case ( self : Tuple ):
return list(self.connections )
def __snake_case ( self : Dict , a__ : str ):
UpperCAmelCase = 0
UpperCAmelCase = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : list[tuple[str, str, float]] , SCREAMING_SNAKE_CASE_ : int ) -> dict[str, int]:
"""simple docstring"""
UpperCAmelCase = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = Counter(graph.get_nodes() )
UpperCAmelCase = start
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = graph.transition(SCREAMING_SNAKE_CASE_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A : Union[str, Any] = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = ['ConvNextFeatureExtractor']
A : Optional[Any] = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 15 | 0 |
"""simple docstring"""
from __future__ import annotations
def __A ( a_ :str) -> list[int]:
return [ord(a_) - 96 for elem in plain]
def __A ( a_ :list[int]) -> str:
return "".join(chr(elem + 96) for elem in encoded)
def __A ( ) -> None:
__a : Dict = encode(input('''-> ''').strip().lower())
print('''Encoded: ''' , a_)
print('''Decoded:''' , decode(a_))
if __name__ == "__main__":
main() | 52 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict:
"""simple docstring"""
lowercase__ = None
if token is not None:
lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
lowercase__ = """636036"""
lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json()
return result["workflow_runs"]
def UpperCamelCase ( __magic_name__ : str ) -> Dict:
"""simple docstring"""
lowercase__ = get_daily_ci_runs(__magic_name__ )
lowercase__ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
lowercase__ = workflow_run["""id"""]
break
return workflow_run_id
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
lowercase__ = get_last_daily_ci_runs(__magic_name__ )
if workflow_run_id is not None:
lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
lowercase__ = artifacts_links[artifact_name]
download_artifact(
artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ )
def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ )
lowercase__ = {}
for artifact_name in artifact_names:
lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' )
if os.path.isfile(__magic_name__ ):
lowercase__ = {}
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
with z.open(__magic_name__ ) as f:
lowercase__ = f.read().decode("""UTF-8""" )
return results
| 15 | 0 |
def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ):
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F"""{price_plus_tax(100, 0.25) = }""")
print(F"""{price_plus_tax(1_25.50, 0.05) = }""")
| 53 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A ( unittest.TestCase ):
'''simple docstring'''
A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
lowercase__ = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 )
lowercase__ = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
] , )
@require_torch
def lowerCamelCase__ (self : str ) -> List[Any]:
"""simple docstring"""
lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
lowercase__ = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
lowercase__ = pipeline(
"""video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
] , )
@require_tf
def lowerCamelCase__ (self : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
| 15 | 0 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""])
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =test_results.split(" " )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
UpperCAmelCase_ =None
UpperCAmelCase_ =False
for line in failures_short_lines.split("\n" ):
if re.search(R"_ \[doctest\]" , lowercase__ ):
UpperCAmelCase_ =True
UpperCAmelCase_ =line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
UpperCAmelCase_ =line
UpperCAmelCase_ =False
return failures
class A :
def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =title
UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0]
UpperCAmelCase_ =doc_test_results["success"]
UpperCAmelCase_ =doc_test_results["failures"]
UpperCAmelCase_ =self.n_success + self.n_failures
# Failures and success of the modeling tests
UpperCAmelCase_ =doc_test_results
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self._time_spent]
UpperCAmelCase_ =0
for time in time_spent:
UpperCAmelCase_ =time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(_lowerCAmelCase ) == 1:
UpperCAmelCase_ =[0, 0, time_parts[0]]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s'
@property
def lowerCAmelCase__ ( self: int ) -> Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
F' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =40
UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )}
UpperCAmelCase_ =""
for category, failures in category_failures.items():
if len(_lowerCAmelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(_lowerCAmelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(_lowerCAmelCase )
@staticmethod
def lowerCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =[
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
UpperCAmelCase_ =client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =""
for key, value in failures.items():
UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value
failures_text += F'*{key}*\n_{value}_\n\n'
UpperCAmelCase_ =job_name
UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
UpperCAmelCase_ ={
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def lowerCAmelCase__ ( self: Any ) -> List[str]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
UpperCAmelCase_ =self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n'
UpperCAmelCase_ =job_result["failures"]
UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"]
UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
UpperCAmelCase_ =requests.get(lowercase__ ).json()
UpperCAmelCase_ ={}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(lowercase__ ):
UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase__ )
return {}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
if os.path.exists(lowercase__ ):
UpperCAmelCase_ =os.listdir(lowercase__ )
for file in files:
try:
with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f:
UpperCAmelCase_ =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e
return _artifact
def a__ ( ):
'''simple docstring'''
class A :
def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =name
UpperCAmelCase_ =[]
def __str__( self: Optional[int] ) -> Tuple:
'''simple docstring'''
return self.name
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]:
'''simple docstring'''
self.paths.append({"name": self.name, "path": path} )
UpperCAmelCase_ ={}
UpperCAmelCase_ =filter(os.path.isdir , os.listdir() )
for directory in directories:
UpperCAmelCase_ =directory
if artifact_name not in _available_artifacts:
UpperCAmelCase_ =Artifact(lowercase__ )
_available_artifacts[artifact_name].add_path(lowercase__ )
return _available_artifacts
if __name__ == "__main__":
__lowercase : str =get_job_links()
__lowercase : Dict =retrieve_available_artifacts()
__lowercase : Optional[int] =collections.OrderedDict(
[
("""*.py""", """API Examples"""),
("""*.md""", """MD Examples"""),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__lowercase : Any ={
v: {
"""failed""": [],
"""failures""": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__lowercase : Tuple =github_actions_job_links.get("""run_doctests""")
__lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0]
__lowercase : str =retrieve_artifact(artifact_path["""name"""])
if "stats" in artifact:
__lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""])
__lowercase : int =failed
__lowercase : int =success
__lowercase : str =time_spent[1:-1] + """, """
__lowercase : str =extract_first_line_failure(artifact["""failures_short"""])
for line in artifact["summary_short"].split("""\n"""):
if re.search("""FAILED""", line):
__lowercase : int =line.replace("""FAILED """, """""")
__lowercase : List[Any] =line.split()[0].replace("""\n""", """""")
if "::" in line:
__lowercase , __lowercase : Any =line.split("""::""")
else:
__lowercase , __lowercase : Dict =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__lowercase : Optional[int] =docs[file_regex]
doc_test_results[category]["failed"].append(test)
__lowercase : Tuple =all_failures[test] if test in all_failures else """N/A"""
__lowercase : Optional[int] =failure
break
__lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results)
message.post()
message.post_reply()
| 54 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A : Optional[Any] = 1_6
A : str = 3_2
def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]:
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowercase__ = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__magic_name__ : int ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
__magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__magic_name__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
__magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
lowercase__ = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A : Union[str, Any] = mocked_dataloaders # noqa: F811
def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict:
"""simple docstring"""
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1":
lowercase__ = 2
# New Code #
lowercase__ = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["""lr"""]
lowercase__ = int(config["""num_epochs"""] )
lowercase__ = int(config["""seed"""] )
lowercase__ = int(config["""batch_size"""] )
lowercase__ = evaluate.load("""glue""" , """mrpc""" )
set_seed(__magic_name__ )
lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Now we train the model
for epoch in range(__magic_name__ ):
model.train()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__magic_name__ ):
lowercase__ = model(**__magic_name__ )
lowercase__ = output.loss
accelerator.backward(__magic_name__ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**__magic_name__ )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__magic_name__ , references=__magic_name__ , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , __magic_name__ )
def UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
lowercase__ = parser.parse_args()
lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
main()
| 15 | 0 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase ( a_ , a_ , a_ ) -> Any:
"""simple docstring"""
def get_masked_lm_array(a_ ):
__A = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__A = tf.train.load_variable(a_ , a_ )
if "kernel" in name:
__A = array.transpose()
return torch.from_numpy(a_ )
def get_encoder_array(a_ ):
__A = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__A = tf.train.load_variable(a_ , a_ )
if "kernel" in name:
__A = array.transpose()
return torch.from_numpy(a_ )
def get_encoder_layer_array(a_ , a_ ):
__A = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__A = tf.train.load_variable(a_ , a_ )
if "kernel" in name:
__A = array.transpose()
return torch.from_numpy(a_ )
def get_encoder_attention_layer_array(a_ , a_ , a_ ):
__A = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__A = tf.train.load_variable(a_ , a_ )
__A = array.reshape(a_ )
if "kernel" in name:
__A = array.transpose()
return torch.from_numpy(a_ )
print(F'''Loading model based on config from {config_path}...''' )
__A = BertConfig.from_json_file(a_ )
__A = BertForMaskedLM(a_ )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__A = model.bert.encoder.layer[layer_index]
# Self-attention
__A = layer.attention.self
__A = get_encoder_attention_layer_array(
a_ , "_query_dense/kernel" , self_attn.query.weight.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_query_dense/bias" , self_attn.query.bias.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_key_dense/kernel" , self_attn.key.weight.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_key_dense/bias" , self_attn.key.bias.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_value_dense/kernel" , self_attn.value.weight.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_value_dense/bias" , self_attn.value.bias.data.shape )
# Self-attention Output
__A = layer.attention.output
__A = get_encoder_attention_layer_array(
a_ , "_output_dense/kernel" , self_output.dense.weight.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_output_dense/bias" , self_output.dense.bias.data.shape )
__A = get_encoder_layer_array(a_ , "_attention_layer_norm/gamma" )
__A = get_encoder_layer_array(a_ , "_attention_layer_norm/beta" )
# Intermediate
__A = layer.intermediate
__A = get_encoder_layer_array(a_ , "_intermediate_dense/kernel" )
__A = get_encoder_layer_array(a_ , "_intermediate_dense/bias" )
# Output
__A = layer.output
__A = get_encoder_layer_array(a_ , "_output_dense/kernel" )
__A = get_encoder_layer_array(a_ , "_output_dense/bias" )
__A = get_encoder_layer_array(a_ , "_output_layer_norm/gamma" )
__A = get_encoder_layer_array(a_ , "_output_layer_norm/beta" )
# Embeddings
__A = get_encoder_array("_position_embedding_layer/embeddings" )
__A = get_encoder_array("_type_embedding_layer/embeddings" )
__A = get_encoder_array("_embedding_norm_layer/gamma" )
__A = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
__A = model.cls.predictions.transform
__A = get_masked_lm_array("dense/kernel" )
__A = get_masked_lm_array("dense/bias" )
__A = get_masked_lm_array("layer_norm/gamma" )
__A = get_masked_lm_array("layer_norm/beta" )
__A = get_masked_lm_array("embedding_table" )
# Pooling
__A = BertPooler(config=a_ )
__A = get_encoder_array("_pooler_layer/kernel" )
__A = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(a_ )
# Integration test - should load without any errors ;)
__A = BertForMaskedLM.from_pretrained(a_ )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser()
parser.add_argument(
'--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.'
