code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case , __snake_case : List[Any] = image.size __snake_case , __snake_case : Tuple = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __snake_case : str = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) __snake_case : int = np.array(__lowerCamelCase ).astype(np.floataa ) / 2_5_5.0 __snake_case : Union[str, Any] = image[None].transpose(0 , 3 , 1 , 2 ) __snake_case : Union[str, Any] = torch.from_numpy(__lowerCamelCase ) return 2.0 * image - 1.0 class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : VQModel , lowerCamelCase : UNetaDModel , lowerCamelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Union[str, Any]: super().__init__() self.register_modules(vqvae=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self : List[str] , lowerCamelCase : Union[torch.Tensor, PIL.Image.Image] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : Optional[int] = 100 , lowerCamelCase : Optional[float] = 0.0 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCamelCase , PIL.Image.Image ): __snake_case : Any = 1 elif isinstance(lowerCamelCase , torch.Tensor ): __snake_case : Any = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase )}' ) if isinstance(lowerCamelCase , PIL.Image.Image ): __snake_case : List[Any] = preprocess(lowerCamelCase ) __snake_case , __snake_case : int = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __snake_case : str = (batch_size, self.unet.config.in_channels // 2, height, width) __snake_case : str = next(self.unet.parameters() ).dtype __snake_case : Tuple = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) __snake_case : List[Any] = image.to(device=self.device , dtype=lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase , device=self.device ) __snake_case : str = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __snake_case : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Union[str, Any] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : int = {} if accepts_eta: __snake_case : List[str] = eta for t in self.progress_bar(lowerCamelCase ): # concat latents and low resolution image in the channel dimension. __snake_case : Union[str, Any] = torch.cat([latents, image] , dim=1 ) __snake_case : Optional[Any] = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __snake_case : int = self.unet(lowerCamelCase , lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case : Union[str, Any] = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # decode the image latents with the VQVAE __snake_case : List[Any] = self.vqvae.decode(lowerCamelCase ).sample __snake_case : Dict = torch.clamp(lowerCamelCase , -1.0 , 1.0 ) __snake_case : Any = image / 2 + 0.5 __snake_case : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
81
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" def a__ ( lowerCAmelCase__ ): assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 UpperCAmelCase_ , UpperCAmelCase_ = 1, 1 for _ in range(number_of_steps - 1 ): UpperCAmelCase_ , UpperCAmelCase_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
82
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
0
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort lowerCAmelCase__ = '''1''' lowerCAmelCase__ = '''0''' lowerCAmelCase__ = '''1''' lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowerCAmelCase__ = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCAmelCase__ = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowerCAmelCase__ = ort.RunOptions() lowerCAmelCase__ = 128 lowerCAmelCase__ = 1 lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = 2000 lowerCAmelCase__ = {} for iter in range(max_iters): lowerCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
83
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = (EulerDiscreteScheduler,) _UpperCamelCase : Tuple = 10 def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): lowercase = { 'num_train_timesteps': 1100, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE__ ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps ) lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase = sample.to(snake_case ) for i, t in enumerate(scheduler.timesteps ): lowercase = scheduler.scale_model_input(snake_case , snake_case ) lowercase = model(snake_case , snake_case ) lowercase = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ) lowercase = output.prev_sample lowercase = torch.sum(torch.abs(snake_case ) ) lowercase = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(prediction_type='v_prediction' ) lowercase = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps ) lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase = sample.to(snake_case ) for i, t in enumerate(scheduler.timesteps ): lowercase = scheduler.scale_model_input(snake_case , snake_case ) lowercase = model(snake_case , snake_case ) lowercase = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ) lowercase = output.prev_sample lowercase = torch.sum(torch.abs(snake_case ) ) lowercase = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case ) lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase = sample.to(snake_case ) for t in scheduler.timesteps: lowercase = scheduler.scale_model_input(snake_case , snake_case ) lowercase = model(snake_case , snake_case ) lowercase = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ) lowercase = output.prev_sample lowercase = torch.sum(torch.abs(snake_case ) ) lowercase = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**snake_case , use_karras_sigmas=snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case ) lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase = sample.to(snake_case ) for t in scheduler.timesteps: lowercase = scheduler.scale_model_input(snake_case , snake_case ) lowercase = model(snake_case , snake_case ) lowercase = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ) lowercase = output.prev_sample lowercase = torch.sum(torch.abs(snake_case ) ) lowercase = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
84
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
0
from __future__ import annotations def _a ( lowercase__ : list[list[int]] ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(lowercase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(lowercase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
85
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
0
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :int = Path(__file__).parent / 'model_card_template.md' __a :int = uuida().hex __a :Optional[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :List[Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :List[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Dict ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :Optional[int] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :Union[str, Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :str = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Dict = 0 else: with open(cache_version_file) as f: try: __a :str = int(f.read()) except ValueError: __a :List[str] = 0 if cache_version < 1: __a :Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :List[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Any ,*, __UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : Tuple=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
86
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
0
_lowerCamelCase : Union[str, Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCamelCase : Dict = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCamelCase : Dict = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
87
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
0
"""simple docstring""" import math def _snake_case ( __snake_case : float , __snake_case : float ): """simple docstring""" if ( not isinstance(__snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def _snake_case ( __snake_case : float , __snake_case : float ): """simple docstring""" if ( not isinstance(__snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
88
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=3, lowerCamelCase=10, lowerCamelCase=[10, 20, 30, 40], lowerCamelCase=[1, 1, 2, 1], lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=3, lowerCamelCase=None, ) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : Any = batch_size _lowercase : Tuple = image_size _lowercase : Union[str, Any] = num_channels _lowercase : int = embeddings_size _lowercase : Any = hidden_sizes _lowercase : str = depths _lowercase : List[Any] = is_training _lowercase : Dict = use_labels _lowercase : List[str] = hidden_act _lowercase : List[Any] = num_labels _lowercase : Optional[Any] = scope _lowercase : Union[str, Any] = len(lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : List[str] = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size], self.num_labels) _lowercase : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self) -> Any: """simple docstring""" return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = RegNetModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[str] = model(lowerCamelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : Optional[Any] = RegNetForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Optional[Any] = config_and_inputs _lowercase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowercase_ : Optional[int] = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : Optional[Any] = False lowercase_ : List[Any] = False def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = RegNetModelTester(self) _lowercase : Optional[Any] = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self) -> Tuple: """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Any = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[Any] = model_class(config=lowerCamelCase) for name, module in model.named_modules(): if isinstance(lowerCamelCase, (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1), msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) self.assertTrue( torch.all(module.bias == 0), msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) def UpperCamelCase ( self) -> Any: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : str = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Any = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase : int = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase), expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowercase : Dict = layer_type _lowercase : Any = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : str = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) @slow def UpperCamelCase ( self) -> str: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Optional[Any] = RegNetModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> List[str]: _lowercase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Optional[Any] = prepare_img() _lowercase : List[str] = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Optional[int] = model(**lowerCamelCase) # verify the logits _lowercase : List[str] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Optional[int] = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4))
89
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = XLMRobertaTokenizer lowercase__ : Optional[Any] = XLMRobertaTokenizerFast lowercase__ : Union[str, Any] = True lowercase__ : List[str] = True def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = '''<pad>''' lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_02 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) lowerCAmelCase__ = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = '''Hello World!''' lowerCAmelCase__ = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowerCAmelCase__ = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # fmt: off lowerCAmelCase__ = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
90
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[str] = BioGptTokenizer _lowerCamelCase: Tuple = False def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file ,'w' ) as fp: fp.write('\n'.join(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple ) -> int: A = 'lower newer' A = 'lower newer' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = BioGptTokenizer(self.vocab_file ,self.merges_file ) A = 'lower' A = ['low', 'er</w>'] A = tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = tokens + ['<unk>'] A = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) A = tokenizer.encode('sequence builders' ,add_special_tokens=A_ ) A = tokenizer.encode('multi-sequence build' ,add_special_tokens=A_ ) A = tokenizer.build_inputs_with_special_tokens(A_ ) A = tokenizer.build_inputs_with_special_tokens(A_ ,A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
91
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Dict =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase : int =get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase__ ) , torch_builtin(UpperCAmelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase__ ) , gelu_new(UpperCAmelCase__ ) ) ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Union[str, Any] =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowercase : List[str] =get_activation('''gelu''' ) lowercase : Optional[int] =get_activation('''gelu_10''' ) lowercase : Union[str, Any] =torch_builtin(UpperCAmelCase__ ) lowercase : int =geluaa(UpperCAmelCase__ ) lowercase : Dict =torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(UpperCAmelCase__ ): get_activation('''bogus''' ) with self.assertRaises(UpperCAmelCase__ ): get_activation(UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Tuple =get_activation('''gelu''' ) lowercase : Optional[int] =1 lowercase : List[Any] =get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase__ ): lowercase : Tuple =acta.a
92
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING __magic_name__ :Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ :Union[str, Any] = text_generator('This is a test' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCAmelCase__ :Optional[int] = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( __UpperCAmelCase , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCAmelCase__ :Optional[int] = text_generator('This is a test' , do_sample=__UpperCAmelCase , num_return_sequences=2 , return_tensors=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'generated_token_ids': ANY(__UpperCAmelCase )}, {'generated_token_ids': ANY(__UpperCAmelCase )}, ] , ) lowerCAmelCase__ :Optional[int] = text_generator.model.config.eos_token_id lowerCAmelCase__ :int = '<pad>' lowerCAmelCase__ :Union[str, Any] = text_generator( ['This is a test', 'This is a second test'] , do_sample=__UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCAmelCase , ) self.assertEqual( __UpperCAmelCase , [ [ {'generated_token_ids': ANY(__UpperCAmelCase )}, {'generated_token_ids': ANY(__UpperCAmelCase )}, ], [ {'generated_token_ids': ANY(__UpperCAmelCase )}, {'generated_token_ids': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ :str = text_generator('This is a test' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCAmelCase__ :Union[str, Any] = text_generator(['This is a test', 'This is a second test'] , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = TextGenerationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_generator, ["This is a test", "Another test"] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = 'Hello I believe in' lowerCAmelCase__ :Any = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ :Union[str, Any] = text_generator(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCAmelCase__ :Optional[int] = text_generator(__UpperCAmelCase , stop_sequence=' fe' ) self.assertEqual(__UpperCAmelCase , [{'generated_text': 'Hello I believe in fe'}] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = text_generator.model lowerCAmelCase__ :Dict = text_generator.tokenizer lowerCAmelCase__ :Any = text_generator('This is a test' ) self.assertEqual(__UpperCAmelCase , [{'generated_text': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCAmelCase__ :Dict = text_generator('This is a test' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'generated_text': ANY(__UpperCAmelCase )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCAmelCase__ :str = pipeline(task='text-generation' , model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , return_full_text=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = text_generator('This is a test' ) self.assertEqual(__UpperCAmelCase , [{'generated_text': ANY(__UpperCAmelCase )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCAmelCase__ :Optional[Any] = text_generator('This is a test' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'generated_text': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCAmelCase__ :int = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'generated_text': ANY(__UpperCAmelCase )}, {'generated_text': ANY(__UpperCAmelCase )}], [{'generated_text': ANY(__UpperCAmelCase )}, {'generated_text': ANY(__UpperCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase__ :Optional[Any] = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'generated_text': ANY(__UpperCAmelCase )}, {'generated_text': ANY(__UpperCAmelCase )}], [{'generated_text': ANY(__UpperCAmelCase )}, {'generated_text': ANY(__UpperCAmelCase )}], ] , ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :List[Any] = text_generator('test' , return_full_text=__UpperCAmelCase , return_text=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = text_generator('test' , return_full_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :str = text_generator('test' , return_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase__ :Dict = text_generator('' ) self.assertEqual(__UpperCAmelCase , [{'generated_text': ANY(__UpperCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase__ :str = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase__ :int = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 5_0_0 , max_new_tokens=2_0 ) lowerCAmelCase__ :int = text_generator('This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(__UpperCAmelCase ): text_generator( 'This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def snake_case ( self ): '''simple docstring''' import torch # Classic `model_kwargs` lowerCAmelCase__ :Optional[int] = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ :Dict = pipe('This is a test' ) self.assertEqual( __UpperCAmelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase__ :Union[str, Any] = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ :Union[str, Any] = pipe('This is a test' ) self.assertEqual( __UpperCAmelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase__ :List[str] = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase__ :Any = pipe('This is a test' ) self.assertEqual( __UpperCAmelCase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def snake_case ( self ): '''simple docstring''' import torch lowerCAmelCase__ :List[str] = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def snake_case ( self ): '''simple docstring''' import torch lowerCAmelCase__ :Union[str, Any] = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=__UpperCAmelCase , top_p=0.5 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 'Hello world' lowerCAmelCase__ :Optional[Any] = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCAmelCase__ :Any = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCAmelCase__ :List[str] = logging.get_logger('transformers.generation.utils' ) lowerCAmelCase__ :Union[str, Any] = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ :Optional[Any] = text_generator(__UpperCAmelCase , max_length=1_0 , max_new_tokens=1 ) self.assertIn(__UpperCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ :List[str] = text_generator(__UpperCAmelCase , max_new_tokens=1 ) self.assertNotIn(__UpperCAmelCase , cl.out ) with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ :Dict = text_generator(__UpperCAmelCase , max_length=1_0 ) self.assertNotIn(__UpperCAmelCase , cl.out )
93
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowercase_ ( __A : Dict , __A : str=1 ) -> Any: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowercase_ ( __A : Dict , __A : Dict=0 ) -> str: """simple docstring""" lowercase : str =[] for old_item in old_list: lowercase : int =old_item.replace('''in_layers.0''' , '''norm1''' ) lowercase : str =new_item.replace('''in_layers.2''' , '''conv1''' ) lowercase : int =new_item.replace('''out_layers.0''' , '''norm2''' ) lowercase : Optional[Any] =new_item.replace('''out_layers.3''' , '''conv2''' ) lowercase : Optional[Any] =new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) lowercase : str =new_item.replace('''skip_connection''' , '''conv_shortcut''' ) lowercase : str =shave_segments(__A , n_shave_prefix_segments=__A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowercase_ ( __A : Any , __A : Dict=0 ) -> Optional[Any]: """simple docstring""" lowercase : Any =[] for old_item in old_list: lowercase : List[Any] =old_item lowercase : int =new_item.replace('''norm.weight''' , '''group_norm.weight''' ) lowercase : List[Any] =new_item.replace('''norm.bias''' , '''group_norm.bias''' ) lowercase : Any =new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) lowercase : Union[str, Any] =new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) lowercase : Union[str, Any] =shave_segments(__A , n_shave_prefix_segments=__A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowercase_ ( __A : Union[str, Any] , __A : Optional[Any] , __A : Union[str, Any] , __A : Optional[Any]=None , __A : List[str]=None , __A : List[str]=None ) -> int: """simple docstring""" assert isinstance(__A , __A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase : List[Any] =old_checkpoint[path] lowercase : List[str] =old_tensor.shape[0] // 3 lowercase : str =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase : int =old_tensor.shape[0] // config['''num_head_channels'''] // 3 lowercase : int =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase , lowercase , lowercase : Any =old_tensor.split(channels // num_heads , dim=1 ) lowercase : Optional[int] =query.reshape(__A ) lowercase : List[str] =key.reshape(__A ) lowercase : Dict =value.reshape(__A ) for path in paths: lowercase : Optional[int] =path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase : Dict =new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) lowercase : Optional[Any] =new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) lowercase : Any =new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: lowercase : Union[str, Any] =new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase : List[str] =old_checkpoint[path['''old''']][:, :, 0] else: lowercase : int =old_checkpoint[path['''old''']] def lowercase_ ( __A : List[str] , __A : Dict ) -> Optional[int]: """simple docstring""" lowercase : Optional[int] ={} lowercase : Tuple =checkpoint['''time_embed.0.weight'''] lowercase : Dict =checkpoint['''time_embed.0.bias'''] lowercase : str =checkpoint['''time_embed.2.weight'''] lowercase : Tuple =checkpoint['''time_embed.2.bias'''] lowercase : Any =checkpoint['''input_blocks.0.0.weight'''] lowercase : List[str] =checkpoint['''input_blocks.0.0.bias'''] lowercase : Dict =checkpoint['''out.0.weight'''] lowercase : Optional[int] =checkpoint['''out.0.bias'''] lowercase : Union[str, Any] =checkpoint['''out.2.weight'''] lowercase : List[str] =checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only lowercase : List[Any] =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) lowercase : List[Any] ={ layer_id: [key for key in checkpoint if F'input_blocks.{layer_id}' in key] for layer_id in range(__A ) } # Retrieves the keys for the middle blocks only lowercase : Optional[int] =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) lowercase : Optional[Any] ={ layer_id: [key for key in checkpoint if F'middle_block.{layer_id}' in key] for layer_id in range(__A ) } # Retrieves the keys for the output blocks only lowercase : int =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) lowercase : int ={ layer_id: [key for key in checkpoint if F'output_blocks.{layer_id}' in key] for layer_id in range(__A ) } for i in range(1 , __A ): lowercase : Dict =(i - 1) // (config['''num_res_blocks'''] + 1) lowercase : int =(i - 1) % (config['''num_res_blocks'''] + 1) lowercase : int =[key for key in input_blocks[i] if F'input_blocks.{i}.0' in key] lowercase : str =[key for key in input_blocks[i] if F'input_blocks.{i}.1' in key] if F'input_blocks.{i}.0.op.weight' in checkpoint: lowercase : Optional[Any] =checkpoint[ F'input_blocks.{i}.0.op.weight' ] lowercase : Optional[Any] =checkpoint[ F'input_blocks.{i}.0.op.bias' ] continue lowercase : Any =renew_resnet_paths(__A ) lowercase : Any ={'''old''': F'input_blocks.{i}.0', '''new''': F'down_blocks.{block_id}.resnets.{layer_in_block_id}'} lowercase : str ={'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( __A , __A , __A , additional_replacements=[meta_path, resnet_op] , config=__A ) if len(__A ): lowercase : Tuple =renew_attention_paths(__A ) lowercase : Tuple ={ '''old''': F'input_blocks.{i}.1', '''new''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}', } lowercase : Tuple ={ F'input_blocks.{i}.1.qkv.bias': { '''key''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', '''query''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', '''value''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'input_blocks.{i}.1.qkv.weight': { '''key''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', '''query''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', '''value''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( __A , __A , __A , additional_replacements=[meta_path] , attention_paths_to_split=__A , config=__A , ) lowercase : Dict =middle_blocks[0] lowercase : Optional[int] =middle_blocks[1] lowercase : Tuple =middle_blocks[2] lowercase : int =renew_resnet_paths(__A ) assign_to_checkpoint(__A , __A , __A , config=__A ) lowercase : Dict =renew_resnet_paths(__A ) assign_to_checkpoint(__A , __A , __A , config=__A ) lowercase : List[Any] =renew_attention_paths(__A ) lowercase : Tuple ={ '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( __A , __A , __A , attention_paths_to_split=__A , config=__A ) for i in range(__A ): lowercase : str =i // (config['''num_res_blocks'''] + 1) lowercase : Dict =i % (config['''num_res_blocks'''] + 1) lowercase : Optional[int] =[shave_segments(__A , 2 ) for name in output_blocks[i]] lowercase : Tuple ={} for layer in output_block_layers: lowercase , lowercase : Union[str, Any] =layer.split('''.''' )[0], shave_segments(__A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__A ) else: lowercase : List[Any] =[layer_name] if len(__A ) > 1: lowercase : Union[str, Any] =[key for key in output_blocks[i] if F'output_blocks.{i}.0' in key] lowercase : Optional[int] =[key for key in output_blocks[i] if F'output_blocks.{i}.1' in key] lowercase : List[str] =renew_resnet_paths(__A ) lowercase : List[Any] =renew_resnet_paths(__A ) lowercase : Optional[int] ={'''old''': F'output_blocks.{i}.0', '''new''': F'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(__A , __A , __A , additional_replacements=[meta_path] , config=__A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase : Optional[int] =list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) lowercase : Optional[Any] =checkpoint[ F'output_blocks.{i}.{index}.conv.weight' ] lowercase : Tuple =checkpoint[ F'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(__A ) == 2: lowercase : Optional[int] =[] if len(__A ): lowercase : List[Any] =renew_attention_paths(__A ) lowercase : int ={ '''old''': F'output_blocks.{i}.1', '''new''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}', } lowercase : Tuple ={ F'output_blocks.{i}.1.qkv.bias': { '''key''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', '''query''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', '''value''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'output_blocks.{i}.1.qkv.weight': { '''key''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', '''query''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', '''value''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( __A , __A , __A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=__A , ) else: lowercase : Union[str, Any] =renew_resnet_paths(__A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase : int ='''.'''.join(['''output_blocks''', str(__A ), path['''old''']] ) lowercase : Dict ='''.'''.join(['''up_blocks''', str(__A ), '''resnets''', str(__A ), path['''new''']] ) lowercase : Tuple =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = torch.load(args.checkpoint_path) with open(args.config_file) as f: SCREAMING_SNAKE_CASE = json.loads(f.read()) SCREAMING_SNAKE_CASE = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] SCREAMING_SNAKE_CASE = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: SCREAMING_SNAKE_CASE = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
94
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
0
"""simple docstring""" class UpperCamelCase_ (__A ): pass class UpperCamelCase_ (__A ): pass class UpperCamelCase_ : def __init__( self : List[str] ) -> Tuple: UpperCAmelCase_ : int = [ [], [], [], ] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(lowerCAmelCase_ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self : int ) -> str: return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class UpperCamelCase_ : def __init__( self : int ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = [] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int ) -> None: if len(self.queue ) == 100: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: if not self.queue: raise UnderFlowError("The queue is empty" ) else: UpperCAmelCase_ : Union[str, Any] = min(self.queue ) self.queue.remove(lowerCAmelCase_ ) return data def __str__( self : Dict ) -> str: return str(self.queue ) def snake_case ( ): UpperCAmelCase_ : Dict = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,1_00 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,1_28 ) print(A__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def snake_case ( ): UpperCAmelCase_ : Dict = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(A__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
95
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
0
"""simple docstring""" def a ( ) -> list[list[int]]: return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] __lowerCamelCase = generate_large_matrix() __lowerCamelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def a ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def a ( __UpperCAmelCase : list[int] ) -> int: __magic_name__: Tuple = 0 __magic_name__: Optional[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __magic_name__: List[str] = (left + right) // 2 __magic_name__: Optional[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __magic_name__: str = mid + 1 else: __magic_name__: List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def a ( __UpperCAmelCase : list[list[int]] ) -> int: __magic_name__: List[str] = 0 __magic_name__: Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): __magic_name__: Tuple = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def a ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def a ( __UpperCAmelCase : list[list[int]] ) -> int: __magic_name__: int = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def a ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) __magic_name__: Any = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __magic_name__: Optional[Any] = timeit(f'{func}(grid=grid)' , setup=__UpperCAmelCase , number=5_0_0 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
96
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
97