)
parser.add_argument(
'--bert_config_file',
type=str,
required=True,
help='The config json file corresponding to the BERT model. This specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path',
type=str,
required=True,
help='Path to the output PyTorch model.',
)
SCREAMING_SNAKE_CASE :Tuple = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 55 |
import os
import sys
A : Tuple = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
A : Dict = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str:
"""simple docstring"""
return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModel.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int:
"""simple docstring"""
return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
| 15 | 0 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class _lowercase ( __lowercase , __lowercase , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL
_SCREAMING_SNAKE_CASE : Union[str, Any] = "sample"
_SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2
@property
def a ( self : List[str] ) -> Optional[int]:
__snake_case = 4
__snake_case = 3
__snake_case = (32, 32)
__snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ )
return {"sample": image}
@property
def a ( self : List[Any] ) -> List[Any]:
return (3, 32, 32)
@property
def a ( self : int ) -> int:
return (3, 32, 32)
def a ( self : Tuple ) -> Union[str, Any]:
__snake_case = {
'block_out_channels': [32, 64],
'in_channels': 3,
'out_channels': 3,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'],
'latent_channels': 4,
}
__snake_case = self.dummy_input
return init_dict, inputs_dict
def a ( self : Optional[Any] ) -> Any:
pass
def a ( self : Tuple ) -> List[Any]:
pass
@unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' )
def a ( self : List[str] ) -> int:
# enable deterministic behavior for gradient checkpointing
__snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common()
__snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
assert not model.is_gradient_checkpointing and model.training
__snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
__snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ )
__snake_case = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
__snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(SCREAMING_SNAKE_CASE_ )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
__snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
__snake_case = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
__snake_case = dict(model.named_parameters() )
__snake_case = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) )
def a ( self : int ) -> int:
__snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(SCREAMING_SNAKE_CASE_ )
__snake_case = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def a ( self : Optional[int] ) -> List[str]:
__snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' )
__snake_case = model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
if torch_device == "mps":
__snake_case = torch.manual_seed(0 )
else:
__snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__snake_case = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
__snake_case = image.to(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample
__snake_case = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
__snake_case = torch.tensor(
[
-4.0_078e-01,
-3.8_323e-04,
-1.2_681e-01,
-1.1_462e-01,
2.0_095e-01,
1.0_893e-01,
-8.8_247e-02,
-3.0_361e-01,
-9.8_644e-03,
] )
elif torch_device == "cpu":
__snake_case = torch.tensor(
[-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] )
else:
__snake_case = torch.tensor(
[-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] )
self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) )
@slow
class _lowercase ( unittest.TestCase ):
def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]:
return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy'
def a ( self : Optional[Any] ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
__snake_case = torch.floataa if fpaa else torch.floataa
__snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
return image
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]:
__snake_case = 'fp16' if fpaa else None
__snake_case = torch.floataa if fpaa else torch.floataa
__snake_case = AutoencoderKL.from_pretrained(
SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , )
model.to(SCREAMING_SNAKE_CASE_ ).eval()
return model
def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]:
if torch_device == "mps":
return torch.manual_seed(SCREAMING_SNAKE_CASE_ )
return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample
assert sample.shape == image.shape
__snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]],
[47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]],
# fmt: on
] )
@require_torch_gpu
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]:
__snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample
assert sample.shape == image.shape
__snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model(SCREAMING_SNAKE_CASE_ ).sample
assert sample.shape == image.shape
__snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]],
[37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]],
# fmt: on
] )
@require_torch_gpu
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) )
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__snake_case = sample[-1, -2:, :2, -2:].flatten().cpu()
__snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]],
[16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]],
# fmt: on
] )
@require_torch_gpu
def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str:
__snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
__snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ )
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' )
def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple:
__snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' )
def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) )
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]],
[47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]],
# fmt: on
] )
def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]:
__snake_case = self.get_sd_vae_model()
__snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
__snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist
__snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
__snake_case = sample[0, -1, -3:, -3:].flatten().cpu()
__snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ )
__snake_case = 3e-3 if torch_device != 'mps' else 1e-2
assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
| 56 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_lengths
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = gelu_activation
lowercase__ = sinusoidal_embeddings
lowercase__ = causal
lowercase__ = asm
lowercase__ = n_langs
lowercase__ = vocab_size
lowercase__ = n_special
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = summary_type
lowercase__ = use_proj
lowercase__ = scope
def lowerCamelCase__ (self : List[str] ) -> List[str]:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = None
if self.use_input_lengths:
lowercase__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ = ids_tensor([self.batch_size] , 2 ).float()
lowercase__ = ids_tensor([self.batch_size] , self.num_choices )
lowercase__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCamelCase__ (self : int ) -> Dict:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , )
((lowercase__) , ) = result_with_labels.to_tuple()
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
((lowercase__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ (self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) = config_and_inputs
lowercase__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
A__ = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowerCamelCase__ (self : str ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = FlaubertModelTester(self )
lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 )
def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase__ (self : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[Any] ) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> Any:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase )
@slow
def lowerCamelCase__ (self : int ) -> List[Any]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
@require_torch_gpu
def lowerCamelCase__ (self : Dict ) -> int:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
lowercase__ = True
lowercase__ = model_class(config=_UpperCAmelCase )
lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = torch.jit.trace(
_UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) )
lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase )
loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) )
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCamelCase__ (self : Tuple ) -> Dict:
"""simple docstring"""
lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
lowercase__ = model(_UpperCAmelCase )[0]
lowercase__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _UpperCAmelCase )
lowercase__ = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 15 | 0 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
A_ : Optional[Any] = ['names', 'prefix']
A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
A_ : List[Any] = ['encoding_errors', 'on_bad_lines']
A_ : Optional[Any] = ['date_format']
@dataclass
class _lowerCAmelCase( datasets.BuilderConfig ):
"""simple docstring"""
a : str =","
a : Optional[str] =None
a : Optional[Union[int, List[int], str]] ="infer"
a : Optional[List[str]] =None
a : Optional[List[str]] =None
a : Optional[Union[int, str, List[int], List[str]]] =None
a : Optional[Union[List[int], List[str]]] =None
a : Optional[str] =None
a : bool =True
a : Optional[Literal["c", "python", "pyarrow"]] =None
a : Dict[Union[int, str], Callable[[Any], Any]] =None
a : Optional[list] =None
a : Optional[list] =None
a : bool =False
a : Optional[Union[int, List[int]]] =None
a : Optional[int] =None
a : Optional[Union[str, List[str]]] =None
a : bool =True
a : bool =True
a : bool =False
a : bool =True
a : Optional[str] =None
a : str ="."
a : Optional[str] =None
a : str ='"'
a : int =0
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : bool =True
a : bool =True
a : int =0
a : bool =True
a : bool =False
a : Optional[str] =None
a : int =10000
a : Optional[datasets.Features] =None
a : Optional[str] ="strict"
a : Literal["error", "warn", "skip"] ="error"
a : Optional[str] =None
def _a ( self ):
if self.delimiter is not None:
UpperCamelCase_: Optional[Any] = self.delimiter
if self.column_names is not None:
UpperCamelCase_: int = self.column_names
@property
def _a ( self ):
UpperCamelCase_: Any = {
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase( datasets.ArrowBasedBuilder ):
"""simple docstring"""
a : Dict =CsvConfig
def _a ( self ):
return datasets.DatasetInfo(features=self.config.features )
def _a ( self , _lowerCamelCase ):
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
UpperCamelCase_: List[Any] = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = [files]
UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
UpperCamelCase_: Tuple = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = [files]
UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) )
return splits
def _a ( self , _lowerCamelCase ):
if self.config.features is not None:
UpperCamelCase_: List[Any] = self.config.features.arrow_schema
if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ):
# cheaper cast
UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase )
return pa_table
def _a ( self , _lowerCamelCase ):
UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCamelCase_: Dict = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise | 57 |
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ , lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ )
lowercase__ = emb.weight.data
return lin_layer
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(__magic_name__ )
lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ )
if mbart_aa and finetuned:
lowercase__ = """relu"""
lowercase__ = state_dict["""decoder.embed_tokens.weight"""]
lowercase__ = MBartForConditionalGeneration(__magic_name__ )
model.model.load_state_dict(__magic_name__ )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
A : Any = parser.parse_args()
A : str = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 15 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=1_8 , _lowercase=3_0 , _lowercase=4_0_0 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=[0.5, 0.5, 0.5] , _lowercase=[0.5, 0.5, 0.5] , ) -> Tuple:
'''simple docstring'''
snake_case_ : Any = size if size is not None else {"""shortest_edge""": 1_8}
snake_case_ : str = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case_ : List[str] = parent
snake_case_ : Optional[Any] = batch_size
snake_case_ : List[Any] = num_channels
snake_case_ : Any = image_size
snake_case_ : int = min_resolution
snake_case_ : Tuple = max_resolution
snake_case_ : Tuple = do_resize
snake_case_ : int = size
snake_case_ : Union[str, Any] = do_center_crop
snake_case_ : Union[str, Any] = crop_size
snake_case_ : Optional[int] = do_normalize
snake_case_ : List[str] = image_mean
snake_case_ : Optional[Any] = image_std
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = LevitImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
snake_case_ : Dict = LevitImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowercase , """image_mean""" ) )
self.assertTrue(hasattr(_lowercase , """image_std""" ) )
self.assertTrue(hasattr(_lowercase , """do_normalize""" ) )
self.assertTrue(hasattr(_lowercase , """do_resize""" ) )
self.assertTrue(hasattr(_lowercase , """do_center_crop""" ) )
self.assertTrue(hasattr(_lowercase , """size""" ) )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
snake_case_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8} )
self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} )
snake_case_ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} )
self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
pass
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , Image.Image )
# Test not batched input
snake_case_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ : str = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , np.ndarray )
# Test not batched input
snake_case_ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ : Dict = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
snake_case_ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , torch.Tensor )
# Test not batched input
snake_case_ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ : int = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 58 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def UpperCamelCase ( __magic_name__ : Any ) -> int:
"""simple docstring"""
lowercase__ = model.config
lowercase__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
lowercase__ = MBartConfig(
is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , )
return encoder_config, decoder_config
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
if "encoder.model" in name:
lowercase__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
lowercase__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
lowercase__ = """encoder.""" + name
if "attn.proj" in name:
lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
lowercase__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
lowercase__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
lowercase__ = """encoder.layernorm.bias"""
return name
def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowercase__ = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
lowercase__ = key.split(""".""" )
lowercase__ = int(key_split[3] )
lowercase__ = int(key_split[5] )
lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase__ = val[:dim, :]
lowercase__ = val[dim : dim * 2, :]
lowercase__ = val[-dim:, :]
else:
lowercase__ = val[:dim]
lowercase__ = val[dim : dim * 2]
lowercase__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
lowercase__ = val
return orig_state_dict
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int:
"""simple docstring"""
lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval()
# load HuggingFace model
lowercase__ , lowercase__ = get_configs(__magic_name__ )
lowercase__ = DonutSwinModel(__magic_name__ )
lowercase__ = MBartForCausalLM(__magic_name__ )
lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ )
model.eval()
lowercase__ = original_model.state_dict()
lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# verify results on scanned document
lowercase__ = load_dataset("""hf-internal-testing/example-documents""" )
lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ )
lowercase__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ )
lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
lowercase__ = """When is the coffee break?"""
lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
lowercase__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
lowercase__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
lowercase__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
lowercase__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
lowercase__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[
"""input_ids"""
]
lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ )
lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ )
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
# verify encoder hidden states
lowercase__ = original_model.encoder(__magic_name__ )
lowercase__ = model.encoder(__magic_name__ ).last_hidden_state
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 )
# verify decoder hidden states
lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits
lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
A : Optional[int] = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 15 | 0 |
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
lowerCamelCase__: Tuple =[int(__a ) for i in ip_va_address.split("." ) if i.isdigit()]
return len(__a ) == 4 and all(0 <= int(__a ) <= 254 for octet in octets )
if __name__ == "__main__":
__A = input().strip()
__A = "valid" if is_ip_va_address_valid(ip) else "invalid"
print(f'{ip} is a {valid_or_invalid} IP v4 address.')
| 59 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
'The `inpainting.py` script is outdated. Please use directly `from diffusers import'
' StableDiffusionInpaintPipeline` instead.'
)
| 15 | 0 |
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowerCAmelCase ( tf.keras.layers.Layer ):
def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
snake_case_ : Any = pad_token_id
snake_case_ : Any = max_length
snake_case_ : Optional[Any] = vocab
snake_case_ : Dict = merges
snake_case_ : Dict = BytePairTokenizer(__magic_name__ , __magic_name__ , sequence_length=__magic_name__ )
@classmethod
def lowerCamelCase (cls , __magic_name__ , *__magic_name__ , **__magic_name__ ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : List[Any] = [''' '''.join(__magic_name__ ) for m in tokenizer.bpe_ranks.keys()]
snake_case_ : List[Any] = tokenizer.get_vocab()
return cls(__magic_name__ , __magic_name__ , *__magic_name__ , **__magic_name__ )
@classmethod
def lowerCamelCase (cls , __magic_name__ , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[Any] = GPTaTokenizer.from_pretrained(__magic_name__ , *__magic_name__ , **__magic_name__ )
return cls.from_tokenizer(__magic_name__ , *__magic_name__ , **__magic_name__ )
@classmethod
def lowerCamelCase (cls , __magic_name__ ) -> str:
'''simple docstring'''
return cls(**__magic_name__ )
def lowerCamelCase (self ) -> List[Any]:
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.tf_tokenizer(__magic_name__ )
snake_case_ : Optional[Any] = tf.ones_like(__magic_name__ )
if self.pad_token_id is not None:
# pad the tokens up to max length
snake_case_ : Optional[Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
snake_case_ , snake_case_ : Any = pad_model_inputs(
__magic_name__ , max_seq_length=__magic_name__ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 60 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]:
"""simple docstring"""
super().__init__(
_UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , )
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , )
lowercase__ = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 15 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'vocab_file': 'sentencepiece.model'}
UpperCamelCase = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
UpperCamelCase = {
'google/rembert': 256,
}
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Any="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Dict="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : List[Any]="[MASK]" , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict:
super().__init__(
do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = remove_space
lowerCAmelCase__ = keep_accents
lowerCAmelCase__ = vocab_file
lowerCAmelCase__ = spm.SentencePieceProcessor()
self.sp_model.Load(SCREAMING_SNAKE_CASE__ )
@property
def a ( self : int ) -> Union[str, Any]:
return len(self.sp_model )
def a ( self : Any ) -> str:
lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ) -> List[str]:
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
return state
def __setstate__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
lowerCAmelCase__ = d
lowerCAmelCase__ = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=False ) -> Optional[int]:
lowerCAmelCase__ = self.sp_model.EncodeAsPieces(SCREAMING_SNAKE_CASE__ )
return pieces
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]:
return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ )
def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ )
def a ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
lowerCAmelCase__ = self.sp_model.decode_pieces(SCREAMING_SNAKE_CASE__ )
return out_string
def a ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1]
def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("Vocabulary path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) )
return
lowerCAmelCase__ = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 61 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase__ (self : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ = """ylacombe/bark-small"""
lowercase__ = tempfile.mkdtemp()
lowercase__ = """en_speaker_1"""
lowercase__ = """This is a test string"""
lowercase__ = """speaker_embeddings_path.json"""
lowercase__ = """speaker_embeddings"""
def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ (self : Optional[int] ) -> List[str]:
"""simple docstring"""
lowercase__ = self.get_tokenizer()
lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase__ (self : str ) -> Tuple:
"""simple docstring"""
lowercase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase__ = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase__ (self : List[str] ) -> List[Any]:
"""simple docstring"""
lowercase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowercase__ = 35
lowercase__ = 2
lowercase__ = 8
lowercase__ = {
"""semantic_prompt""": np.ones(_UpperCAmelCase ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
lowercase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowercase__ = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
lowercase__ = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = self.get_tokenizer()
lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase )
lowercase__ = processor(text=self.input_string )
lowercase__ = tokenizer(
self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 15 | 0 |
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
if any(not isinstance(lowercase , lowercase ) or x < 0 for x in sequence ):
raise TypeError("Sequence must be list of non-negative integers" )
for _ in range(len(lowercase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(lowercase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 62 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
A : Optional[Any] = logging.get_logger(__name__)
A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Dict = {
'vocab_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Optional[int] = {
'vocab_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : int = {
'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2,
'facebook/dpr-ctx_encoder-multiset-base': 5_1_2,
}
A : Optional[Any] = {
'facebook/dpr-question_encoder-single-nq-base': 5_1_2,
'facebook/dpr-question_encoder-multiset-base': 5_1_2,
}
A : Any = {
'facebook/dpr-reader-single-nq-base': 5_1_2,
'facebook/dpr-reader-multiset-base': 5_1_2,
}
A : Union[str, Any] = {
'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True},
}
A : Tuple = {
'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True},
}
A : Any = {
'facebook/dpr-reader-single-nq-base': {'do_lower_case': True},
'facebook/dpr-reader-multiset-base': {'do_lower_case': True},
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRContextEncoderTokenizer
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRQuestionEncoderTokenizer
A : Any = collections.namedtuple(
'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text']
)
A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits'])
A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n '
@add_start_docstrings(UpperCAmelCase__ )
class A :
'''simple docstring'''
def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding:
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
elif titles is None or texts is None:
lowercase__ = titles if texts is None else texts
return super().__call__(
_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles]
lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages
assert len(_UpperCAmelCase ) == len(
_UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.'''
lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase )
]
}
if return_attention_mask is not False:
lowercase__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowercase__ = attention_mask
return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = reader_input["""input_ids"""]
lowercase__ , lowercase__ , lowercase__ = reader_output[:3]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ )
lowercase__ = []
for doc_id in sorted_docs:
lowercase__ = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowercase__ = sequence_ids.index(self.pad_token_id )
else:
lowercase__ = len(_UpperCAmelCase )
lowercase__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_UpperCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = []
for start_index, start_score in enumerate(_UpperCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
lowercase__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowercase__ = end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_UpperCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class A ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = READER_PRETRAINED_VOCAB_FILES_MAP
A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = READER_PRETRAINED_INIT_CONFIGURATION
A__ = ['''input_ids''', '''attention_mask''']
A__ = DPRReaderTokenizer
| 15 | 0 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
a : List[str] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
a : Union[str, Any] = 5
a : Tuple = 10
@require_sentencepiece
@require_tokenizers
class a ( lowercase__ , unittest.TestCase ):
"""simple docstring"""
a : str = SpeechaTextTokenizer
a : Optional[Any] = False
a : int = True
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
super().setUp()
__UpperCAmelCase : Any = sp.SentencePieceProcessor()
spm_model.Load(__lowercase )
__UpperCAmelCase : Tuple = ["""<s>""", """<pad>""", """</s>""", """<unk>"""]
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__lowercase ) )]
__UpperCAmelCase : List[str] = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__UpperCAmelCase : Dict = Path(self.tmpdirname )
save_json(__lowercase , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(__lowercase , save_dir / VOCAB_FILES_NAMES["""spm_file"""] )
__UpperCAmelCase : Tuple = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
__UpperCAmelCase : Optional[int] = """<pad>"""
__UpperCAmelCase : Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase )
def UpperCAmelCase ( self : str ) -> Any:
__UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """j""" )
self.assertEqual(len(__lowercase ) , 1001 )
def UpperCAmelCase ( self : List[Any] ) -> Any:
self.assertEqual(self.get_tokenizer().vocab_size , 1001 )
def UpperCAmelCase ( self : List[str] ) -> List[str]:
__UpperCAmelCase : Tuple = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowercase ) , [289, 50, 14, 174, 386] , )
__UpperCAmelCase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , )
__UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(__lowercase )
self.assertListEqual(__lowercase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(__lowercase )
self.assertListEqual(
__lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , )
@slow
def UpperCAmelCase ( self : Tuple ) -> Any:
# fmt: off
__UpperCAmelCase : str = {"""input_ids""": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowercase , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , )
@require_sentencepiece
class a ( unittest.TestCase ):
"""simple docstring"""
a : Any = 'valhalla/s2t_mustc_multilinguial_medium'
a : int = 'C\'est trop cool'
a : List[Any] = 'Esto es genial'
@classmethod
def UpperCAmelCase ( cls : Optional[Any] ) -> str:
__UpperCAmelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def UpperCAmelCase ( self : str ) -> Tuple:
self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 )
def UpperCAmelCase ( self : Dict ) -> List[Any]:
self.assertEqual(self.tokenizer.vocab_size , 10000 )
def UpperCAmelCase ( self : Optional[Any] ) -> str:
self.assertIn(__lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase : Dict = [ES_CODE, 4, 1601, 47, 7647, 2]
__UpperCAmelCase : List[Any] = self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase )
__UpperCAmelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowercase )
self.assertEqual(__lowercase , __lowercase )
self.assertNotIn(self.tokenizer.eos_token , __lowercase )
def UpperCAmelCase ( self : List[str] ) -> str:
__UpperCAmelCase : str = """fr"""
__UpperCAmelCase : Any = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , __lowercase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
__UpperCAmelCase : int = """fr"""
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__UpperCAmelCase : Optional[int] = """es"""
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 63 |
from __future__ import annotations
def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive
"""simple docstring"""
lowercase__ = len(__magic_name__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowercase__ = array[0]
lowercase__ = False
lowercase__ = 1
lowercase__ = []
while not is_found and i < array_length:
if array[i] < pivot:
lowercase__ = True
lowercase__ = [element for element in array[i:] if element >= array[i]]
lowercase__ = longest_subsequence(__magic_name__ )
if len(__magic_name__ ) > len(__magic_name__ ):
lowercase__ = temp_array
else:
i += 1
lowercase__ = [element for element in array[1:] if element >= pivot]
lowercase__ = [pivot, *longest_subsequence(__magic_name__ )]
if len(__magic_name__ ) > len(__magic_name__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def A__ ( snake_case_ : int = 3 ):
if isinstance(snake_case_ , snake_case_ ):
raise TypeError('''number of qubits must be a integer.''' )
if number_of_qubits <= 0:
raise ValueError('''number of qubits must be > 0.''' )
if math.floor(snake_case_ ) != number_of_qubits:
raise ValueError('''number of qubits must be exact integer.''' )
if number_of_qubits > 10:
raise ValueError('''number of qubits too large to simulate(>10).''' )
SCREAMING_SNAKE_CASE__: Union[str, Any]= QuantumRegister(snake_case_ , '''qr''' )
SCREAMING_SNAKE_CASE__: Union[str, Any]= ClassicalRegister(snake_case_ , '''cr''' )
SCREAMING_SNAKE_CASE__: str= QuantumCircuit(snake_case_ , snake_case_ )
SCREAMING_SNAKE_CASE__: Dict= number_of_qubits
for i in range(snake_case_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(snake_case_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case_ , snake_case_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(snake_case_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(snake_case_ , snake_case_ )
# simulate with 10000 shots
SCREAMING_SNAKE_CASE__: List[Any]= Aer.get_backend('''qasm_simulator''' )
SCREAMING_SNAKE_CASE__: int= execute(snake_case_ , snake_case_ , shots=10_000 )
return job.result().get_counts(snake_case_ )
if __name__ == "__main__":
print(
f'''Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'''
)
| 64 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
A : List[Any] = None
A : Optional[Any] = logging.get_logger(__name__)
A : str = '▁'
A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
A : Optional[int] = {
'google/pegasus-xsum': 5_1_2,
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = PegasusTokenizer
A__ = ['''input_ids''', '''attention_mask''']
def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict:
"""simple docstring"""
lowercase__ = offset
if additional_special_tokens is not None:
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError(
f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is'''
f''' {type(_UpperCAmelCase )}''' )
lowercase__ = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 )
]
if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' )
lowercase__ = additional_special_tokens_extended
else:
lowercase__ = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )]
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"""There should be 3 special tokens: mask_token, pad_token, and eos_token +"""
f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' )
return [1 if x in all_special_ids else 0 for x in seq]
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return self._special_token_mask(_UpperCAmelCase )
elif token_ids_a is None:
return self._special_token_mask(_UpperCAmelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 15 | 0 |
"""simple docstring"""
def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
UpperCAmelCase__ : str = len(__UpperCamelCase )
UpperCAmelCase__ : str = [[0] * n for i in range(__UpperCamelCase )]
for i in range(__UpperCamelCase ):
UpperCAmelCase__ : int = y_points[i]
for i in range(2 , __UpperCamelCase ):
for j in range(__UpperCamelCase , __UpperCamelCase ):
UpperCAmelCase__ : Optional[Any] = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 65 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
'''simple docstring'''
def lowerCamelCase__ (self : Dict ) -> Union[str, Any]:
"""simple docstring"""
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int:
"""simple docstring"""
lowercase__ = len(references[0] )
if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )]
lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 15 | 0 |
import math
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[int]:
_lowercase : int = []
_lowercase : Optional[Any] = 2
_lowercase : Union[str, Any] = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) # Size of every segment
_lowercase : Union[str, Any] = [True] * (end + 1)
_lowercase : List[str] = []
while start <= end:
if temp[start] is True:
in_prime.append(SCREAMING_SNAKE_CASE )
for i in range(start * start , end + 1 , SCREAMING_SNAKE_CASE ):
_lowercase : Tuple = False
start += 1
prime += in_prime
_lowercase : int = end + 1
_lowercase : List[str] = min(2 * end , SCREAMING_SNAKE_CASE )
while low <= n:
_lowercase : str = [True] * (high - low + 1)
for each in in_prime:
_lowercase : Dict = math.floor(low / each ) * each
if t < low:
t += each
for j in range(SCREAMING_SNAKE_CASE , high + 1 , SCREAMING_SNAKE_CASE ):
_lowercase : Optional[Any] = False
for j in range(len(SCREAMING_SNAKE_CASE ) ):
if temp[j] is True:
prime.append(j + low )
_lowercase : Tuple = high + 1
_lowercase : Any = min(high + end , SCREAMING_SNAKE_CASE )
return prime
print(sieve(10**6))
| 66 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : List[Any] ) -> Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PegasusTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ (self : Tuple ) -> Any:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCamelCase__ (self : Dict ) -> Optional[int]:
"""simple docstring"""
lowercase__ = """</s>"""
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[int] ) -> str:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(_UpperCAmelCase ) , 1103 )
def lowerCamelCase__ (self : str ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def lowerCamelCase__ (self : Any ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> int:
"""simple docstring"""
lowercase__ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowercase__ = """To ensure a smooth flow of bank resolutions."""
lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""]
lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
lowercase__ = self._large_tokenizer(
text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask.