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = XLNetTokenizer _lowerCamelCase = XLNetTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def snake_case_ ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = XLNetTokenizer(__A , keep_accents=__A ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ): __a = """<s>""" __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def snake_case_ ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(__A ) , 1006 ) def snake_case_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case_ ( self ): __a = XLNetTokenizer(__A , keep_accents=__A ) __a = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [285, 46, 10, 170, 382] ) __a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __a = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __a = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case_ ( self ): __a = XLNetTokenizer(__A , do_lower_case=__A ) __a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def snake_case_ ( self ): __a = XLNetTokenizer(__A , do_lower_case=__A ) __a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def snake_case_ ( self ): __a = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) __a = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) __a = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) __a = tokenizer.build_inputs_with_special_tokens(__A ) __a = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case_ ( self ): # fmt: off __a = {"""input_ids""": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
99
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A : List[Any] = logging.get_logger(__name__) _A : List[Any] = """▁""" _A : Optional[int] = {"""vocab_file""": """spiece.model"""} _A : Optional[int] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _A : Tuple = { """google/reformer-crime-and-punishment""": 52_42_88, } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : int = VOCAB_FILES_NAMES lowerCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_="</s>" , A_="<unk>" , A_=[] , A_ = None , **A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A_ , unk_token=A_ , additional_special_tokens=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def lowercase_ ( self ): '''simple docstring''' return self.sp_model.get_piece_size() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , A_ ): '''simple docstring''' return self.sp_model.encode(A_ , out_type=A_ ) def lowercase_ ( self , A_ ): '''simple docstring''' return self.sp_model.piece_to_id(A_ ) def lowercase_ ( self , A_ ): '''simple docstring''' if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE__ = self.sp_model.IdToPiece(A_ ) return token def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def lowercase_ ( self , A_ , A_ = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
100
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = BertTokenizer _UpperCAmelCase = BertTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = filter_non_english def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : int = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE_ : Tuple = 'unwanted, running' return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE_ : int = tokenizer.tokenize(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # With lower casing SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer(do_lower_case=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = BasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = BasicTokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = 'a\n\'ll !!to?\'d of, can\'t.' SCREAMING_SNAKE_CASE_ : Tuple = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] SCREAMING_SNAKE_CASE_ : List[str] = {} for i, token in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = i SCREAMING_SNAKE_CASE_ : List[str] = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.tokenizer_class.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE_ : str = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , 'do_lower_case' ) else False SCREAMING_SNAKE_CASE_ : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['的', '人', '有'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''.join(lowerCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Dict = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE_ : Optional[int] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__ ) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
101
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
0
"""simple docstring""" __magic_name__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase : Dict = _calculate(days - 1 , SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase : Dict = _calculate(days - 1 , SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase : Optional[int] = state_late + state_absent + state_ontime UpperCamelCase : Any = prizestrings return prizestrings def UpperCamelCase (SCREAMING_SNAKE_CASE = 30 ): return _calculate(SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
102
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case ( lowerCAmelCase_ ) -> int: _snake_case = prime_factors(lowerCAmelCase_ ) if is_square_free(lowerCAmelCase_ ): return -1 if len(lowerCAmelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
103
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def snake_case__ ( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: pass def _lowerCamelCase ( UpperCAmelCase_ : Image ) -> str: """simple docstring""" A__ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" A__ : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: A__ = DepthEstimationPipeline(model=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: A__ = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , SCREAMING_SNAKE_CASE__ ) import datasets A__ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) A__ = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , SCREAMING_SNAKE_CASE__ , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def snake_case__ ( self ) -> Dict: pass @slow @require_torch def snake_case__ ( self ) -> Optional[int]: A__ = "Intel/dpt-large" A__ = pipeline("depth-estimation" , model=SCREAMING_SNAKE_CASE__ ) A__ = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) A__ = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_6_2 ) @require_torch def snake_case__ ( self ) -> str: # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
104
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
0
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(lowerCamelCase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
105
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
from math import sqrt def lowerCamelCase_ ( lowerCAmelCase__ : int ) -> bool: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" A = True # 0 and 1 are none primes. if number <= 1: A = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: A = False break # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'status' must been from type bool" return status def lowerCamelCase_ ( lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N A = list(range(2 , n + 1 ) ) A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase__ ) ): for j in range(i + 1 , len(lowerCAmelCase__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): A = 0 # filters actual prime numbers. A = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n > 2), "'N' must been an int and > 2" A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase__ ): ans.append(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and number >= 0, "'number' must been an int and >= 0" A = [] # this list will be returns of the function. # potential prime number factors. A = 2 A = number if number == 0 or number == 1: ans.append(lowerCAmelCase__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase__ ): while quotient != 1: if is_prime(lowerCAmelCase__ ) and (quotient % factor == 0): ans.append(lowerCAmelCase__ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" A = 0 # prime factorization of 'number' A = prime_factorization(lowerCAmelCase__ ) A = max(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type int" return ans def lowerCamelCase_ ( lowerCAmelCase__ : int ) -> List[Any]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" A = 0 # prime factorization of 'number' A = prime_factorization(lowerCAmelCase__ ) A = min(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'ans' must been from type int" return ans def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase__ ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase_ ( lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase__ ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (number > 2) and is_even(lowerCAmelCase__ ) ), "'number' must been an int, even and > 2" A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' A = get_prime_numbers(lowerCAmelCase__ ) A = len(lowerCAmelCase__ ) # run variable for while-loops. A = 0 A = None # exit variable. for break up the loops A = True while i < len_pn and loop: A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (len(lowerCAmelCase__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." A = 0 while numbera != 0: A = numbera % numbera A = numbera A = rest # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' A = prime_factorization(lowerCAmelCase__ ) A = prime_factorization(lowerCAmelCase__ ) elif numbera == 1 or numbera == 1: A = [] A = [] A = max(lowerCAmelCase__ , lowerCAmelCase__ ) A = 0 A = 0 A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: A = prime_fac_a.count(lowerCAmelCase__ ) A = prime_fac_a.count(lowerCAmelCase__ ) for _ in range(max(lowerCAmelCase__ , lowerCAmelCase__ ) ): ans *= n else: A = prime_fac_a.count(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): ans *= n done.append(lowerCAmelCase__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: A = prime_fac_a.count(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): ans *= n done.append(lowerCAmelCase__ ) # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase_ ( lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'number' must been a positive int" A = 0 A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase__ ): ans += 1 # precondition assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and is_prime( lowerCAmelCase__ ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' assert ( is_prime(lowerCAmelCase__ ) and is_prime(lowerCAmelCase__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" A = p_number_a + 1 # jump to the next number A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase__ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase__ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase__ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 1), "'n' must been int and >= 1" A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase__ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number > 1 ), "'number' must been an int and >= 1" A = get_divisors(lowerCAmelCase__ ) # precondition assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. A = gcd(abs(lowerCAmelCase__ ) , abs(lowerCAmelCase__ ) ) # precondition assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase_ ( lowerCAmelCase__ : Dict ) -> int: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'n' must been a int and >= 0" A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase_ ( lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and (n >= 0), "'n' must been an int and >= 0" A = 0 A = 1 A = 1 # this will be return for _ in range(n - 1 ): A = ans ans += fiba A = tmp return ans
106
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') _UpperCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Train language if it is different from the evaluation language."} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __lowerCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , __snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(__snake_case ) datasets.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _A = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _A = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _A = train_dataset.features['label'].names if training_args.do_eval: _A = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _A = eval_dataset.features['label'].names if training_args.do_predict: _A = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _A = predict_dataset.features['label'].names # Labels _A = len(__snake_case ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , idalabel={str(__snake_case ): label for i, label in enumerate(__snake_case )} , labelaid={label: i for i, label in enumerate(__snake_case )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _A = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _A = False def preprocess_function(__snake_case : List[Any] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=__snake_case , max_length=data_args.max_seq_length , truncation=__snake_case , ) if training_args.do_train: if data_args.max_train_samples is not None: _A = min(len(__snake_case ) , data_args.max_train_samples ) _A = train_dataset.select(range(__snake_case ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _A = train_dataset.map( __snake_case , batched=__snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(__snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: _A = min(len(__snake_case ) , data_args.max_eval_samples ) _A = eval_dataset.select(range(__snake_case ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _A = eval_dataset.map( __snake_case , batched=__snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _A = min(len(__snake_case ) , data_args.max_predict_samples ) _A = predict_dataset.select(range(__snake_case ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _A = predict_dataset.map( __snake_case , batched=__snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function _A = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__snake_case : EvalPrediction ): _A = p.predictions[0] if isinstance(p.predictions , __snake_case ) else p.predictions _A = np.argmax(__snake_case , axis=1 ) return metric.compute(predictions=__snake_case , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _A = default_data_collator elif training_args.fpaa: _A = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) else: _A = None # Initialize our Trainer _A = Trainer( model=__snake_case , args=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__snake_case , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=__snake_case ) _A = train_result.metrics _A = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _A = min(__snake_case , len(__snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __snake_case ) trainer.save_metrics('train' , __snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _A = trainer.evaluate(eval_dataset=__snake_case ) _A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__snake_case ) _A = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('eval' , __snake_case ) trainer.save_metrics('eval' , __snake_case ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _A , _A , _A = trainer.predict(__snake_case , metric_key_prefix='predict' ) _A = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__snake_case ) ) _A = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('predict' , __snake_case ) trainer.save_metrics('predict' , __snake_case ) _A = np.argmax(__snake_case , axis=1 ) _A = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(__snake_case , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(__snake_case ): _A = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
107
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
108
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
0