@slow
def lowerCamelCase__ (self : List[Any] ) -> List[Any]:
"""simple docstring"""
lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class A ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : Any ) -> int:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ (self : Any ) -> str:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def lowerCamelCase__ (self : Any ) -> int:
"""simple docstring"""
lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__ = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
@require_torch
def lowerCamelCase__ (self : List[str] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""]
lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""]
lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
lowercase__ = self._large_tokenizer(
text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask.
def lowerCamelCase__ (self : Optional[int] ) -> Any:
"""simple docstring"""
lowercase__ = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids
self.assertListEqual(
_UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
| 15 | 0 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizer
SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaTokenizerFast
SCREAMING_SNAKE_CASE_ : int = True
SCREAMING_SNAKE_CASE_ : Any = {'''cls_token''': '''<s>'''}
def __UpperCAmelCase ( self : List[Any] ) -> List[str]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_lowercase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
_lowercase = dict(zip(__A ,range(len(__A ) ) ) )
_lowercase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
_lowercase = {'unk_token': '<unk>'}
_lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
_lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(__A ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(__A ) )
def __UpperCAmelCase ( self : List[str] ,**__A : List[Any] ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__A )
def __UpperCAmelCase ( self : Union[str, Any] ,**__A : Any ) -> str:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**__A )
def __UpperCAmelCase ( self : str ,__A : List[str] ) -> List[Any]:
_lowercase = 'lower newer'
_lowercase = 'lower newer'
return input_text, output_text
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
_lowercase = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map )
_lowercase = 'lower newer'
_lowercase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
_lowercase = tokenizer.tokenize(__A ) # , add_prefix_space=True)
self.assertListEqual(__A ,__A )
_lowercase = tokens + [tokenizer.unk_token]
_lowercase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) ,__A )
def __UpperCAmelCase ( self : Dict ) -> Optional[int]:
_lowercase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!' ,add_special_tokens=__A ) ,[0, 3_1414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418' ,add_special_tokens=__A ) ,[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] ,)
@slow
def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
_lowercase = self.tokenizer_class.from_pretrained('roberta-base' )
_lowercase = tokenizer.encode('sequence builders' ,add_special_tokens=__A )
_lowercase = tokenizer.encode('multi-sequence build' ,add_special_tokens=__A )
_lowercase = tokenizer.encode(
'sequence builders' ,add_special_tokens=__A ,add_prefix_space=__A )
_lowercase = tokenizer.encode(
'sequence builders' ,'multi-sequence build' ,add_special_tokens=__A ,add_prefix_space=__A )
_lowercase = tokenizer.build_inputs_with_special_tokens(__A )
_lowercase = tokenizer.build_inputs_with_special_tokens(__A ,__A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __UpperCAmelCase ( self : List[Any] ) -> List[Any]:
_lowercase = self.get_tokenizer()
_lowercase = 'Encode this sequence.'
_lowercase = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
_lowercase = tokenizer.encode(__A ,add_special_tokens=__A ,add_prefix_space=__A )
_lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__A ,__A )
_lowercase = tokenizer.encode(__A ,add_special_tokens=__A ,add_prefix_space=__A )
_lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__A ,__A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
_lowercase = tokenizer.encode(__A ,add_special_tokens=__A )
_lowercase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__A ,__A )
# Testing spaces after special tokens
_lowercase = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(__A ,lstrip=__A ,rstrip=__A )} ) # mask token has a left space
_lowercase = tokenizer.convert_tokens_to_ids(__A )
_lowercase = 'Encode <mask> sequence'
_lowercase = 'Encode <mask>sequence'
_lowercase = tokenizer.encode(__A )
_lowercase = encoded.index(__A )
_lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__A ,__A )
_lowercase = tokenizer.encode(__A )
_lowercase = encoded.index(__A )
_lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__A ,__A )
def __UpperCAmelCase ( self : List[Any] ) -> Dict:
pass
def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_lowercase = self.rust_tokenizer_class.from_pretrained(__A ,**__A )
_lowercase = self.tokenizer_class.from_pretrained(__A ,**__A )
_lowercase = 'A, <mask> AllenNLP sentence.'
_lowercase = tokenizer_r.encode_plus(__A ,add_special_tokens=__A ,return_token_type_ids=__A )
_lowercase = tokenizer_p.encode_plus(__A ,add_special_tokens=__A ,return_token_type_ids=__A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,)
_lowercase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
_lowercase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(
__A ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
__A ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def __UpperCAmelCase ( self : int ) -> Any:
for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ):
_lowercase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A )
_lowercase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
_lowercase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'] ,__A )
self.assertEqual(post_processor_state['add_prefix_space'] ,__A )
self.assertEqual(post_processor_state['trim_offsets'] ,__A )
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_lowercase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
_lowercase = F"""{text_of_1_token} {text_of_1_token}"""
_lowercase = self.rust_tokenizer_class.from_pretrained(
__A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A )
_lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(__A ) + 1, len(__A ) + 1 + len(__A )) ,)
_lowercase = self.rust_tokenizer_class.from_pretrained(
__A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A )
_lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(__A ) + 1, len(__A ) + 1 + len(__A )) ,)
_lowercase = self.rust_tokenizer_class.from_pretrained(
__A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A )
_lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(__A ), len(__A ) + 1 + len(__A )) ,)
_lowercase = self.rust_tokenizer_class.from_pretrained(
__A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A )
_lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(__A ), len(__A ) + 1 + len(__A )) ,)
_lowercase = F""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
_lowercase = self.rust_tokenizer_class.from_pretrained(
__A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A )
_lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )) ,)
_lowercase = self.rust_tokenizer_class.from_pretrained(
__A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A )
_lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) ,)
_lowercase = self.rust_tokenizer_class.from_pretrained(
__A ,use_fast=__A ,add_prefix_space=__A ,trim_offsets=__A )
_lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) ,) | 67 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]:
"""simple docstring"""
lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowercase__ = load_file(__magic_name__ )
lowercase__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
lowercase__ = pipeline.text_encoder
else:
lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
lowercase__ = pipeline.unet
# find the target layer
lowercase__ = layer_infos.pop(0 )
while len(__magic_name__ ) > -1:
try:
lowercase__ = curr_layer.__getattr__(__magic_name__ )
if len(__magic_name__ ) > 0:
lowercase__ = layer_infos.pop(0 )
elif len(__magic_name__ ) == 0:
break
except Exception:
if len(__magic_name__ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowercase__ = layer_infos.pop(0 )
lowercase__ = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(__magic_name__ )
else:
pair_keys.append(__magic_name__ )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowercase__ = state_dict[pair_keys[0]].to(torch.floataa )
lowercase__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ )
# update visited list
for item in pair_keys:
visited.append(__magic_name__ )
return pipeline
if __name__ == "__main__":
A : int = argparse.ArgumentParser()
parser.add_argument(
'--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.'
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors'
)
parser.add_argument(
'--lora_prefix_text_encoder',
default='lora_te',
type=str,
help='The prefix of text encoder weight in safetensors',
)
parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW')
parser.add_argument(
'--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.'
)
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
A : str = parser.parse_args()
A : Tuple = args.base_model_path
A : List[str] = args.checkpoint_path
A : Optional[int] = args.dump_path
A : Optional[int] = args.lora_prefix_unet
A : Any = args.lora_prefix_text_encoder
A : Any = args.alpha
A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
A : int = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 15 | 0 |
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
__A = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
def lowercase__ ( A_: np.ndarray , A_: float , A_: int = 16000 ) -> int:
"""simple docstring"""
__UpperCAmelCase =int(round(sample_rate * max_length ) )
if len(A_ ) <= sample_length:
return wav
__UpperCAmelCase =randint(0 , len(A_ ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class _A :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(default=UpperCamelCase , metadata={'help': 'Name of a dataset from the datasets package'} )
lowerCamelCase : Optional[str] = field(
default=UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
lowerCamelCase : Optional[str] = field(
default=UpperCamelCase , metadata={'help': 'A file containing the training audio paths and labels.'} )
lowerCamelCase : Optional[str] = field(
default=UpperCamelCase , metadata={'help': 'A file containing the validation audio paths and labels.'} )
lowerCamelCase : str = field(
default='train' , metadata={
'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\''
} , )
lowerCamelCase : str = field(
default='validation' , metadata={
'help': (
'The name of the training data set split to use (via the datasets library). Defaults to \'validation\''
)
} , )
lowerCamelCase : str = field(
default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , )
lowerCamelCase : str = field(
default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} )
lowerCamelCase : Optional[int] = field(
default=UpperCamelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
lowerCamelCase : Optional[int] = field(
default=UpperCamelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
lowerCamelCase : float = field(
default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , )
@dataclass
class _A :
"""simple docstring"""
lowerCamelCase : str = field(
default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , )
lowerCamelCase : Optional[str] = field(
default=UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowerCamelCase : Optional[str] = field(
default=UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} )
lowerCamelCase : str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
lowerCamelCase : Optional[str] = field(
default=UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} )
lowerCamelCase : bool = field(
default=UpperCamelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} )
lowerCamelCase : bool = field(
default=UpperCamelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} )
lowerCamelCase : bool = field(
default=UpperCamelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
lowerCamelCase : Optional[bool] = field(
default=UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} )
lowerCamelCase : bool = field(
default=UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , )
def _a ( self : Tuple ) -> Union[str, Any]:
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""will be removed in a future version. Use `--freeze_feature_encoder`"""
"""instead. Setting `freeze_feature_encoder==True`.""" , __SCREAMING_SNAKE_CASE , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""should not be used in combination with `--freeze_feature_encoder`."""
"""Only make use of `--freeze_feature_encoder`.""" )
def lowercase__ ( ) -> Optional[int]:
"""simple docstring"""
__UpperCAmelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_audio_classification""" , A_ , A_ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__UpperCAmelCase =training_args.get_process_log_level()
logger.setLevel(A_ )
transformers.utils.logging.set_verbosity(A_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} '''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
__UpperCAmelCase =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__UpperCAmelCase =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to train from scratch.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset and prepare it for the audio classification task.
__UpperCAmelCase =DatasetDict()
__UpperCAmelCase =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , )
__UpperCAmelCase =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
"""Make sure to set `--audio_column_name` to the correct audio column - one of """
F'''{", ".join(raw_datasets["train"].column_names )}.''' )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
"""Make sure to set `--label_column_name` to the correct text column - one of """
F'''{", ".join(raw_datasets["train"].column_names )}.''' )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
__UpperCAmelCase =AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
__UpperCAmelCase =raw_datasets.cast_column(
data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
__UpperCAmelCase =feature_extractor.model_input_names[0]
def train_transforms(A_: Any ):
__UpperCAmelCase =[]
for audio in batch[data_args.audio_column_name]:
__UpperCAmelCase =random_subsample(
audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(A_ )
__UpperCAmelCase =feature_extractor(A_ , sampling_rate=feature_extractor.sampling_rate )
__UpperCAmelCase ={model_input_name: inputs.get(A_ )}
__UpperCAmelCase =list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(A_: str ):
__UpperCAmelCase =[audio["""array"""] for audio in batch[data_args.audio_column_name]]
__UpperCAmelCase =feature_extractor(A_ , sampling_rate=feature_extractor.sampling_rate )
__UpperCAmelCase ={model_input_name: inputs.get(A_ )}
__UpperCAmelCase =list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
__UpperCAmelCase =raw_datasets["""train"""].features[data_args.label_column_name].names
__UpperCAmelCase , __UpperCAmelCase ={}, {}
for i, label in enumerate(A_ ):
__UpperCAmelCase =str(A_ )
__UpperCAmelCase =label
# Load the accuracy metric from the datasets package
__UpperCAmelCase =evaluate.load("""accuracy""" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(A_: str ):
__UpperCAmelCase =np.argmax(eval_pred.predictions , axis=1 )
return metric.compute(predictions=A_ , references=eval_pred.label_ids )
__UpperCAmelCase =AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(A_ ) , labelaid=A_ , idalabel=A_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__UpperCAmelCase =AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=A_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
__UpperCAmelCase =(
raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(A_ , output_all_columns=A_ )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
__UpperCAmelCase =(
raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(A_ , output_all_columns=A_ )
# Initialize our trainer
__UpperCAmelCase =Trainer(
model=A_ , args=A_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=A_ , tokenizer=A_ , )
# Training
if training_args.do_train:
__UpperCAmelCase =None
if training_args.resume_from_checkpoint is not None:
__UpperCAmelCase =training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__UpperCAmelCase =last_checkpoint
__UpperCAmelCase =trainer.train(resume_from_checkpoint=A_ )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
__UpperCAmelCase =trainer.evaluate()
trainer.log_metrics("""eval""" , A_ )
trainer.save_metrics("""eval""" , A_ )
# Write model card and (optionally) push to hub
__UpperCAmelCase ={
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """audio-classification""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""audio-classification"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**A_ )
else:
trainer.create_model_card(**A_ )
if __name__ == "__main__":
main()
| 68 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : List[str] = logging.get_logger(__name__)
A : Tuple = {
'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json',
'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json',
'kssteven/ibert-roberta-large-mnli': (
'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'
),
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''ibert'''
def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = quant_mode
lowercase__ = force_dequant
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@property
def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 15 | 0 |
'''simple docstring'''
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase ):
@register_to_config
def __init__( self : Dict , a_ : int = 128 , a_ : int = 256 , a_ : float = 2000.0 , a_ : int = 768 , a_ : int = 12 , a_ : int = 12 , a_ : int = 64 , a_ : int = 2_048 , a_ : float = 0.1 , ):
"""simple docstring"""
super().__init__()
__snake_case = nn.Sequential(
nn.Linear(a_ , d_model * 4 , bias=a_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a_ ) , nn.SiLU() , )
__snake_case = nn.Embedding(a_ , a_ )
__snake_case = False
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
__snake_case = nn.Dropout(p=a_ )
__snake_case = nn.ModuleList()
for lyr_num in range(a_ ):
# FiLM conditional T5 decoder
__snake_case = DecoderLayer(d_model=a_ , d_kv=a_ , num_heads=a_ , d_ff=a_ , dropout_rate=a_ )
self.decoders.append(a_ )
__snake_case = TaLayerNorm(a_ )
__snake_case = nn.Dropout(p=a_ )
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
def A ( self : Any , a_ : Tuple , a_ : Optional[Any] ):
"""simple docstring"""
__snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def A ( self : int , a_ : Any , a_ : Optional[int] , a_ : Any ):
"""simple docstring"""
__snake_case , __snake_case , __snake_case = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
__snake_case = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
__snake_case = self.conditioning_emb(a_ ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
__snake_case = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
__snake_case = torch.broadcast_to(
torch.arange(a_ , device=decoder_input_tokens.device ) , (batch, seq_length) , )
__snake_case = self.position_encoding(a_ )
__snake_case = self.continuous_inputs_projection(a_ )
inputs += position_encodings
__snake_case = self.dropout(a_ )
# decoder: No padding present.
__snake_case = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
__snake_case = [(x, self.encoder_decoder_mask(a_ , a_ )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
__snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
__snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
__snake_case = lyr(
a_ , conditioning_emb=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , )[0]
__snake_case = self.decoder_norm(a_ )
__snake_case = self.post_dropout(a_ )
__snake_case = self.spec_out(a_ )
return spec_out
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Dict , a_ : Optional[int] , a_ : Dict , a_ : List[str] , a_ : Any , a_ : Tuple , a_ : Optional[int]=1e-6 ):
"""simple docstring"""
super().__init__()
__snake_case = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=a_ , d_kv=a_ , num_heads=a_ , dropout_rate=a_ ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=a_ , d_kv=a_ , num_heads=a_ , dropout_rate=a_ , layer_norm_epsilon=a_ , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=a_ , d_ff=a_ , dropout_rate=a_ , layer_norm_epsilon=a_ ) )
def A ( self : Any , a_ : List[str] , a_ : Tuple=None , a_ : Any=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Dict=None , ):
"""simple docstring"""
__snake_case = self.layer[0](
a_ , conditioning_emb=a_ , attention_mask=a_ , )
if encoder_hidden_states is not None:
__snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to(
encoder_hidden_states.dtype )
__snake_case = self.layer[1](
a_ , key_value_states=a_ , attention_mask=a_ , )
# Apply Film Conditional Feed Forward layer
__snake_case = self.layer[-1](a_ , a_ )
return (hidden_states,)
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Union[str, Any] , a_ : Optional[Any] , a_ : Optional[Any] , a_ : List[Any] , a_ : Tuple ):
"""simple docstring"""
super().__init__()
__snake_case = TaLayerNorm(a_ )
__snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=a_ )
__snake_case = Attention(query_dim=a_ , heads=a_ , dim_head=a_ , out_bias=a_ , scale_qk=a_ )
__snake_case = nn.Dropout(a_ )
def A ( self : Optional[Any] , a_ : str , a_ : Union[str, Any]=None , a_ : Tuple=None , ):
"""simple docstring"""
__snake_case = self.layer_norm(a_ )
if conditioning_emb is not None:
__snake_case = self.FiLMLayer(a_ , a_ )
# Self-attention block
__snake_case = self.attention(a_ )
__snake_case = hidden_states + self.dropout(a_ )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Any , a_ : List[str] , a_ : List[str] , a_ : List[str] , a_ : Optional[Any] , a_ : int ):
"""simple docstring"""
super().__init__()
__snake_case = Attention(query_dim=a_ , heads=a_ , dim_head=a_ , out_bias=a_ , scale_qk=a_ )
__snake_case = TaLayerNorm(a_ , eps=a_ )
__snake_case = nn.Dropout(a_ )
def A ( self : int , a_ : Any , a_ : Dict=None , a_ : Optional[Any]=None , ):
"""simple docstring"""
__snake_case = self.layer_norm(a_ )
__snake_case = self.attention(
a_ , encoder_hidden_states=a_ , attention_mask=attention_mask.squeeze(1 ) , )
__snake_case = hidden_states + self.dropout(a_ )
return layer_output
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Union[str, Any] , a_ : Optional[int] , a_ : Tuple , a_ : Optional[int] , a_ : List[str] ):
"""simple docstring"""
super().__init__()
__snake_case = TaDenseGatedActDense(d_model=a_ , d_ff=a_ , dropout_rate=a_ )
__snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=a_ )
__snake_case = TaLayerNorm(a_ , eps=a_ )
__snake_case = nn.Dropout(a_ )
def A ( self : Optional[int] , a_ : Union[str, Any] , a_ : Union[str, Any]=None ):
"""simple docstring"""
__snake_case = self.layer_norm(a_ )
if conditioning_emb is not None:
__snake_case = self.film(a_ , a_ )
__snake_case = self.DenseReluDense(a_ )
__snake_case = hidden_states + self.dropout(a_ )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Optional[int] , a_ : str , a_ : Any , a_ : Dict ):
"""simple docstring"""
super().__init__()
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
__snake_case = nn.Dropout(a_ )
__snake_case = NewGELUActivation()
def A ( self : Any , a_ : str ):
"""simple docstring"""
__snake_case = self.act(self.wi_a(a_ ) )
__snake_case = self.wi_a(a_ )
__snake_case = hidden_gelu * hidden_linear
__snake_case = self.dropout(a_ )
__snake_case = self.wo(a_ )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : List[str] , a_ : Optional[Any] , a_ : Optional[Any]=1e-6 ):
"""simple docstring"""
super().__init__()
__snake_case = nn.Parameter(torch.ones(a_ ) )
__snake_case = eps
def A ( self : List[str] , a_ : Any ):
"""simple docstring"""
__snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a_ )
__snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
__snake_case = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def A ( self : List[str] , a_ : torch.Tensor ):
"""simple docstring"""
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(a_ , 3.0 )) ))
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : int , a_ : Union[str, Any] , a_ : List[str] ):
"""simple docstring"""
super().__init__()
__snake_case = nn.Linear(a_ , out_features * 2 , bias=a_ )
def A ( self : Optional[int] , a_ : Union[str, Any] , a_ : Optional[int] ):
"""simple docstring"""
__snake_case = self.scale_bias(a_ )
__snake_case , __snake_case = torch.chunk(a_ , 2 , -1 )
__snake_case = x * (1 + scale) + shift
return x
| 69 |
from math import log
from scipy.constants import Boltzmann, physical_constants
A : Any = 3_0_0 # TEMPERATURE (unit = K)
def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float:
"""simple docstring"""
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 0 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A:
'''simple docstring'''
def __init__( self : List[Any] , A_ : Dict , A_ : Union[str, Any]=13 , A_ : List[Any]=30 , A_ : Optional[Any]=2 , A_ : List[str]=3 , A_ : List[str]=True , A_ : Dict=True , A_ : List[Any]=32 , A_ : Any=2 , A_ : Any=4 , A_ : Optional[int]=37 , A_ : Dict="gelu" , A_ : List[Any]=0.1 , A_ : Optional[int]=0.1 , A_ : Union[str, Any]=10 , A_ : Optional[Any]=0.02 , A_ : List[Any]=3 , A_ : str=None , ) -> str:
"""simple docstring"""
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = image_size
lowerCamelCase_ = patch_size
lowerCamelCase_ = num_channels
lowerCamelCase_ = is_training
lowerCamelCase_ = use_labels
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = type_sequence_label_size
lowerCamelCase_ = initializer_range
lowerCamelCase_ = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCamelCase_ = (image_size // patch_size) ** 2
lowerCamelCase_ = num_patches + 1
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase_ = None
if self.use_labels:
lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ = self.get_config()
return config, pixel_values, labels
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , )
def a__ ( self : Any , A_ : int , A_ : int , A_ : int ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = TFViTModel(config=A_ )
lowerCamelCase_ = model(A_ , training=A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
lowerCamelCase_ = self.image_size // 2
lowerCamelCase_ = pixel_values[:, :, :image_size, :image_size]
lowerCamelCase_ = model(A_ , interpolate_pos_encoding=A_ , training=A_ )
lowerCamelCase_ = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def a__ ( self : List[Any] , A_ : List[Any] , A_ : Any , A_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = self.type_sequence_label_size
lowerCamelCase_ = TFViTForImageClassification(A_ )
lowerCamelCase_ = model(A_ , labels=A_ , training=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
lowerCamelCase_ = self.image_size // 2
lowerCamelCase_ = pixel_values[:, :, :image_size, :image_size]
lowerCamelCase_ = model(A_ , interpolate_pos_encoding=A_ , training=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCamelCase_ = 1
lowerCamelCase_ = TFViTForImageClassification(A_ )
lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase_ = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
lowerCamelCase_ = self.prepare_config_and_inputs()
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs
lowerCamelCase_ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
UpperCamelCase = (
{'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification}
if is_tf_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def a__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ = TFViTModelTester(self )
lowerCamelCase_ = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason='ViT does not use inputs_embeds' )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
pass
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCamelCase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Layer ) )
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ = model_class(A_ )
lowerCamelCase_ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ = [*signature.parameters.keys()]
lowerCamelCase_ = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@slow
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ = TFViTModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(A_ )
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class A( unittest.TestCase ):
'''simple docstring'''
@cached_property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
lowerCamelCase_ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' )
lowerCamelCase_ = self.default_image_processor
lowerCamelCase_ = prepare_img()
lowerCamelCase_ = image_processor(images=A_ , return_tensors='tf' )
# forward pass
lowerCamelCase_ = model(**A_ )
# verify the logits
lowerCamelCase_ = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , A_ )
lowerCamelCase_ = tf.constant([-0.2744, 0.8215, -0.0836] )
tf.debugging.assert_near(outputs.logits[0, :3] , A_ , atol=1E-4 )
| 70 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class A :
'''simple docstring'''
A__ = 42
A__ = None
A__ = None
def UpperCamelCase ( ) -> Node | None:
"""simple docstring"""
lowercase__ = Node(1 )
lowercase__ = Node(2 )
lowercase__ = Node(3 )
lowercase__ = Node(4 )
lowercase__ = Node(5 )
return tree
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]:
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def UpperCamelCase ( __magic_name__ : Node | None ) -> int:
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
if root is None:
return output
lowercase__ = deque([root] )
while process_queue:
lowercase__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]:
"""simple docstring"""
lowercase__ = []
def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(__magic_name__ , __magic_name__ )
return output
def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]:
"""simple docstring"""
if root is None:
return []
lowercase__ = []
lowercase__ = 0
lowercase__ = height(__magic_name__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) )
lowercase__ = 1
else:
output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) )
lowercase__ = 0
return output
def UpperCamelCase ( ) -> None: # Main function for testing.