'''simple docstring''' from __future__ import annotations class __a : def __init__( self : Optional[int] ,lowerCamelCase : list[list[int]] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(lowerCamelCase ) != 0: __SCREAMING_SNAKE_CASE = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCamelCase ) != cols: raise error for value in row: if not isinstance(lowerCamelCase ,(int, float) ): raise error __SCREAMING_SNAKE_CASE = rows else: __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return len(self.rows ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return len(self.rows[0] ) @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.order[0] == self.order[1] def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCamelCase ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return bool(self.determinant() ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : int ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCamelCase ).determinant() def UpperCAmelCase__ ( self : str ,lowerCamelCase : int ,lowerCamelCase : int ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(lowerCamelCase ,lowerCamelCase ) return -1 * self.get_minor(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return Matrix( [ [self.get_minor(lowerCamelCase ,lowerCamelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self : List[Any] ): '''simple docstring''' return str(self.rows ) def __str__( self : List[str] ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(lowerCamelCase ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : list[int] ,lowerCamelCase : int | None = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(lowerCamelCase ,lowerCamelCase ): raise type_error for value in row: if not isinstance(lowerCamelCase ,(int, float) ): raise type_error if len(lowerCamelCase ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = self.rows[0:position] + [row] + self.rows[position:] def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : list[int] ,lowerCamelCase : int | None = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(lowerCamelCase ,lowerCamelCase ): raise type_error for value in column: if not isinstance(lowerCamelCase ,(int, float) ): raise type_error if len(lowerCamelCase ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: __SCREAMING_SNAKE_CASE = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __SCREAMING_SNAKE_CASE = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : int ,lowerCamelCase : object ): '''simple docstring''' if not isinstance(lowerCamelCase ,lowerCamelCase ): return NotImplemented return self.rows == other.rows def __ne__( self : Any ,lowerCamelCase : object ): '''simple docstring''' return not self == other def __neg__( self : Any ): '''simple docstring''' return self * -1 def __add__( self : List[Any] ,lowerCamelCase : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Any ,lowerCamelCase : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Any ,lowerCamelCase : Matrix | int | float ): '''simple docstring''' if isinstance(lowerCamelCase ,(int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCamelCase ,lowerCamelCase ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(lowerCamelCase ,lowerCamelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self : Optional[int] ,lowerCamelCase : int ): '''simple docstring''' if not isinstance(lowerCamelCase ,lowerCamelCase ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) __SCREAMING_SNAKE_CASE = self for _ in range(other - 1 ): result *= self return result @classmethod def UpperCAmelCase__ ( cls : str ,lowerCamelCase : list[int] ,lowerCamelCase : list[int] ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
109
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( lowercase , unittest.TestCase ): UpperCamelCase : Tuple = CLIPTokenizer UpperCamelCase : List[str] = CLIPTokenizerFast UpperCamelCase : Tuple = True UpperCamelCase : str = {} UpperCamelCase : Tuple = False def __snake_case ( self ): super().setUp() # fmt: off UpperCAmelCase__ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCAmelCase__ : List[str] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) UpperCAmelCase__ : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] UpperCAmelCase__ : Optional[Any] = {'unk_token': '<unk>'} UpperCAmelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase_ ) ) def __snake_case ( self , **UpperCamelCase_ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __snake_case ( self , **UpperCamelCase_ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : Any = 'lower newer' UpperCAmelCase__ : Dict = 'lower newer' return input_text, output_text def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ : Optional[int] = 'lower newer' UpperCAmelCase__ : int = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] UpperCAmelCase__ : Dict = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase__ : int = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) @require_ftfy def __snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase__ : Dict = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase__ : int = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' UpperCAmelCase__ : List[str] = tokenizer_s.tokenize(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCAmelCase__ : Tuple = 'xa\u0303y' + ' ' + 'x\xe3y' UpperCAmelCase__ : Dict = tokenizer_s.tokenize(UpperCamelCase_ ) UpperCAmelCase__ : List[str] = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on unicode of space type UpperCAmelCase__ : Tuple = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCAmelCase__ : Dict = tokenizer_s.tokenize(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on unicode of line break type UpperCAmelCase__ : Optional[Any] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCAmelCase__ : List[Any] = tokenizer_s.tokenize(UpperCamelCase_ ) UpperCAmelCase__ : str = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def __snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase__ : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase__ : int = F'''{text_of_1_token} {text_of_1_token}''' UpperCAmelCase__ : Dict = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , ) UpperCAmelCase__ : List[Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) UpperCAmelCase__ : Dict = F''' {text}''' UpperCAmelCase__ : Dict = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , ) UpperCAmelCase__ : Tuple = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ) + 1, 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) def __snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCamelCase_ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def __snake_case ( self ): super().test_tokenization_python_rust_equals() def __snake_case ( self ): # CLIP always lower cases letters pass
110
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
0
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) UpperCAmelCase_ : Any = logging.getLogger(__name__) UpperCAmelCase_ : int = 'Hello world! cécé herlolip' UpperCAmelCase_ : Optional[int] = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : List[str] = BertAbsConfig( temp_dir='.' , finetune_bert=A , large=A , share_emb=A , use_bert_emb=A , encoder='bert' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) _a : str = torch.load(A , lambda A , A : storage ) _a : int = AbsSummarizer(A , torch.device('cpu' ) , A ) original.eval() _a : str = BertAbsSummarizer(A , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) _a : str = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs _a : List[str] = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(A )) ) _a : Optional[int] = torch.tensor(A ).unsqueeze(0 ) _a : int = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(A )) ) _a : Optional[Any] = torch.tensor(A ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _a : Optional[int] = encoder_input_ids _a : Dict = decoder_input_ids _a : List[str] = None _a : str = None _a : Dict = None _a : str = None _a : Tuple = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _a : int = original(A , A , A , A , A , A , A )[0] _a : Any = original.generator(A ) _a : Union[str, Any] = new_model( A , A , A , A , A )[0] _a : int = new_model.generator(A ) _a : Union[str, Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(A ) ) _a : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(A ) ) _a : str = torch.allclose(A , A , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
120
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCAmelCase__ ,unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaControlnetImgaImgPipeline UpperCAmelCase__ = ["image_embeds", "negative_image_embeds", "image", "hint"] UpperCAmelCase__ = ["image_embeds", "negative_image_embeds", "image", "hint"] UpperCAmelCase__ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ = False @property def lowerCamelCase__ ( self : Tuple ) -> int: return 3_2 @property def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: return 3_2 @property def lowerCamelCase__ ( self : Union[str, Any] ) -> str: return self.time_input_dim @property def lowerCamelCase__ ( self : Any ) -> List[Any]: return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : List[str] ) -> Any: return 1_0_0 @property def lowerCamelCase__ ( self : Optional[int] ) -> str: torch.manual_seed(0 ) __magic_name__: Any = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__: Optional[Any] = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def lowerCamelCase__ ( self : Dict ) -> List[str]: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self : Any ) -> Dict: torch.manual_seed(0 ) __magic_name__: List[str] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self : Tuple ) -> str: __magic_name__: Union[str, Any] = self.dummy_unet __magic_name__: Any = self.dummy_movq __magic_name__: List[Any] = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __magic_name__: int = DDIMScheduler(**_UpperCAmelCase ) __magic_name__: Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self : str , __snake_case : List[str] , __snake_case : int=0 ) -> Dict: __magic_name__: List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __magic_name__: Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create init_image __magic_name__: List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __magic_name__: Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__: Dict = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create hint __magic_name__: str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): __magic_name__: Optional[Any] = torch.manual_seed(_UpperCAmelCase ) else: __magic_name__: Tuple = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __magic_name__: List[str] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self : int ) -> List[str]: __magic_name__: int = """cpu""" __magic_name__: Optional[int] = self.get_dummy_components() __magic_name__: Any = self.pipeline_class(**_UpperCAmelCase ) __magic_name__: int = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __magic_name__: int = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __magic_name__: Optional[int] = output.images __magic_name__: str = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] __magic_name__: Optional[int] = image[0, -3:, -3:, -1] __magic_name__: List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __magic_name__: Any = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __magic_name__: Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) __magic_name__: Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__: Dict = init_image.resize((5_1_2, 5_1_2) ) __magic_name__: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) __magic_name__: Any = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0 __magic_name__: List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __magic_name__: List[str] = """A robot, 4k photo""" __magic_name__: Union[str, Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) __magic_name__: Any = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) __magic_name__: Optional[Any] = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) __magic_name__: Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__, __magic_name__: Optional[int] = pipe_prior( _UpperCAmelCase , image=_UpperCAmelCase , strength=0.85 , generator=_UpperCAmelCase , negative_prompt="""""" , ).to_tuple() __magic_name__: Tuple = pipeline( image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="""np""" , ) __magic_name__: Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
96
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 A : Union[str, Any] = 0B101_100_111_110_110_010_010_000_011_110_111_011_000_110_011_110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 A : Any = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = WATERMARK_BITS SCREAMING_SNAKE_CASE_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark ) def __A ( self : Any , __magic_name__ : torch.FloatTensor ) -> Optional[Any]: if images.shape[-1] < 256: return images SCREAMING_SNAKE_CASE_ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE_ = [self.encoder.encode(_UpperCAmelCase , "dwtDct" ) for image in images] SCREAMING_SNAKE_CASE_ = torch.from_numpy(np.array(_UpperCAmelCase ) ).permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
140
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCamelCase : Union[str, Any] = pytest.mark.integration @require_faiss class _lowercase( UpperCAmelCase__ ): """simple docstring""" def snake_case ( self: int ): __UpperCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def snake_case ( self: Union[str, Any] ): import faiss __UpperCAmelCase = self._create_dummy_dataset() __UpperCAmelCase = dset.map( lambda a ,a : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ) __UpperCAmelCase = dset.add_faiss_index('vecs' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) dset.drop_index('vecs' ) def snake_case ( self: Tuple ): import faiss __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) def snake_case ( self: Union[str, Any] ): import faiss __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' ,tmp_file.name ) dset.load_faiss_index('vecs2' ,tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('vecs2' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) def snake_case ( self: Dict ): __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_UpperCAmelCase ,partial(dset.get_nearest_examples ,'vecs2' ,np.ones(5 ,dtype=np.floataa ) ) ) def snake_case ( self: int ): from elasticsearch import Elasticsearch __UpperCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __UpperCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __UpperCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' ,es_client=_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('filename' ,'my_name-train_29' ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) @require_faiss class _lowercase( UpperCAmelCase__ ): """simple docstring""" def snake_case ( self: Any ): import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query __UpperCAmelCase = np.zeros(5 ,dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(_UpperCAmelCase ) self.assertRaises(_UpperCAmelCase ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries __UpperCAmelCase = np.eye(5 ,dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase = index.search_batch(_UpperCAmelCase ) self.assertRaises(_UpperCAmelCase ,index.search_batch ,queries[0] ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,_UpperCAmelCase ) def snake_case ( self: List[str] ): import faiss __UpperCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) __UpperCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(_UpperCAmelCase ): __UpperCAmelCase = FaissIndex(string_factory='Flat' ,custom_index=faiss.IndexFlat(5 ) ) def snake_case ( self: Optional[Any] ): import faiss __UpperCAmelCase = faiss.IndexFlat(5 ) __UpperCAmelCase = FaissIndex(custom_index=_UpperCAmelCase ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def snake_case ( self: str ): import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase = np.zeros(5 ,dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(_UpperCAmelCase ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def __snake_case ( lowerCAmelCase : Tuple ): import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __UpperCAmelCase = 'index.faiss' __UpperCAmelCase = F"""mock://{index_name}""" index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __UpperCAmelCase = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowercase( UpperCAmelCase__ ): """simple docstring""" def snake_case ( self: Optional[int] ): from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __UpperCAmelCase = Elasticsearch() __UpperCAmelCase = {'acknowledged': True} __UpperCAmelCase = ElasticSearchIndex(es_client=_UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __UpperCAmelCase = 'foo' __UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __UpperCAmelCase , __UpperCAmelCase = index.search(_UpperCAmelCase ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout __UpperCAmelCase = 'foo' __UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __UpperCAmelCase , __UpperCAmelCase = index.search(_UpperCAmelCase ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries __UpperCAmelCase = ['foo', 'bar', 'foobar'] __UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __UpperCAmelCase , __UpperCAmelCase = index.search_batch(_UpperCAmelCase ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) ,0 ) self.assertListEqual([1, 1, 1] ,_UpperCAmelCase ) # batched queries with timeout __UpperCAmelCase = ['foo', 'bar', 'foobar'] __UpperCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __UpperCAmelCase , __UpperCAmelCase = index.search_batch(_UpperCAmelCase ,request_timeout=30 ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) ,0 ) self.assertListEqual([1, 1, 1] ,_UpperCAmelCase )
396
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
0
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __A = logging.getLogger(__name__) class _snake_case ( UpperCAmelCase__ ): def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Any=None ): super().__init__( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , index=_UpperCAmelCase , init_retrieval=_UpperCAmelCase , ) __lowerCamelCase : Union[str, Any] = None def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually __lowerCamelCase : int = self._infer_socket_ifname() # avoid clash with the NCCL port __lowerCamelCase : Any = str(distributed_port + 1 ) __lowerCamelCase : str = dist.new_group(ranks=_UpperCAmelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase__ ( self : Optional[int] ): return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple=torch.floataa ): __lowerCamelCase : Dict = torch.empty(_UpperCAmelCase , dtype=_UpperCAmelCase ) dist.scatter(_UpperCAmelCase , src=0 , scatter_list=_UpperCAmelCase , group=self.process_group ) return target_tensor def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Dict = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __lowerCamelCase : List[str] = next((addr for addr in addrs if addr.startswith("e" )) , _UpperCAmelCase ) return ifname def lowerCamelCase__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : int ): if not dist.is_initialized(): __lowerCamelCase , __lowerCamelCase : Tuple = self._main_retrieve(_UpperCAmelCase , _UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCAmelCase ) # distributed training __lowerCamelCase : Any = dist.get_world_size(group=self.process_group ) # gather logic __lowerCamelCase : Union[str, Any] = None if self._is_main(): __lowerCamelCase : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_UpperCAmelCase )] dist.gather(torch.tensor(_UpperCAmelCase ) , dst=0 , gather_list=_UpperCAmelCase , group=self.process_group ) # scatter logic __lowerCamelCase : Tuple = question_hidden_states.shape[0] __lowerCamelCase : str = [] __lowerCamelCase : int = [] if self._is_main(): assert len(_UpperCAmelCase ) == world_size __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self._main_retrieve(torch.cat(_UpperCAmelCase ).numpy() , _UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Any = torch.tensor(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) __lowerCamelCase : Any = self._chunk_tensor(_UpperCAmelCase , _UpperCAmelCase ) __lowerCamelCase : Tuple = self._chunk_tensor(_UpperCAmelCase , _UpperCAmelCase ) __lowerCamelCase : List[Any] = self._scattered(_UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) __lowerCamelCase : Dict = self._scattered(_UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_UpperCAmelCase )
646
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants __A : Any = 300 # TEMPERATURE (unit = K) def UpperCAmelCase ( lowerCamelCase_ :float , lowerCamelCase_ :float , lowerCamelCase_ :float , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
334
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
0
'''simple docstring''' from __future__ import annotations A = [] def UpperCAmelCase ( UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : int , UpperCAmelCase__ : int): for i in range(len(UpperCAmelCase__)): if board[row][i] == 1: return False for i in range(len(UpperCAmelCase__)): if board[i][column] == 1: return False for i, j in zip(range(UpperCAmelCase__ , -1 , -1) , range(UpperCAmelCase__ , -1 , -1)): if board[i][j] == 1: return False for i, j in zip(range(UpperCAmelCase__ , -1 , -1) , range(UpperCAmelCase__ , len(UpperCAmelCase__))): if board[i][j] == 1: return False return True def UpperCAmelCase ( UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : int): if row >= len(UpperCAmelCase__): solution.append(UpperCAmelCase__) printboard(UpperCAmelCase__) print() return True for i in range(len(UpperCAmelCase__)): if is_safe(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__): lowerCamelCase : Optional[Any] = 1 solve(UpperCAmelCase__ , row + 1) lowerCamelCase : Any = 0 return False def UpperCAmelCase ( UpperCAmelCase__ : list[list[int]]): for i in range(len(UpperCAmelCase__)): for j in range(len(UpperCAmelCase__)): if board[i][j] == 1: print('Q' , end=' ') else: print('.' , end=' ') print() # n=int(input("The no. of queens")) A = 8 A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
320
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase_ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowercase_ = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def a ( ) -> Any: """simple docstring""" _lowercase =( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowercase =bs[:] _lowercase =0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 _lowercase =[chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def a ( A__ : Any ) -> List[str]: """simple docstring""" _lowercase =set() _lowercase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase =char return pairs class __lowerCAmelCase ( UpperCAmelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , **lowerCAmelCase , ) -> List[Any]: '''simple docstring''' _lowercase =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token _lowercase =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token _lowercase =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token _lowercase =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token _lowercase =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token _lowercase =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: _lowercase =json.load(_UpperCAmelCase ) _lowercase ={v: k for k, v in self.encoder.items()} _lowercase =errors # how to handle errors in decoding _lowercase =bytes_to_unicode() _lowercase ={v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle: _lowercase =merges_handle.read().split('\n' )[1:-1] _lowercase =[tuple(merge.split() ) for merge in bpe_merges] _lowercase =dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowercase ={} _lowercase =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase =re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def A__ ( self ) -> Tuple: '''simple docstring''' return len(self.encoder ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] _lowercase =tuple(_UpperCAmelCase ) _lowercase =get_pairs(_UpperCAmelCase ) if not pairs: return token while True: _lowercase =min(_UpperCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase =bigram _lowercase =[] _lowercase =0 while i < len(_UpperCAmelCase ): try: _lowercase =word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase =j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase =tuple(_UpperCAmelCase ) _lowercase =new_word if len(_UpperCAmelCase ) == 1: break else: _lowercase =get_pairs(_UpperCAmelCase ) _lowercase =' '.join(_UpperCAmelCase ) _lowercase =word return word def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' _lowercase =[] for token in re.findall(self.pat , _UpperCAmelCase ): _lowercase =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(' ' ) ) return bpe_tokens def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' return self.decoder.get(_UpperCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =''.join(_UpperCAmelCase ) _lowercase =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase =os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowercase =os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' ) _lowercase =0 with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowercase =token_index writer.write(' '.join(_UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[int]: '''simple docstring''' _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , lowerCAmelCase , lowerCAmelCase=False , **lowerCAmelCase ) -> Any: '''simple docstring''' _lowercase =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): _lowercase =' ' + text return (text, kwargs) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def A__ ( self , lowerCAmelCase ) -> List[int]: '''simple docstring''' _lowercase =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_UpperCAmelCase ) _lowercase =' '.join(_UpperCAmelCase ) _lowercase =self.encode(_UpperCAmelCase ) if len(_UpperCAmelCase ) > self.model_max_length: _lowercase =input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
291
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE (UpperCAmelCase__ ): """simple docstring""" _a : List[Any] = ['''image_processor''', '''tokenizer'''] _a : Optional[Any] = '''AutoImageProcessor''' _a : Dict = '''AutoTokenizer''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase ) a_ = self.image_processor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: a_ = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: a_ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: a_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _a ( self ): """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
536
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
0
class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase = "" , lowercase = False ): """simple docstring""" A_ : Dict = {} # A node will be a leaf if the tree contains its word A_ : Tuple = is_leaf A_ : Optional[Any] = prefix def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = 0 for q, w in zip(self.prefix , _UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" for word in words: self.insert(_UpperCAmelCase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if self.prefix == word: A_ : Dict = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: A_ : List[Any] = RadixNode(prefix=_UpperCAmelCase , is_leaf=_UpperCAmelCase ) else: A_ : Optional[Any] = self.nodes[word[0]] A_ , A_ , A_ : Union[str, Any] = incoming_node.match( _UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: A_ : str = remaining_prefix A_ : Tuple = self.nodes[matching_string[0]] A_ : Dict = RadixNode(_UpperCAmelCase , _UpperCAmelCase ) A_ : List[str] = aux_node if remaining_word == "": A_ : List[Any] = True else: self.nodes[matching_string[0]].insert(_UpperCAmelCase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = self.nodes.get(word[0] , _UpperCAmelCase ) if not incoming_node: return False else: A_ , A_ , A_ : List[str] = incoming_node.match( _UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_UpperCAmelCase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = self.nodes.get(word[0] , _UpperCAmelCase ) if not incoming_node: return False else: A_ , A_ , A_ : Optional[int] = incoming_node.match( _UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: A_ : List[Any] = list(self.nodes.values() )[0] A_ : Any = merging_node.is_leaf self.prefix += merging_node.prefix A_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: A_ : Any = False # If there is 1 edge, we merge it with its child else: A_ : int = list(incoming_node.nodes.values() )[0] A_ : int = merging_node.is_leaf incoming_node.prefix += merging_node.prefix A_ : List[str] = merging_node.nodes return True def lowerCAmelCase_ ( self , lowercase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): '''simple docstring''' A_ : Dict = 'banana bananas bandana band apple all beast'.split() A_ : List[Any] = RadixNode() root.insert_many(__lowercase ) assert all(root.find(__lowercase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def UpperCamelCase ( ): '''simple docstring''' assert test_trie() def UpperCamelCase ( ): '''simple docstring''' A_ : Any = RadixNode() A_ : Optional[Any] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowercase ) print('Words:' ,__lowercase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
558
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _UpperCamelCase ( A , A , A , A , A , A = None , ): UpperCamelCase_ ={} if train_file is not None: UpperCamelCase_ =[train_file] if eval_file is not None: UpperCamelCase_ =[eval_file] if test_file is not None: UpperCamelCase_ =[test_file] UpperCamelCase_ =datasets.load_dataset("csv" , data_files=A ) UpperCamelCase_ =list(ds[list(files.keys() )[0]].features.keys() ) UpperCamelCase_ =features_name.pop(A ) UpperCamelCase_ =list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCamelCase_ ={label: i for i, label in enumerate(A )} UpperCamelCase_ =tokenizer.model_input_names UpperCamelCase_ ={} if len(A ) == 1: for k in files.keys(): UpperCamelCase_ =ds[k].map( lambda A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A , max_length=A , padding="max_length" ) , batched=A , ) elif len(A ) == 2: for k in files.keys(): UpperCamelCase_ =ds[k].map( lambda A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A , max_length=A , padding="max_length" , ) , batched=A , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCamelCase_ ={k: v for k, v in ex.items() if k in input_names} UpperCamelCase_ =labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCamelCase_ ={k: v for k, v in ex.items() if k in input_names} UpperCamelCase_ =labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCamelCase_ ={k: v for k, v in ex.items() if k in input_names} UpperCamelCase_ =labelaid[ex[label_name]] yield (d, label) UpperCamelCase_ =( tf.data.Dataset.from_generator( A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCamelCase_ =train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCamelCase_ =( tf.data.Dataset.from_generator( A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCamelCase_ =val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCamelCase_ =( tf.data.Dataset.from_generator( A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCamelCase_ =test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid A_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : List[Any] = field(metadata={"help": "Which column contains the label"} ) __lowerCamelCase : Any = field(default=UpperCAmelCase__ , metadata={"help": "The path of the training file"} ) __lowerCamelCase : Any = field(default=UpperCAmelCase__ , metadata={"help": "The path of the development file"} ) __lowerCamelCase : Union[str, Any] = field(default=UpperCAmelCase__ , metadata={"help": "The path of the test file"} ) __lowerCamelCase : Optional[int] = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __lowerCamelCase : Any = field( default=UpperCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Tuple = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCamelCase : Any = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCamelCase : Tuple = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowerCamelCase : Optional[Any] = field(default=UpperCAmelCase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase : Any = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def _UpperCamelCase ( ): UpperCamelCase_ =HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCamelCase_ =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A ) , labelaid=A , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCamelCase_ =TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) def compute_metrics(A ) -> Dict: UpperCamelCase_ =np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCamelCase_ =TFTrainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase_ ={} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ =trainer.evaluate() UpperCamelCase_ =os.path.join(training_args.output_dir , "eval_results.txt" ) with open(A , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(A ) return results if __name__ == "__main__": main()