"""simple docstring"""
lowercase__ = make_tree()
print(f'''In-order Traversal: {inorder(__magic_name__ )}''' )
print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' )
print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" )
print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(__magic_name__ ) , """\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1 , height(__magic_name__ ) + 1 ):
print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(__magic_name__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 15 | 0 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def a__ ( _SCREAMING_SNAKE_CASE : int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() )
UpperCAmelCase_ : Union[str, Any] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_lowerCamelCase = logging.getLogger(__name__)
def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
if metric == "rouge2":
UpperCAmelCase_ : int = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
UpperCAmelCase_ : Dict = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
UpperCAmelCase_ : List[Any] = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
" function." )
UpperCAmelCase_ : Tuple = ModelCheckpoint(
dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F'''val_{metric}''' , mode="max" , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]:
"""simple docstring"""
return EarlyStopping(
monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , )
class _snake_case (pl.Callback):
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ):
UpperCAmelCase_ : Union[str, Any] = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_snake_case )
@rank_zero_only
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case=True ):
logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
UpperCAmelCase_ : Optional[int] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
UpperCAmelCase_ : Union[str, Any] = Path(pl_module.hparams.output_dir )
if type_path == "test":
UpperCAmelCase_ : Optional[Any] = od / "test_results.txt"
UpperCAmelCase_ : List[str] = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
UpperCAmelCase_ : List[Any] = od / f'''{type_path}_results/{trainer.global_step:05d}.txt'''
UpperCAmelCase_ : List[str] = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_snake_case )
generations_file.parent.mkdir(exist_ok=_snake_case )
with open(_snake_case ,"a+" ) as writer:
for key in sorted(_snake_case ):
if key in ["log", "progress_bar", "preds"]:
continue
UpperCAmelCase_ : Union[str, Any] = metrics[key]
if isinstance(_snake_case ,torch.Tensor ):
UpperCAmelCase_ : Optional[int] = val.item()
UpperCAmelCase_ : Dict = f'''{key}: {val:.6f}\n'''
writer.write(_snake_case )
if not save_generations:
return
if "preds" in metrics:
UpperCAmelCase_ : Any = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(_snake_case )
@rank_zero_only
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ):
try:
UpperCAmelCase_ : List[Any] = pl_module.model.model.num_parameters()
except AttributeError:
UpperCAmelCase_ : Any = pl_module.model.num_parameters()
UpperCAmelCase_ : Union[str, Any] = count_trainable_parameters(_snake_case )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} )
@rank_zero_only
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ):
save_json(pl_module.metrics ,pl_module.metrics_save_path )
return self._write_logs(_snake_case ,_snake_case ,"test" )
@rank_zero_only
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ):
save_json(pl_module.metrics ,pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 71 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Any = logging.get_logger(__name__)
A : Tuple = {
'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''poolformer'''
def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = stride
lowercase__ = padding
lowercase__ = pool_size
lowercase__ = hidden_sizes
lowercase__ = mlp_ratio
lowercase__ = depths
lowercase__ = patch_sizes
lowercase__ = strides
lowercase__ = num_encoder_blocks
lowercase__ = drop_path_rate
lowercase__ = hidden_act
lowercase__ = use_layer_scale
lowercase__ = layer_scale_init_value
lowercase__ = initializer_range
super().__init__(**_UpperCAmelCase )
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = version.parse('''1.11''' )
@property
def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase__ (self : Dict ) -> float:
"""simple docstring"""
return 2E-3
| 15 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
_UpperCAmelCase : Optional[Any] = {
'''tanreinama/GPTSAN-2.8B-spout_is_uniform''': (
'''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json'''
),
}
class __magic_name__ ( __SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = 'gptsan-japanese'
UpperCamelCase__ = [
'past_key_values',
]
UpperCamelCase__ = {
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self , snake_case_=3_60_00 , snake_case_=12_80 , snake_case_=10_24 , snake_case_=81_92 , snake_case_=40_96 , snake_case_=1_28 , snake_case_=10 , snake_case_=0 , snake_case_=16 , snake_case_=16 , snake_case_=1_28 , snake_case_=0.0 , snake_case_=1E-5 , snake_case_=False , snake_case_=0.0 , snake_case_="float32" , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=0.0_02 , snake_case_=False , snake_case_=True , snake_case_=3_59_98 , snake_case_=3_59_95 , snake_case_=3_59_99 , **snake_case_ , ):
lowercase =vocab_size
lowercase =max_position_embeddings
lowercase =d_model
lowercase =d_ff
lowercase =d_ext
lowercase =d_spout
lowercase =num_switch_layers
lowercase =num_ext_layers
lowercase =num_switch_layers + num_ext_layers
lowercase =num_heads
lowercase =num_experts
lowercase =expert_capacity
lowercase =dropout_rate
lowercase =layer_norm_epsilon
lowercase =router_bias
lowercase =router_jitter_noise
lowercase =router_dtype
lowercase =router_ignore_padding_tokens
lowercase =output_hidden_states
lowercase =output_attentions
lowercase =initializer_factor
lowercase =output_router_logits
lowercase =use_cache
super().__init__(
separator_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
| 72 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class A ( UpperCAmelCase__ ):
'''simple docstring'''
@slow
@require_torch
def lowerCamelCase__ (self : int ) -> Tuple:
"""simple docstring"""
lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" )
lowercase__ = bertabert.config.encoder.vocab_size
lowercase__ = tokenizer.sep_token_id
lowercase__ = tokenizer.cls_token_id
lowercase__ = 128
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
lowercase__ = train_dataset.select(range(32 ) )
lowercase__ = val_dataset.select(range(16 ) )
lowercase__ = 4
def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ):
# Tokenizer will automatically set [BOS] <text> [EOS]
lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 )
lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 )
lowercase__ = inputs.input_ids
lowercase__ = inputs.attention_mask
lowercase__ = outputs.input_ids
lowercase__ = outputs.input_ids.copy()
lowercase__ = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
lowercase__ = outputs.attention_mask
assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_UpperCAmelCase : List[Any] ):
lowercase__ = pred.label_ids
lowercase__ = pred.predictions
# all unnecessary tokens are removed
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase )
return {"accuracy": accuracy}
# map train dataset
lowercase__ = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
lowercase__ = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
lowercase__ = self.get_auto_remove_tmp_dir()
lowercase__ = SeqaSeqTrainingArguments(
output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
lowercase__ = SeqaSeqTrainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , )
# start training
trainer.train()
| 15 | 0 |
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1e-12):
SCREAMING_SNAKE_CASE = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_UpperCAmelCase , axis=1) , a_min=_UpperCAmelCase)).T
SCREAMING_SNAKE_CASE = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_UpperCAmelCase , axis=1) , a_min=_UpperCAmelCase)).T
return jnp.matmul(_UpperCAmelCase , norm_emb_a.T)
class _snake_case ( nn.Module ):
_lowercase : CLIPConfig
_lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = FlaxCLIPVisionModule(self.config.vision_config)
SCREAMING_SNAKE_CASE = nn.Dense(self.config.projection_dim , use_bias=a , dtype=self.dtype)
SCREAMING_SNAKE_CASE = self.param('concept_embeds' , jax.nn.initializers.ones , (17, self.config.projection_dim))
SCREAMING_SNAKE_CASE = self.param(
'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim))
SCREAMING_SNAKE_CASE = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (17,))
SCREAMING_SNAKE_CASE = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,))
def __call__( self , a) -> Tuple:
SCREAMING_SNAKE_CASE = self.vision_model(a)[1]
SCREAMING_SNAKE_CASE = self.visual_projection(a)
SCREAMING_SNAKE_CASE = jax_cosine_distance(a , self.special_care_embeds)
SCREAMING_SNAKE_CASE = jax_cosine_distance(a , self.concept_embeds)
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
SCREAMING_SNAKE_CASE = 0.0
SCREAMING_SNAKE_CASE = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
SCREAMING_SNAKE_CASE = jnp.round(a , 3)
SCREAMING_SNAKE_CASE = jnp.any(special_scores > 0 , axis=1 , keepdims=a)
# Use a lower threshold if an image has any special care concept
SCREAMING_SNAKE_CASE = is_special_care * 0.01
SCREAMING_SNAKE_CASE = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
SCREAMING_SNAKE_CASE = jnp.round(a , 3)
SCREAMING_SNAKE_CASE = jnp.any(concept_scores > 0 , axis=1)
return has_nsfw_concepts
class _snake_case ( A__ ):
_lowercase : Optional[Any] = CLIPConfig
_lowercase : Optional[Any] = '''clip_input'''
_lowercase : Dict = FlaxStableDiffusionSafetyCheckerModule
def __init__( self , a , a = None , a = 0 , a = jnp.floataa , a = True , **a , ) -> Dict:
if input_shape is None:
SCREAMING_SNAKE_CASE = (1, 224, 224, 3)
SCREAMING_SNAKE_CASE = self.module_class(config=a , dtype=a , **a)
super().__init__(a , a , input_shape=a , seed=a , dtype=a , _do_init=_do_init)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> FrozenDict:
# init input tensor
SCREAMING_SNAKE_CASE = jax.random.normal(a , a)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = jax.random.split(a)
SCREAMING_SNAKE_CASE = {'params': params_rng, 'dropout': dropout_rng}
SCREAMING_SNAKE_CASE = self.module.init(a , a)['params']
return random_params
def __call__( self , a , a = None , ) -> Optional[int]:
SCREAMING_SNAKE_CASE = jnp.transpose(a , (0, 2, 3, 1))
return self.module.apply(
{'params': params or self.params} , jnp.array(a , dtype=jnp.floataa) , rngs={} , )
| 73 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A : Union[str, Any] = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = ['ConvNextFeatureExtractor']
A : Optional[Any] = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 15 | 0 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase :
"""simple docstring"""
def __init__( self : Dict , _A : str , _A : Optional[int]=13 , _A : List[Any]=7 , _A : Tuple=True , _A : Any=True , _A : List[str]=True , _A : Any=True , _A : Optional[Any]=99 , _A : int=16 , _A : str=36 , _A : Dict=6 , _A : Optional[int]=6 , _A : int=6 , _A : Dict=37 , _A : List[str]="gelu" , _A : Tuple=0.1 , _A : str=0.1 , _A : Tuple=512 , _A : Optional[Any]=16 , _A : Any=2 , _A : Optional[Any]=0.02 , _A : Tuple=3 , _A : Optional[int]=4 , _A : Any=None , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = parent
__SCREAMING_SNAKE_CASE : Any = batch_size
__SCREAMING_SNAKE_CASE : Dict = seq_length
__SCREAMING_SNAKE_CASE : List[Any] = is_training
__SCREAMING_SNAKE_CASE : Any = use_input_mask
__SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids
__SCREAMING_SNAKE_CASE : Dict = use_labels
__SCREAMING_SNAKE_CASE : Optional[int] = vocab_size
__SCREAMING_SNAKE_CASE : Optional[int] = embedding_size
__SCREAMING_SNAKE_CASE : Optional[int] = hidden_size
__SCREAMING_SNAKE_CASE : Dict = num_hidden_layers
__SCREAMING_SNAKE_CASE : List[Any] = num_hidden_groups
__SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads
__SCREAMING_SNAKE_CASE : List[Any] = intermediate_size
__SCREAMING_SNAKE_CASE : str = hidden_act
__SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings
__SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size
__SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size
__SCREAMING_SNAKE_CASE : int = initializer_range
__SCREAMING_SNAKE_CASE : Optional[int] = num_labels
__SCREAMING_SNAKE_CASE : List[Any] = num_choices
__SCREAMING_SNAKE_CASE : Tuple = scope
def UpperCAmelCase__ ( self : List[str] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE : Tuple = None
if self.use_input_mask:
__SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__SCREAMING_SNAKE_CASE : str = None
if self.use_token_type_ids:
__SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__SCREAMING_SNAKE_CASE : Dict = None
__SCREAMING_SNAKE_CASE : Union[str, Any] = None
__SCREAMING_SNAKE_CASE : List[Any] = None
if self.use_labels:
__SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
__SCREAMING_SNAKE_CASE : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def UpperCAmelCase__ ( self : Dict , _A : Optional[int] , _A : Dict , _A : str , _A : Union[str, Any] , _A : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = AlbertModel(config=_A )
model.to(_A )
model.eval()
__SCREAMING_SNAKE_CASE : List[Any] = model(_A , attention_mask=_A , token_type_ids=_A )
__SCREAMING_SNAKE_CASE : str = model(_A , token_type_ids=_A )
__SCREAMING_SNAKE_CASE : int = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , _A : str , _A : Optional[int] , _A : Dict , _A : List[str] , _A : List[str] , _A : Any , _A : Union[str, Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = AlbertForPreTraining(config=_A )
model.to(_A )
model.eval()
__SCREAMING_SNAKE_CASE : Tuple = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , sentence_order_label=_A , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def UpperCAmelCase__ ( self : Dict , _A : Optional[int] , _A : List[str] , _A : Union[str, Any] , _A : Optional[Any] , _A : Any , _A : List[str] , _A : Dict ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = AlbertForMaskedLM(config=_A )
model.to(_A )
model.eval()
__SCREAMING_SNAKE_CASE : int = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : Tuple , _A : Any , _A : Tuple , _A : Union[str, Any] , _A : Tuple , _A : int , _A : Optional[int] , _A : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = AlbertForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
__SCREAMING_SNAKE_CASE : List[str] = model(
_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[str] , _A : List[str] , _A : str , _A : int , _A : Any , _A : Optional[Any] , _A : Optional[int] , _A : List[str] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = self.num_labels
__SCREAMING_SNAKE_CASE : Optional[int] = AlbertForSequenceClassification(_A )
model.to(_A )
model.eval()
__SCREAMING_SNAKE_CASE : Tuple = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ ( self : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : Union[str, Any] , _A : List[str] , _A : Dict , _A : Optional[int] , _A : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = self.num_labels
__SCREAMING_SNAKE_CASE : str = AlbertForTokenClassification(config=_A )
model.to(_A )