391
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
0
'''simple docstring''' UpperCAmelCase_ : List[str] = [ (1000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def UpperCAmelCase_ ( A ): '''simple docstring''' _a : Optional[Any] = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} _a : Optional[int] = 0 _a : Optional[int] = 0 while place < len(A ): if (place + 1 < len(A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def UpperCAmelCase_ ( A ): '''simple docstring''' _a : List[Any] = [] for arabic, roman in ROMAN: ((_a) , (_a)) : Dict = divmod(A , A ) result.append(roman * factor ) if number == 0: break return "".join(A ) if __name__ == "__main__": import doctest doctest.testmod()
120
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a ( ) -> Optional[Any]: __magic_name__: Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCAmelCase ) return parser.parse_args() def a ( ) -> Union[str, Any]: __magic_name__: List[str] = parse_args() # Import training_script as a module. __magic_name__: List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __magic_name__: List[str] = script_fpath.stem __magic_name__: Tuple = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv __magic_name__: Optional[int] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
96
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
0
import os import re import shutil import sys import tempfile import unittest import black A : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. A : Optional[Any] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) SCREAMING_SNAKE_CASE_ = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __A ( self : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str , __magic_name__ : str=None ) -> int: SCREAMING_SNAKE_CASE_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) SCREAMING_SNAKE_CASE_ = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(self.diffusers_dir , "new_code.py" ) with open(_UpperCAmelCase , "w" , newline="\n" ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , "r" ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self : Optional[int] ) -> Optional[int]: self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , _UpperCAmelCase ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE_ = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , _UpperCAmelCase , overwrite_result=re.sub("DDPM" , "Test" , _UpperCAmelCase ) , )
140
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
0
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
396
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _snake_case ( unittest.TestCase ): snake_case__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple ): __lowerCamelCase : List[Any] = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) __lowerCamelCase : Any = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) __lowerCamelCase : Optional[int] = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ): for example in examples: __lowerCamelCase : Optional[int] = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ ( self : str ): __lowerCamelCase : int = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" __lowerCamelCase : Any = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) __lowerCamelCase : List[Any] = pipeline( "video-classification" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) __lowerCamelCase : List[Any] = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) __lowerCamelCase : str = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}] , ) __lowerCamelCase : Dict = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}], [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}], ] , ) @require_tf def lowerCamelCase__ ( self : Any ): pass
646
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : List[str] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __UpperCamelCase ( UpperCAmelCase__ ): lowercase : Union[str, Any] = 'cvt' def __init__( self :str ,_UpperCamelCase :str=3 ,_UpperCamelCase :str=[7, 3, 3] ,_UpperCamelCase :Any=[4, 2, 2] ,_UpperCamelCase :Any=[2, 1, 1] ,_UpperCamelCase :Any=[6_4, 1_9_2, 3_8_4] ,_UpperCamelCase :Optional[Any]=[1, 3, 6] ,_UpperCamelCase :Tuple=[1, 2, 1_0] ,_UpperCamelCase :List[str]=[4.0, 4.0, 4.0] ,_UpperCamelCase :Any=[0.0, 0.0, 0.0] ,_UpperCamelCase :Any=[0.0, 0.0, 0.0] ,_UpperCamelCase :Optional[Any]=[0.0, 0.0, 0.1] ,_UpperCamelCase :List[str]=[True, True, True] ,_UpperCamelCase :str=[False, False, True] ,_UpperCamelCase :Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] ,_UpperCamelCase :List[Any]=[3, 3, 3] ,_UpperCamelCase :List[str]=[1, 1, 1] ,_UpperCamelCase :List[Any]=[2, 2, 2] ,_UpperCamelCase :Dict=[1, 1, 1] ,_UpperCamelCase :List[Any]=[1, 1, 1] ,_UpperCamelCase :int=0.02 ,_UpperCamelCase :str=1E-1_2 ,**_UpperCamelCase :Optional[Any] ,): super().__init__(**_UpperCAmelCase ) snake_case_ : int = num_channels snake_case_ : List[Any] = patch_sizes snake_case_ : Union[str, Any] = patch_stride snake_case_ : List[Any] = patch_padding snake_case_ : Dict = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Dict = mlp_ratio snake_case_ : List[str] = attention_drop_rate snake_case_ : int = drop_rate snake_case_ : List[str] = drop_path_rate snake_case_ : List[str] = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : Dict = qkv_projection_method snake_case_ : Union[str, Any] = kernel_qkv snake_case_ : int = padding_kv snake_case_ : Any = stride_kv snake_case_ : Optional[Any] = padding_q snake_case_ : List[str] = stride_q snake_case_ : List[Any] = initializer_range snake_case_ : Tuple = layer_norm_eps
334
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : int=None , ): if attention_mask is None: lowerCamelCase : Tuple = np.where(input_ids != config.pad_token_id , 1 , 0) if decoder_attention_mask is None: lowerCamelCase : Dict = np.where(decoder_input_ids != config.pad_token_id , 1 , 0) if head_mask is None: lowerCamelCase : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: lowerCamelCase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: lowerCamelCase : Any = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __snake_case : def __init__( self, A, A=13, A=7, A=True, A=False, A=99, A=16, A=2, A=4, A=4, A="gelu", A=0.1, A=0.1, A=32, A=2, A=1, A=0, A=0.02, ): """simple docstring""" lowerCamelCase : Dict = parent lowerCamelCase : List[str] = batch_size lowerCamelCase : Optional[Any] = seq_length lowerCamelCase : Optional[Any] = is_training lowerCamelCase : str = use_labels lowerCamelCase : Union[str, Any] = vocab_size lowerCamelCase : Union[str, Any] = hidden_size lowerCamelCase : Optional[Any] = num_hidden_layers lowerCamelCase : str = num_attention_heads lowerCamelCase : Optional[int] = intermediate_size lowerCamelCase : Tuple = hidden_act lowerCamelCase : Any = hidden_dropout_prob lowerCamelCase : int = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = max_position_embeddings lowerCamelCase : List[str] = eos_token_id lowerCamelCase : Union[str, Any] = pad_token_id lowerCamelCase : Tuple = bos_token_id lowerCamelCase : Optional[Any] = initializer_range def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) lowerCamelCase : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) lowerCamelCase : List[str] = shift_tokens_right(_UpperCAmelCase, 1, 2 ) lowerCamelCase : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=_UpperCAmelCase, ) lowerCamelCase : Dict = prepare_blenderbot_inputs_dict(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : str = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : List[Any] = 20 lowerCamelCase : str = model_class_name(_UpperCAmelCase ) lowerCamelCase : Union[str, Any] = model.encode(inputs_dict['input_ids'] ) lowerCamelCase , lowerCamelCase : List[str] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCamelCase : List[str] = model.init_cache(decoder_input_ids.shape[0], _UpperCAmelCase, _UpperCAmelCase ) lowerCamelCase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='i4' ) lowerCamelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowerCamelCase : int = model.decode( decoder_input_ids[:, :-1], _UpperCAmelCase, decoder_attention_mask=_UpperCAmelCase, past_key_values=_UpperCAmelCase, decoder_position_ids=_UpperCAmelCase, ) lowerCamelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4' ) lowerCamelCase : Optional[Any] = model.decode( decoder_input_ids[:, -1:], _UpperCAmelCase, decoder_attention_mask=_UpperCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=_UpperCAmelCase, ) lowerCamelCase : Optional[Any] = model.decode(_UpperCAmelCase, _UpperCAmelCase ) lowerCamelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=F'''Max diff is {diff}''' ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : Dict = 20 lowerCamelCase : Any = model_class_name(_UpperCAmelCase ) lowerCamelCase : Any = model.encode(inputs_dict['input_ids'] ) lowerCamelCase , lowerCamelCase : str = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowerCamelCase : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) lowerCamelCase : Any = model.init_cache(decoder_input_ids.shape[0], _UpperCAmelCase, _UpperCAmelCase ) lowerCamelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowerCamelCase : int = model.decode( decoder_input_ids[:, :-1], _UpperCAmelCase, decoder_attention_mask=_UpperCAmelCase, past_key_values=_UpperCAmelCase, decoder_position_ids=_UpperCAmelCase, ) lowerCamelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4' ) lowerCamelCase : Tuple = model.decode( decoder_input_ids[:, -1:], _UpperCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=_UpperCAmelCase, decoder_position_ids=_UpperCAmelCase, ) lowerCamelCase : List[str] = model.decode(_UpperCAmelCase, _UpperCAmelCase, decoder_attention_mask=_UpperCAmelCase ) lowerCamelCase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=F'''Max diff is {diff}''' ) @require_flax class __snake_case ( unittest.TestCase): _lowerCAmelCase = 99 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) lowerCamelCase : Optional[Any] = input_ids.shape[0] lowerCamelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase : str = self._get_config_and_data() lowerCamelCase : str = FlaxBlenderbotForConditionalGeneration(_UpperCAmelCase ) lowerCamelCase : Optional[Any] = lm_model(input_ids=_UpperCAmelCase ) lowerCamelCase : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape, _UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lowerCamelCase : int = FlaxBlenderbotForConditionalGeneration(_UpperCAmelCase ) lowerCamelCase : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) lowerCamelCase : int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) lowerCamelCase : int = lm_model(input_ids=_UpperCAmelCase, decoder_input_ids=_UpperCAmelCase ) lowerCamelCase : Dict = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape, _UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) lowerCamelCase : str = shift_tokens_right(_UpperCAmelCase, 1, 2 ) lowerCamelCase : Union[str, Any] = np.equal(_UpperCAmelCase, 1 ).astype(np.floataa ).sum() lowerCamelCase : Tuple = np.equal(_UpperCAmelCase, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(_UpperCAmelCase, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class __snake_case ( UpperCAmelCase__ , unittest.TestCase , UpperCAmelCase__): _lowerCAmelCase = True _lowerCAmelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _lowerCAmelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = FlaxBlenderbotModelTester(self ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase : Optional[int] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) lowerCamelCase : Dict = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(A, A=None, **A ): return model.encode(input_ids=_UpperCAmelCase, attention_mask=_UpperCAmelCase ) with self.subTest('JIT Enabled' ): lowerCamelCase : Optional[int] = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase : Optional[int] = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase, _UpperCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase : Optional[Any] = model_class(_UpperCAmelCase ) lowerCamelCase : Any = model.encode(inputs_dict['input_ids'], inputs_dict['attention_mask'] ) lowerCamelCase : Optional[int] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(A, A, A ): return model.decode( decoder_input_ids=_UpperCAmelCase, decoder_attention_mask=_UpperCAmelCase, encoder_outputs=_UpperCAmelCase, ) with self.subTest('JIT Enabled' ): lowerCamelCase : Dict = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase : int = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase, _UpperCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase : str = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase : Dict = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skipUnless(jax_device != 'cpu', '3B test too slow on CPU.' ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} lowerCamelCase : Any = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} lowerCamelCase : List[Any] = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B', from_pt=_UpperCAmelCase ) lowerCamelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) lowerCamelCase : Tuple = ['Sam'] lowerCamelCase : Union[str, Any] = tokenizer(_UpperCAmelCase, return_tensors='jax' ) lowerCamelCase : str = model.generate(**_UpperCAmelCase, **_UpperCAmelCase ) lowerCamelCase : List[Any] = 'Sam is a great name. It means \"sun\" in Gaelic.' lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase, **_UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
320
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
0
import doctest from collections import deque import numpy as np class __lowerCAmelCase : def __init__( self ) -> None: '''simple docstring''' _lowercase =[2, 1, 2, -1] _lowercase =[1, 2, 3, 4] def A__ ( self ) -> list[float]: '''simple docstring''' _lowercase =len(self.first_signal ) _lowercase =len(self.second_signal ) _lowercase =max(_UpperCAmelCase , _UpperCAmelCase ) # create a zero matrix of max_length x max_length _lowercase =[[0] * max_length for i in range(_UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCAmelCase ): _lowercase =deque(self.second_signal ) rotated_signal.rotate(_UpperCAmelCase ) for j, item in enumerate(_UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal _lowercase =np.matmul(np.transpose(_UpperCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
291
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' def __UpperCamelCase ( lowercase_ : int , lowercase_ : int ): """simple docstring""" a_ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): a_ = n - k # Calculate C(n,k) for i in range(lowercase_ ): result *= n - i result //= i + 1 return result def __UpperCamelCase ( lowercase_ : int ): """simple docstring""" return binomial_coefficient(2 * node_count , lowercase_ ) // (node_count + 1) def __UpperCamelCase ( lowercase_ : int ): """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) a_ = 1 for i in range(1 , n + 1 ): result *= i return result def __UpperCamelCase ( lowercase_ : int ): """simple docstring""" return catalan_number(lowercase_ ) * factorial(lowercase_ ) if __name__ == "__main__": __lowerCAmelCase = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
536
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
0
def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : List[str] = 1 for i in range(1 ,num + 1 ): fact *= i return fact def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : int = 0 while number > 0: A_ : List[str] = number % 10 sum_of_digits += last_digit A_ : int = number // 10 # Removing the last_digit from the given number return sum_of_digits def UpperCamelCase ( __lowercase : int = 1_00 ): '''simple docstring''' A_ : List[str] = factorial(__lowercase ) A_ : Any = split_and_add(__lowercase ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
558
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A_ = ['small', 'medium', 'large'] A_ = 'lm_head.decoder.weight' A_ = 'lm_head.weight' def _UpperCamelCase ( A , A ): UpperCamelCase_ =torch.load(A ) UpperCamelCase_ =d.pop(A ) os.makedirs(A , exist_ok=A ) torch.save(A , os.path.join(A , A ) ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) A_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: A_ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') A_ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
391
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class a ( UpperCAmelCase__ ): '''simple docstring''' __lowerCAmelCase : List[Any] = """xlm-roberta""" def __init__( self , lowerCamelCase_=3_0_5_2_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> List[Any]: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _a : List[str] = vocab_size _a : Union[str, Any] = hidden_size _a : Optional[Any] = num_hidden_layers _a : int = num_attention_heads _a : Tuple = hidden_act _a : List[Any] = intermediate_size _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : Union[str, Any] = max_position_embeddings _a : Optional[int] = type_vocab_size _a : Optional[Any] = initializer_range _a : Optional[int] = layer_norm_eps _a : Tuple = position_embedding_type _a : List[Any] = use_cache _a : Tuple = classifier_dropout class a ( UpperCAmelCase__ ): '''simple docstring''' @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
120
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowerCamelCase = None __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} __lowerCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } __lowerCamelCase = { 'google/rembert': 2_56, } __lowerCamelCase = '▁' class __A ( UpperCAmelCase__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RemBertTokenizer def __init__( self : List[Any] , __snake_case : int=None , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=True , __snake_case : Any=True , __snake_case : Any=False , __snake_case : int="[CLS]" , __snake_case : Dict="[SEP]" , __snake_case : Optional[int]="<unk>" , __snake_case : int="[SEP]" , __snake_case : int="<pad>" , __snake_case : str="[CLS]" , __snake_case : Union[str, Any]="[MASK]" , **__snake_case : int , ) -> Dict: __magic_name__: Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) __magic_name__: Optional[int] = do_lower_case __magic_name__: Any = remove_space __magic_name__: Optional[Any] = keep_accents __magic_name__: List[str] = vocab_file __magic_name__: Dict = False if not self.vocab_file else True def lowerCamelCase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: __magic_name__: Optional[int] = [self.sep_token_id] __magic_name__: Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: __magic_name__: Optional[int] = [self.sep_token_id] __magic_name__: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(_UpperCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCAmelCase ) ) return __magic_name__: List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
96
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor A : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase (UpperCAmelCase__ ): """simple docstring""" def __init__( self : Dict , *__magic_name__ : List[str] , **__magic_name__ : List[str] ) -> None: warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
140
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase : Optional[Any] = 16 _UpperCamelCase : Optional[Any] = 32 def __snake_case ( lowerCAmelCase : Accelerator , lowerCAmelCase : DatasetDict , lowerCAmelCase : List[int] , lowerCAmelCase : List[int] , lowerCAmelCase : int = 16 ): __UpperCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) __UpperCAmelCase = DatasetDict( { 'train': dataset['train'].select(lowerCAmelCase ), 'validation': dataset['train'].select(lowerCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(lowerCAmelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase , max_length=lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase = datasets.map( lowerCAmelCase , batched=lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase = 8 else: __UpperCAmelCase = None return tokenizer.pad( lowerCAmelCase , padding='longest' , max_length=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. __UpperCAmelCase = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) __UpperCAmelCase = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) __UpperCAmelCase = DataLoader( tokenized_datasets['test'] , shuffle=lowerCAmelCase , collate_fn=lowerCAmelCase , batch_size=lowerCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def __snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ): __UpperCAmelCase = [] # Download the dataset __UpperCAmelCase = load_dataset('glue' , 'mrpc' ) # Create our splits __UpperCAmelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase = config['lr'] __UpperCAmelCase = int(config['num_epochs'] ) __UpperCAmelCase = int(config['seed'] ) __UpperCAmelCase = int(config['batch_size'] ) __UpperCAmelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase ) # New Code # # Create our folds: __UpperCAmelCase = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) __UpperCAmelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_fold_dataloaders( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase = AdamW(params=model.parameters() , lr=lowerCAmelCase ) # Instantiate scheduler __UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Now we train the model for epoch in range(lowerCAmelCase ): model.train() for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase = model(**lowerCAmelCase ) __UpperCAmelCase = outputs.loss __UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase = model(**lowerCAmelCase ) __UpperCAmelCase = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase , references=lowerCAmelCase , ) __UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase ) # New Code # # We also run predictions on the test set at the very end __UpperCAmelCase = [] for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase = model(**lowerCAmelCase ) __UpperCAmelCase = outputs.logits __UpperCAmelCase , __UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __UpperCAmelCase = torch.cat(lowerCAmelCase , dim=0 ) __UpperCAmelCase = torch.stack(lowerCAmelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __UpperCAmelCase = metric.compute(predictions=lowerCAmelCase , references=lowerCAmelCase ) accelerator.print('Average test metrics from all folds:' , lowerCAmelCase ) def __snake_case ( ): __UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCAmelCase , default=lowerCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=lowerCAmelCase , default=3 , help='The number of splits to perform across the dataset' ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": main()
396
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: Tuple ) -> int: '''simple docstring''' __lowerCamelCase : Optional[Any] = "" for i in table: res += inp[i - 1] return res def lowercase_ ( _lowerCamelCase: int ) -> Optional[int]: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: List[str] ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : List[str] = "" for i in range(len(_lowerCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Dict ) -> Dict: '''simple docstring''' __lowerCamelCase : Optional[int] = int("0b" + data[0] + data[-1] , 2 ) __lowerCamelCase : int = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Tuple , _lowerCamelCase: List[Any] , _lowerCamelCase: Any , _lowerCamelCase: List[str] ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : Tuple = message[:4] __lowerCamelCase : str = message[4:] __lowerCamelCase : Union[str, Any] = apply_table(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Dict = xor(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Union[str, Any] = apply_sbox(_lowerCamelCase , temp[:4] ) # noqa: E741 __lowerCamelCase : Optional[Any] = apply_sbox(_lowerCamelCase , temp[4:] ) __lowerCamelCase : Dict = "0" * (2 - len(_lowerCamelCase )) + l # noqa: E741 __lowerCamelCase : Tuple = "0" * (2 - len(_lowerCamelCase )) + r __lowerCamelCase : int = apply_table(l + r , _lowerCamelCase ) __lowerCamelCase : List[Any] = xor(_lowerCamelCase , _lowerCamelCase ) return temp + right if __name__ == "__main__": __A = input('''Enter 10 bit key: ''') __A = input('''Enter 8 bit message: ''') __A = [6, 3, 7, 4, 8, 5, 10, 9] __A = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __A = [2, 4, 3, 1] __A = [2, 6, 3, 1, 4, 8, 5, 7] __A = [4, 1, 3, 5, 7, 2, 8, 6] __A = [4, 1, 2, 3, 2, 3, 4, 1] __A = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __A = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __A = apply_table(key, paa_table) __A = temp[:5] __A = temp[5:] __A = left_shift(left) __A = left_shift(right) __A = apply_table(left + right, pa_table) __A = left_shift(left) __A = left_shift(right) __A = left_shift(left) __A = left_shift(right) __A = apply_table(left + right, pa_table) # encryption __A = apply_table(message, IP) __A = function(expansion, sa, sa, keya, temp) __A = temp[4:] + temp[:4] __A = function(expansion, sa, sa, keya, temp) __A = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption __A = apply_table(CT, IP) __A = function(expansion, sa, sa, keya, temp) __A = temp[4:] + temp[:4] __A = function(expansion, sa, sa, keya, temp) __A = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
646
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[str] = word.split() def justify(lowerCamelCase_ :list , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> str: snake_case_ : Optional[int] = max_width - width snake_case_ : Dict = len(lowerCamelCase_ ) if len(lowerCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case_ : Optional[int] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case_ : Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case_ : Optional[Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase_ ): num_spaces_between_words_list[i] += 1 snake_case_ : Dict = [] for i in range(lowerCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase_ ) snake_case_ : Optional[Any] = [] snake_case_ : Optional[int] = [] snake_case_ : Any = 0 for word in words: if width + len(lowerCamelCase_ ) + len(lowerCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase_ ) width += len(lowerCamelCase_ ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ) # reset new line and new width snake_case_ , snake_case_ : Optional[int] = [word], len(lowerCamelCase_ ) snake_case_ : str = max_width - width - len(lowerCamelCase_ ) answer.append(""" """.join(lowerCamelCase_ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
334
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class __snake_case ( unittest.TestCase): def UpperCAmelCase_ ( self, A, A, A = None, A = None ): """simple docstring""" lowerCamelCase : List[str] = None lowerCamelCase : Union[str, Any] = os.path.abspath(os.path.join('examples', 'by_feature' ) ) lowerCamelCase : Dict = os.path.abspath('examples' ) for item in os.listdir(_UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase : Union[str, Any] = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_UpperCAmelCase, feature_script=_UpperCAmelCase, tested_section='main()' if parser_only else 'training_function()', ): lowerCamelCase : Optional[int] = compare_against_test( os.path.join(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) lowerCamelCase : int = '\n'.join(_UpperCAmelCase ) if special_strings is not None: for string in special_strings: lowerCamelCase : Optional[Any] = diff.replace(_UpperCAmelCase, '' ) self.assertEqual(_UpperCAmelCase, '' ) def UpperCAmelCase_ ( self ): """simple docstring""" self.one_complete_example('complete_nlp_example.py', _UpperCAmelCase ) self.one_complete_example('complete_nlp_example.py', _UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = os.path.abspath(os.path.join('examples', 'cv_example.py' ) ) lowerCamelCase : str = [ ' ' * 16 + '{\n\n', ' ' * 20 + '\"accuracy\": eval_metric[\"accuracy\"],\n\n', ' ' * 20 + '\"f1\": eval_metric[\"f1\"],\n\n', ' ' * 20 + '\"train_loss\": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '\"epoch\": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py', _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) self.one_complete_example('complete_cv_example.py', _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''}) class __snake_case ( UpperCAmelCase__): _lowerCAmelCase = False @classmethod def UpperCAmelCase_ ( cls ): """simple docstring""" super().setUpClass() lowerCamelCase : Any = tempfile.mkdtemp() lowerCamelCase : List[Any] = os.path.join(cls._tmpdir, 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase : str = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def UpperCAmelCase_ ( cls ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'epoch_0' ) ) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() lowerCamelCase : Any = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'step_2' ) ) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir, 'epoch_0' )} '''.split() lowerCamelCase : List[str] = run_command(self._launch_args + testargs, return_stdout=_UpperCAmelCase ) self.assertNotIn('epoch 0:', _UpperCAmelCase ) self.assertIn('epoch 1:', _UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir, 'step_2' )} '''.split() lowerCamelCase : Optional[int] = run_command(self._launch_args + testargs, return_stdout=_UpperCAmelCase ) if torch.cuda.is_available(): lowerCamelCase : Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase : int = 1 if num_processes > 1: self.assertNotIn('epoch 0:', _UpperCAmelCase ) self.assertIn('epoch 1:', _UpperCAmelCase ) else: self.assertIn('epoch 0:', _UpperCAmelCase ) self.assertIn('epoch 1:', _UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ, {'TESTING_MOCKED_DATALOADERS': '0'} ): lowerCamelCase : Tuple = run_command(self._launch_args + testargs, return_stdout=_UpperCAmelCase ) lowerCamelCase : str = re.findall('({.+})', _UpperCAmelCase ) lowerCamelCase : Dict = [r for r in results if 'accuracy' in r][-1] lowerCamelCase : Any = ast.literal_eval(_UpperCAmelCase ) self.assertGreaterEqual(results['accuracy'], 0.75 ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'} ) def UpperCAmelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase : Optional[int] = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase, 'tracking' ) ) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
320
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
0
from __future__ import annotations lowercase_ = 'Muhammad Umer Farooq' lowercase_ = 'MIT' lowercase_ = '1.0.0' lowercase_ = 'Muhammad Umer Farooq' lowercase_ = '[email protected]' lowercase_ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self , lowerCAmelCase ) -> None: '''simple docstring''' super().__init__() _lowercase =[] _lowercase =domain def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _lowercase =parse.urljoin(self.domain , _UpperCAmelCase ) self.urls.append(_UpperCAmelCase ) def a ( A__ : str ) -> str: """simple docstring""" return ".".join(get_sub_domain_name(A__ ).split('.' )[-2:] ) def a ( A__ : str ) -> str: """simple docstring""" return parse.urlparse(A__ ).netloc def a ( A__ : str = "https://github.com" ) -> list[str]: """simple docstring""" _lowercase =get_domain_name(A__ ) # Initialize the parser _lowercase =Parser(A__ ) try: # Open URL _lowercase =requests.get(A__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _lowercase =set() for link in parser.urls: # open URL. # read = requests.get(link) try: _lowercase =requests.get(A__ ) # Get the valid email. _lowercase =re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(A__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(A__ ) if __name__ == "__main__": lowercase_ = emails_from_url('https://github.com') print(f"{len(emails)} emails found:") print('\n'.join(sorted(emails)))
291