model.eval()
__SCREAMING_SNAKE_CASE : int = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[int] , _A : List[str] , _A : List[str] , _A : Tuple , _A : Optional[Any] , _A : Optional[int] , _A : Any , _A : int ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = self.num_choices
__SCREAMING_SNAKE_CASE : Union[str, Any] = AlbertForMultipleChoice(config=_A )
model.to(_A )
model.eval()
__SCREAMING_SNAKE_CASE : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__SCREAMING_SNAKE_CASE : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__SCREAMING_SNAKE_CASE : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__SCREAMING_SNAKE_CASE : Optional[Any] = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs()
(
(
__SCREAMING_SNAKE_CASE
), (
__SCREAMING_SNAKE_CASE
), (
__SCREAMING_SNAKE_CASE
), (
__SCREAMING_SNAKE_CASE
), (
__SCREAMING_SNAKE_CASE
), (
__SCREAMING_SNAKE_CASE
), (
__SCREAMING_SNAKE_CASE
),
) : List[str] = config_and_inputs
__SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase_ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase_ = (
{
'''feature-extraction''': AlbertModel,
'''fill-mask''': AlbertForMaskedLM,
'''question-answering''': AlbertForQuestionAnswering,
'''text-classification''': AlbertForSequenceClassification,
'''token-classification''': AlbertForTokenClassification,
'''zero-shot''': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ = True
def UpperCAmelCase__ ( self : int , _A : Optional[int] , _A : List[str] , _A : int=False ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A )
if return_labels:
if model_class in get_values(_A ):
__SCREAMING_SNAKE_CASE : Dict = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_A )
__SCREAMING_SNAKE_CASE : Tuple = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
return inputs_dict
def UpperCAmelCase__ ( self : Dict ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = AlbertModelTester(self )
__SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=_A , hidden_size=37 )
def UpperCAmelCase__ ( self : Optional[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_A )
def UpperCAmelCase__ ( self : List[str] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_A )
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def UpperCAmelCase__ ( self : Dict ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__SCREAMING_SNAKE_CASE : str = type
self.model_tester.create_and_check_model(*_A )
@slow
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE : Tuple = AlbertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = AlbertModel.from_pretrained('''albert-base-v2''' )
__SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
__SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__SCREAMING_SNAKE_CASE : int = model(_A , attention_mask=_A )[0]
__SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _A )
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) )
| 74 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict:
"""simple docstring"""
lowercase__ = None
if token is not None:
lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
lowercase__ = """636036"""
lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json()
return result["workflow_runs"]
def UpperCamelCase ( __magic_name__ : str ) -> Dict:
"""simple docstring"""
lowercase__ = get_daily_ci_runs(__magic_name__ )
lowercase__ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
lowercase__ = workflow_run["""id"""]
break
return workflow_run_id
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
lowercase__ = get_last_daily_ci_runs(__magic_name__ )
if workflow_run_id is not None:
lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
lowercase__ = artifacts_links[artifact_name]
download_artifact(
artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ )
def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ )
lowercase__ = {}
for artifact_name in artifact_names:
lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' )
if os.path.isfile(__magic_name__ ):
lowercase__ = {}
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
with z.open(__magic_name__ ) as f:
lowercase__ = f.read().decode("""UTF-8""" )
return results
| 15 | 0 |
'''simple docstring'''
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False, False, False
@dataclass
class lowerCamelCase_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = None
# Automatically constructed
lowerCAmelCase__ = "dict"
lowerCAmelCase__ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} )
lowerCAmelCase__ = field(default='Audio' , init=__a , repr=__a )
def __call__( self : Optional[int] ):
'''simple docstring'''
return self.pa_type
def lowercase_ ( self : Dict , _A : Union[str, bytes, dict] ):
'''simple docstring'''
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err
if isinstance(_A , _A ):
return {"bytes": None, "path": value}
elif isinstance(_A , _A ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
UpperCAmelCase__ : Optional[int] = BytesIO()
sf.write(_A , value['''array'''] , value['''sampling_rate'''] , format='''wav''' )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith('''pcm''' ):
# "PCM" only has raw audio bytes
if value.get('''sampling_rate''' ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' )
if value.get('''bytes''' ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
UpperCAmelCase__ : Dict = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 32_767
else:
UpperCAmelCase__ : Optional[int] = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 32_767
UpperCAmelCase__ : Tuple = BytesIO(bytes() )
sf.write(_A , _A , value['''sampling_rate'''] , format='''wav''' )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get('''path''' )}
elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )}
else:
raise ValueError(
f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" )
def lowercase_ ( self : Tuple , _A : dict , _A : Optional[Dict[str, Union[str, bool, None]]] = None ):
'''simple docstring'''
if not self.decode:
raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' )
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None)
if path is None and file is None:
raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err
UpperCAmelCase__ : Optional[Any] = xsplitext(_A )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
'''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, '''
'''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
'''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, '''
'''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' )
if file is None:
UpperCAmelCase__ : Tuple = token_per_repo_id or {}
UpperCAmelCase__ : Optional[Any] = path.split('''::''' )[-1]
try:
UpperCAmelCase__ : int = string_to_dict(_A , config.HUB_DATASETS_URL )['''repo_id''']
UpperCAmelCase__ : Union[str, Any] = token_per_repo_id[repo_id]
except (ValueError, KeyError):
UpperCAmelCase__ : List[str] = None
with xopen(_A , '''rb''' , use_auth_token=_A ) as f:
UpperCAmelCase__ , UpperCAmelCase__ : str = sf.read(_A )
else:
UpperCAmelCase__ , UpperCAmelCase__ : str = sf.read(_A )
UpperCAmelCase__ : int = array.T
if self.mono:
UpperCAmelCase__ : str = librosa.to_mono(_A )
if self.sampling_rate and self.sampling_rate != sampling_rate:
UpperCAmelCase__ : Optional[Any] = librosa.resample(_A , orig_sr=_A , target_sr=self.sampling_rate )
UpperCAmelCase__ : int = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def lowercase_ ( self : Dict ):
'''simple docstring'''
from .features import Value
if self.decode:
raise ValueError('''Cannot flatten a decoded Audio feature.''' )
return {
"bytes": Value('''binary''' ),
"path": Value('''string''' ),
}
def lowercase_ ( self : str , _A : Union[pa.StringArray, pa.StructArray] ):
'''simple docstring'''
if pa.types.is_string(storage.type ):
UpperCAmelCase__ : Optional[Any] = pa.array([None] * len(_A ) , type=pa.binary() )
UpperCAmelCase__ : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
UpperCAmelCase__ : Optional[int] = pa.array([None] * len(_A ) , type=pa.string() )
UpperCAmelCase__ : int = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ):
UpperCAmelCase__ : List[Any] = pa.array([Audio().encode_example(_A ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('''bytes''' ) >= 0:
UpperCAmelCase__ : Optional[Any] = storage.field('''bytes''' )
else:
UpperCAmelCase__ : Any = pa.array([None] * len(_A ) , type=pa.binary() )
if storage.type.get_field_index('''path''' ) >= 0:
UpperCAmelCase__ : List[Any] = storage.field('''path''' )
else:
UpperCAmelCase__ : List[str] = pa.array([None] * len(_A ) , type=pa.string() )
UpperCAmelCase__ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
return array_cast(_A , self.pa_type )
def lowercase_ ( self : Tuple , _A : pa.StructArray ):
'''simple docstring'''
@no_op_if_value_is_null
def path_to_bytes(_A : Optional[Any] ):
with xopen(_A , '''rb''' ) as f:
UpperCAmelCase__ : List[str] = f.read()
return bytes_
UpperCAmelCase__ : Any = pa.array(
[
(path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
UpperCAmelCase__ : Tuple = pa.array(
[os.path.basename(_A ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , )
UpperCAmelCase__ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() )
return array_cast(_A , self.pa_type )
| 75 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A ( unittest.TestCase ):
'''simple docstring'''
A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
lowercase__ = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 )
lowercase__ = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
{"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )},
] , )
@require_torch
def lowerCamelCase__ (self : str ) -> List[Any]:
"""simple docstring"""
lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
lowercase__ = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
lowercase__ = pipeline(
"""video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}],
] , )
@require_tf
def lowerCamelCase__ (self : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
| 15 | 0 |
"""simple docstring"""
from manim import *
class UpperCAmelCase_ ( snake_case ):
def _lowerCamelCase ( self ) -> List[str]:
__lowercase : Tuple = Rectangle(height=0.5 , width=0.5 )
__lowercase : Tuple = Rectangle(height=0.2_5 , width=0.2_5 )
__lowercase : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 )
__lowercase : Optional[Any] = [mem.copy() for i in range(6 )]
__lowercase : Optional[int] = [mem.copy() for i in range(6 )]
__lowercase : Dict = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : str = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : List[str] = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : Any = Text('''CPU''' , font_size=24 )
__lowercase : Tuple = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(UpperCamelCase_ )
__lowercase : Optional[Any] = [mem.copy() for i in range(4 )]
__lowercase : List[Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : Optional[Any] = Text('''GPU''' , font_size=24 )
__lowercase : Dict = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ )
gpu.move_to([-1, -1, 0] )
self.add(UpperCamelCase_ )
__lowercase : Any = [mem.copy() for i in range(6 )]
__lowercase : Dict = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : Dict = Text('''Model''' , font_size=24 )
__lowercase : List[str] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ )
model.move_to([3, -1.0, 0] )
self.add(UpperCamelCase_ )
__lowercase : int = []
__lowercase : Dict = []
__lowercase : Optional[Any] = []
for i, rect in enumerate(UpperCamelCase_ ):
rect.set_stroke(UpperCamelCase_ )
__lowercase : List[str] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase_ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=UpperCamelCase_ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] , direction=UpperCamelCase_ , buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCamelCase_ , buff=0.0 )
self.add(UpperCamelCase_ )
model_cpu_arr.append(UpperCamelCase_ )
self.add(*UpperCamelCase_ , *UpperCamelCase_ , *UpperCamelCase_ )
__lowercase : Optional[int] = [mem.copy() for i in range(6 )]
__lowercase : List[str] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : List[str] = Text('''Loaded Checkpoint''' , font_size=24 )
__lowercase : Dict = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ )
checkpoint.move_to([3, 0.5, 0] )
self.add(UpperCamelCase_ )
__lowercase : List[Any] = []
__lowercase : str = []
for i, rect in enumerate(UpperCamelCase_ ):
__lowercase : Dict = fill.copy().set_fill(UpperCamelCase_ , opacity=0.7 )
target.move_to(UpperCamelCase_ )
ckpt_arr.append(UpperCamelCase_ )
__lowercase : Dict = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(UpperCamelCase_ )
self.add(*UpperCamelCase_ , *UpperCamelCase_ )
__lowercase : str = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__lowercase : List[Any] = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(UpperCamelCase_ , UpperCamelCase_ )
__lowercase : Any = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(UpperCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(UpperCamelCase_ )
__lowercase : int = MarkupText(
F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
__lowercase : int = [meta_mem.copy() for i in range(6 )]
__lowercase : Optional[int] = [meta_mem.copy() for i in range(6 )]
__lowercase : int = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : Any = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : List[str] = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 )
__lowercase : Tuple = Text('''Disk''' , font_size=24 )
__lowercase : Tuple = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ )
disk.move_to([-4.0, -1.2_5, 0] )
self.play(Write(UpperCamelCase_ , run_time=3 ) , Write(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) )
__lowercase : Tuple = []
for i, rect in enumerate(UpperCamelCase_ ):
__lowercase : Any = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5 ) )
self.play(*UpperCamelCase_ )
self.play(FadeOut(UpperCamelCase_ ) )
__lowercase : List[Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(UpperCamelCase_ , run_time=3 ) )
self.play(
FadeOut(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , *UpperCamelCase_ ) , )
self.wait()
| 76 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A : Optional[Any] = 1_6
A : str = 3_2
def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]:
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowercase__ = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__magic_name__ : int ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
__magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__magic_name__ : Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
__magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
lowercase__ = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A : Union[str, Any] = mocked_dataloaders # noqa: F811
def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict:
"""simple docstring"""
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1":
lowercase__ = 2
# New Code #
lowercase__ = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["""lr"""]
lowercase__ = int(config["""num_epochs"""] )
lowercase__ = int(config["""seed"""] )
lowercase__ = int(config["""batch_size"""] )
lowercase__ = evaluate.load("""glue""" , """mrpc""" )
set_seed(__magic_name__ )
lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Now we train the model
for epoch in range(__magic_name__ ):
model.train()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__magic_name__ ):
lowercase__ = model(**__magic_name__ )
lowercase__ = output.loss
accelerator.backward(__magic_name__ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**__magic_name__ )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__magic_name__ , references=__magic_name__ , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , __magic_name__ )
def UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
lowercase__ = parser.parse_args()
lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
main()
| 15 | 0 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class a__ :
def __init__( self : Optional[Any] , UpperCamelCase_ : List[str]):
"""simple docstring"""
__UpperCAmelCase : Tuple = str(id_)
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[Any] = []
__UpperCAmelCase : str = {} # {vertex:distance}
def __lt__( self : Optional[int] , UpperCamelCase_ : int):
"""simple docstring"""
return self.key < other.key
def __repr__( self : Tuple):
"""simple docstring"""
return self.id
def a_ ( self : int , UpperCamelCase_ : str):
"""simple docstring"""
self.neighbors.append(UpperCamelCase_)
def a_ ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]):
"""simple docstring"""
__UpperCAmelCase : int = weight
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , UpperCamelCase )
graph[b - 1].add_edge(graph[a - 1] , UpperCamelCase )
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> list:
"""simple docstring"""
__UpperCAmelCase : Optional[int] = []
for u in graph:
__UpperCAmelCase : Optional[int] = math.inf
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : int = 0
__UpperCAmelCase : Dict = graph[:]
while q:
__UpperCAmelCase : Optional[int] = min(UpperCamelCase )
q.remove(UpperCamelCase )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase : Any = u
__UpperCAmelCase : List[Any] = u.edges[v.id]
for i in range(1 , len(UpperCamelCase ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> Iterator[tuple]:
"""simple docstring"""
for u in graph:
__UpperCAmelCase : Dict = math.inf
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : Any = list(UpperCamelCase )
hq.heapify(UpperCamelCase )
while h:
__UpperCAmelCase : Any = hq.heappop(UpperCamelCase )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase : Any = u
__UpperCAmelCase : List[Any] = u.edges[v.id]
hq.heapify(UpperCamelCase )
for i in range(1 , len(UpperCamelCase ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def _UpperCamelCase ( ) -> None:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 77 |
import os
import sys
A : Tuple = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
A : Dict = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str:
"""simple docstring"""
return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModel.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]:
"""simple docstring"""
return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int:
"""simple docstring"""
return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
| 15 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
a__ : Union[str, Any] = ["""pixel_values"""]
def __init__(self : List[str] , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[str] , ):
super().__init__(**__a )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 256}
UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(__a )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase (self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ):
UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
UpperCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a )
return resize(__a , size=__a , resample=__a , data_format=__a , **__a )
def _lowercase (self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ):
UpperCAmelCase_ = get_size_dict(__a )
return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a )
def _lowercase (self : int , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] ):
return rescale(__a , scale=__a , data_format=__a , **__a )
def _lowercase (self : str , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ):
return normalize(__a , mean=__a , std=__a , data_format=__a , **__a )
def _lowercase (self : str , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : List[str] , ):
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a )
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(__a )
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = make_list_of_images(__a )
if not valid_images(__a ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(__a ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images]
if do_center_crop:
UpperCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=__a , tensor_type=__a )
| 78 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_input_lengths
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = gelu_activation
lowercase__ = sinusoidal_embeddings
lowercase__ = causal
lowercase__ = asm
lowercase__ = n_langs
lowercase__ = vocab_size
lowercase__ = n_special
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_labels
lowercase__ = num_choices
lowercase__ = summary_type
lowercase__ = use_proj
lowercase__ = scope
def lowerCamelCase__ (self : List[str] ) -> List[str]:
"""simple docstring"""
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = None
if self.use_input_lengths:
lowercase__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ = ids_tensor([self.batch_size] , 2 ).float()
lowercase__ = ids_tensor([self.batch_size] , self.num_choices )
lowercase__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCamelCase__ (self : int ) -> Dict:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]:
"""simple docstring"""
lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]:
"""simple docstring"""
lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , )
lowercase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , )
((lowercase__) , ) = result_with_labels.to_tuple()
lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
((lowercase__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str:
"""simple docstring"""
lowercase__ = self.num_labels
lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
lowercase__ = self.num_choices
lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ (self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) = config_and_inputs
lowercase__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
A__ = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
lowercase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowerCamelCase__ (self : str ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = FlaubertModelTester(self )
lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 )
def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase__ (self : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[Any] ) -> str:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : str ) -> Any:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase )
def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase )
@slow
def lowerCamelCase__ (self : int ) -> List[Any]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
@require_torch_gpu
def lowerCamelCase__ (self : Dict ) -> int:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
lowercase__ = True
lowercase__ = model_class(config=_UpperCAmelCase )
lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = torch.jit.trace(
_UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) )
lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase )
loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) )
@require_torch
class A ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCamelCase__ (self : Tuple ) -> Dict:
"""simple docstring"""
lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
lowercase__ = model(_UpperCAmelCase )[0]
lowercase__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _UpperCAmelCase )
lowercase__ = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 15 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : List[str] = {
"""weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""",
}
class UpperCAmelCase_ ( __lowerCamelCase ):
__lowerCamelCase = 'roc_bert'
def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=768 , _lowerCAmelCase=910 , _lowerCAmelCase=512 , _lowerCAmelCase=24858 , _lowerCAmelCase=True , **_lowerCAmelCase , ):
UpperCAmelCase__ : Union[str, Any] = vocab_size
UpperCAmelCase__ : Tuple = max_position_embeddings
UpperCAmelCase__ : Any = hidden_size
UpperCAmelCase__ : int = num_hidden_layers
UpperCAmelCase__ : Tuple = num_attention_heads
UpperCAmelCase__ : Dict = intermediate_size
UpperCAmelCase__ : Tuple = hidden_act
UpperCAmelCase__ : List[str] = hidden_dropout_prob
UpperCAmelCase__ : Dict = attention_probs_dropout_prob
UpperCAmelCase__ : int = initializer_range
UpperCAmelCase__ : List[Any] = type_vocab_size
UpperCAmelCase__ : List[str] = layer_norm_eps
UpperCAmelCase__ : List[str] = use_cache
UpperCAmelCase__ : int = enable_pronunciation
UpperCAmelCase__ : Tuple = enable_shape
UpperCAmelCase__ : str = pronunciation_embed_dim
UpperCAmelCase__ : Tuple = pronunciation_vocab_size
UpperCAmelCase__ : Optional[Any] = shape_embed_dim
UpperCAmelCase__ : Optional[int] = shape_vocab_size
UpperCAmelCase__ : List[Any] = concat_input
UpperCAmelCase__ : Optional[int] = position_embedding_type
UpperCAmelCase__ : Any = classifier_dropout
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
| 79 |
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowercase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ , lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ )
lowercase__ = emb.weight.data
return lin_layer
def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]:
"""simple docstring"""
lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(__magic_name__ )
lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ )
if mbart_aa and finetuned:
lowercase__ = """relu"""
lowercase__ = state_dict["""decoder.embed_tokens.weight"""]
lowercase__ = MBartForConditionalGeneration(__magic_name__ )
model.model.load_state_dict(__magic_name__ )
if finetuned:
lowercase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
A : Any = parser.parse_args()
A : str = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 15 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
def _a ( self : int ) -> int:
"""simple docstring"""
__lowercase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] )
__lowercase = get_activation("""gelu""" )
self.assertTrue(torch.allclose(gelu_python(_lowerCAmelCase ) , torch_builtin(_lowerCAmelCase ) ) )
self.assertFalse(torch.allclose(gelu_python(_lowerCAmelCase ) , gelu_new(_lowerCAmelCase ) ) )
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
__lowercase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] )
__lowercase = get_activation("""gelu""" )
__lowercase = get_activation("""gelu_10""" )
__lowercase = torch_builtin(_lowerCAmelCase )
__lowercase = geluaa(_lowerCAmelCase )
__lowercase = torch.where(y_gelu_aa < 10.0 , 1 , 0 )
self.assertTrue(torch.max(_lowerCAmelCase ).item() == 10.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _a ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
get_activation("""gelu""" )
get_activation("""gelu_10""" )
get_activation("""gelu_fast""" )
get_activation("""gelu_new""" )
get_activation("""gelu_python""" )
get_activation("""gelu_pytorch_tanh""" )
get_activation("""linear""" )
get_activation("""mish""" )
get_activation("""quick_gelu""" )
get_activation("""relu""" )
get_activation("""sigmoid""" )
get_activation("""silu""" )
get_activation("""swish""" )
get_activation("""tanh""" )
with self.assertRaises(_lowerCAmelCase ):
get_activation("""bogus""" )
with self.assertRaises(_lowerCAmelCase ):
get_activation(_lowerCAmelCase )
def _a ( self : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = get_activation("""gelu""" )
__lowercase = 1
__lowercase = get_activation("""gelu""" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(_lowerCAmelCase ):
__lowercase = acta.a
| 80 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def UpperCamelCase ( __magic_name__ : Any ) -> int:
"""simple docstring"""
lowercase__ = model.config
lowercase__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
lowercase__ = MBartConfig(
is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , )
return encoder_config, decoder_config
def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
if "encoder.model" in name:
lowercase__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
lowercase__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
lowercase__ = """encoder.""" + name
if "attn.proj" in name:
lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
lowercase__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
lowercase__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
lowercase__ = """encoder.layernorm.bias"""
return name
def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowercase__ = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
lowercase__ = key.split(""".""" )
lowercase__ = int(key_split[3] )
lowercase__ = int(key_split[5] )
lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase__ = val[:dim, :]
lowercase__ = val[dim : dim * 2, :]
lowercase__ = val[-dim:, :]
else:
lowercase__ = val[:dim]
lowercase__ = val[dim : dim * 2]
lowercase__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
lowercase__ = val
return orig_state_dict
def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int:
"""simple docstring"""
lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval()
# load HuggingFace model
lowercase__ , lowercase__ = get_configs(__magic_name__ )
lowercase__ = DonutSwinModel(__magic_name__ )
lowercase__ = MBartForCausalLM(__magic_name__ )
lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ )
model.eval()
lowercase__ = original_model.state_dict()
lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
# verify results on scanned document
lowercase__ = load_dataset("""hf-internal-testing/example-documents""" )
lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ )
lowercase__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ )
lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
lowercase__ = """When is the coffee break?"""
lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
lowercase__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
lowercase__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
lowercase__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
lowercase__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
lowercase__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[
"""input_ids"""
]
lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ )
lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ )
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
# verify encoder hidden states
lowercase__ = original_model.encoder(__magic_name__ )
lowercase__ = model.encoder(__magic_name__ ).last_hidden_state
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 )
# verify decoder hidden states
lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits
lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
A : Optional[int] = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 15 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.