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE (UpperCAmelCase__ ): """simple docstring""" _a : List[str] = '''ibert''' def __init__( self , UpperCamelCase__=30_522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3_072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=False , UpperCamelCase__="none" , **UpperCamelCase__ , ): """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = quant_mode a_ = force_dequant class __SCREAMING_SNAKE_CASE (UpperCAmelCase__ ): """simple docstring""" @property def _a ( self ): """simple docstring""" if self.task == "multiple-choice": a_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
536
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase_ = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ = '''BlipImageProcessor''' lowerCamelCase_ = '''AutoTokenizer''' def __init__( self , lowercase , lowercase , lowercase ): """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase ) # add QFormer tokenizer A_ : List[str] = qformer_tokenizer def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) A_ : Dict = BatchFeature() if text is not None: A_ : List[Any] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) encoding.update(_UpperCAmelCase ) A_ : Union[str, Any] = self.qformer_tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) A_ : Optional[Any] = qformer_text_encoding.pop('input_ids' ) A_ : Optional[Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: A_ : Any = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) encoding.update(_UpperCAmelCase ) return encoding def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = self.tokenizer.model_input_names A_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCAmelCase_ ( self , lowercase , **lowercase ): """simple docstring""" if os.path.isfile(_UpperCAmelCase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) A_ : Dict = os.path.join(_UpperCAmelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(_UpperCAmelCase ) return super().save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , **lowercase ): """simple docstring""" A_ : int = AutoTokenizer.from_pretrained(_UpperCAmelCase , subfolder='qformer_tokenizer' ) A_ : str = cls._get_arguments_from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) args.append(_UpperCAmelCase ) return cls(*_UpperCAmelCase )
558
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: int=18 , UpperCamelCase_: Union[str, Any]=30 , UpperCamelCase_: Optional[Any]=400 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[Any]=[0.5, 0.5, 0.5] , UpperCamelCase_: List[str]=[0.5, 0.5, 0.5] , ): UpperCamelCase_ =size if size is not None else {"height": 18, "width": 18} UpperCamelCase_ =parent UpperCamelCase_ =batch_size UpperCamelCase_ =num_channels UpperCamelCase_ =image_size UpperCamelCase_ =min_resolution UpperCamelCase_ =max_resolution UpperCamelCase_ =do_resize UpperCamelCase_ =size UpperCamelCase_ =do_normalize UpperCamelCase_ =image_mean UpperCamelCase_ =image_std def UpperCamelCase__ ( self: Optional[int] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = DPTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =DPTImageProcessingTester(self ) @property def UpperCamelCase__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "size" ) ) def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCamelCase__ ( self: str ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input UpperCamelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ =image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input UpperCamelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ =image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ =image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
391
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=9_9 , lowerCamelCase_=0 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_="last" , lowerCamelCase_=None , lowerCamelCase_=None , ) -> int: _a : Tuple = parent _a : Any = batch_size _a : Tuple = seq_length _a : Optional[Any] = is_training _a : List[Any] = use_input_lengths _a : Optional[Any] = use_token_type_ids _a : int = use_labels _a : int = gelu_activation _a : int = sinusoidal_embeddings _a : Optional[Any] = causal _a : List[str] = asm _a : Optional[Any] = n_langs _a : List[str] = vocab_size _a : Tuple = n_special _a : Dict = hidden_size _a : str = num_hidden_layers _a : Any = num_attention_heads _a : Optional[Any] = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : List[str] = max_position_embeddings _a : Optional[Any] = type_vocab_size _a : Optional[Any] = type_sequence_label_size _a : Dict = initializer_range _a : Any = num_labels _a : str = num_choices _a : str = summary_type _a : Optional[Any] = use_proj _a : Optional[Any] = scope def __UpperCamelCase ( self ) -> List[str]: _a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[Any] = None if self.use_input_lengths: _a : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a : str = None if self.use_token_type_ids: _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a : List[Any] = None _a : Tuple = None _a : List[str] = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : str = ids_tensor([self.batch_size] , 2 ).float() _a : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _a : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase ( self ) -> Dict: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: _a : int = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : int = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) _a : Optional[int] = model(_UpperCAmelCase , langs=_UpperCAmelCase ) _a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[int]: _a : int = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Any = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: _a : int = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Dict = model(_UpperCAmelCase ) _a : str = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[Any]: _a : Dict = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : str = model(_UpperCAmelCase ) _a : Tuple = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) _a : List[str] = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((_a ) , ) : Optional[int] = result_with_labels.to_tuple() _a : Optional[Any] = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((_a ) , ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: _a : Optional[int] = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Optional[Any] = model(_UpperCAmelCase ) _a : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> str: _a : Dict = self.num_labels _a : List[str] = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: _a : int = self.num_choices _a : List[Any] = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Dict = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self ) -> Optional[Any]: _a : Optional[int] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Union[str, Any] = config_and_inputs _a : Union[str, Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __lowerCAmelCase : Union[str, Any] = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> Optional[int]: _a : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _a : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) _a : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def __UpperCamelCase ( self ) -> Union[str, Any]: _a : Union[str, Any] = FlaubertModelTester(self ) _a : Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=3_7 ) def __UpperCamelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Optional[int]: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def __UpperCamelCase ( self ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def __UpperCamelCase ( self ) -> Tuple: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def __UpperCamelCase ( self ) -> Any: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def __UpperCamelCase ( self ) -> Optional[Any]: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def __UpperCamelCase ( self ) -> Union[str, Any]: _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def __UpperCamelCase ( self ) -> Optional[Any]: _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def __UpperCamelCase ( self ) -> List[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def __UpperCamelCase ( self ) -> int: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _a : Tuple = True _a : int = model_class(config=_UpperCAmelCase ) _a : int = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _a : List[Any] = torch.jit.trace( _UpperCAmelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'traced_model.pt' ) ) _a : Union[str, Any] = torch.jit.load(os.path.join(_UpperCAmelCase , 'traced_model.pt' ) , map_location=_UpperCAmelCase ) loaded(inputs_dict['input_ids'].to(_UpperCAmelCase ) , inputs_dict['attention_mask'].to(_UpperCAmelCase ) ) @require_torch class a ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self ) -> Dict: _a : int = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) _a : List[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): _a : Optional[Any] = model(_UpperCAmelCase )[0] _a : int = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _UpperCAmelCase ) _a : Dict = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
120
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging A : Dict = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): SCREAMING_SNAKE_CASE_ = XLNetConfig.from_json_file(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) SCREAMING_SNAKE_CASE_ = finetuning_task SCREAMING_SNAKE_CASE_ = GLUE_TASKS_NUM_LABELS[finetuning_task] SCREAMING_SNAKE_CASE_ = XLNetForSequenceClassification(__UpperCamelCase ) elif "squad" in finetuning_task: SCREAMING_SNAKE_CASE_ = finetuning_task SCREAMING_SNAKE_CASE_ = XLNetForQuestionAnswering(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = XLNetLMHeadModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) print(F'''Save PyTorch model to {os.path.abspath(__UpperCamelCase )}''' ) torch.save(model.state_dict() , __UpperCamelCase ) print(F'''Save configuration file to {os.path.abspath(__UpperCamelCase )}''' ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) A : Any = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
140
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
0
'''simple docstring''' import socket def __snake_case ( ): __UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __UpperCAmelCase = socket.gethostname() __UpperCAmelCase = 1_2312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: __UpperCAmelCase = sock.recv(1024 ) if not data: break out_file.write(lowerCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
396
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } __A = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def lowercase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: int , _lowerCamelCase: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: Any ) -> int: '''simple docstring''' for attribute in key.split("." ): __lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __lowerCamelCase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCamelCase : Union[str, Any] = value elif weight_type == "weight_v": __lowerCamelCase : List[Any] = value elif weight_type == "bias": __lowerCamelCase : Dict = value else: __lowerCamelCase : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : Any = [] __lowerCamelCase : List[Any] = fairseq_model.state_dict() __lowerCamelCase : Any = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) __lowerCamelCase : int = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase : List[str] = True if "*" in mapped_key: __lowerCamelCase : List[str] = name.split(_lowerCamelCase )[0].split("." )[-2] __lowerCamelCase : Union[str, Any] = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: __lowerCamelCase : str = "weight_g" elif "weight_v" in name: __lowerCamelCase : List[Any] = "weight_v" elif "bias" in name: __lowerCamelCase : List[str] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase : Any = "weight" else: __lowerCamelCase : Optional[int] = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Any , _lowerCamelCase: str , _lowerCamelCase: Any , _lowerCamelCase: List[str] ) -> List[Any]: '''simple docstring''' __lowerCamelCase : Tuple = full_name.split("conv_layers." )[-1] __lowerCamelCase : int = name.split("." ) __lowerCamelCase : int = int(items[0] ) __lowerCamelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Tuple , _lowerCamelCase: Any=None , _lowerCamelCase: Optional[int]=None , _lowerCamelCase: Optional[Any]=True ) -> List[Any]: '''simple docstring''' if config_path is not None: __lowerCamelCase : Optional[int] = UniSpeechSatConfig.from_pretrained(_lowerCamelCase ) else: __lowerCamelCase : Any = UniSpeechSatConfig() __lowerCamelCase : Tuple = "" if is_finetuned: __lowerCamelCase : Union[str, Any] = UniSpeechSatForCTC(_lowerCamelCase ) else: __lowerCamelCase : int = UniSpeechSatForPreTraining(_lowerCamelCase ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) __lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __A = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
646
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any=False ): '''simple docstring''' snake_case_ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): snake_case_ : List[Any] = """segformer.encoder.""" + key if key.startswith("""backbone""" ): snake_case_ : Union[str, Any] = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case_ : Any = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] snake_case_ : Dict = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(lowerCamelCase_ )-1}''' ) if "norm" in key: snake_case_ : str = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case_ : Union[str, Any] = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] snake_case_ : Optional[Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(lowerCamelCase_ )-1}''' ) if "layer_norm1" in key: snake_case_ : str = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: snake_case_ : str = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 snake_case_ : Dict = key[key.find("""block""" ) + len("""block""" )] snake_case_ : List[Any] = key.replace(F'''block{idx}''' , F'''block.{int(lowerCamelCase_ )-1}''' ) if "attn.q" in key: snake_case_ : Union[str, Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: snake_case_ : Optional[Any] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: snake_case_ : Optional[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: snake_case_ : List[Any] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: snake_case_ : int = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: snake_case_ : List[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: snake_case_ : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) snake_case_ : Optional[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case_ : Optional[int] = key[key.find("""linear_c""" ) + len("""linear_c""" )] snake_case_ : int = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(lowerCamelCase_ )-1}''' ) if key.startswith("""head""" ): snake_case_ : List[str] = key.replace("""head""" , """classifier""" ) snake_case_ : Optional[int] = value return new_state_dict def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case_ : Tuple = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) snake_case_ : int = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict snake_case_ : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] snake_case_ : Optional[int] = kv_bias[: config.hidden_sizes[i]] snake_case_ : List[str] = kv_weight[ config.hidden_sizes[i] :, : ] snake_case_ : List[str] = kv_bias[ config.hidden_sizes[i] : ] def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : Optional[int] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return image @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : int = SegformerConfig() snake_case_ : Dict = False # set attributes based on model_name snake_case_ : Optional[Any] = """huggingface/label-files""" if "segformer" in model_name: snake_case_ : Tuple = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: snake_case_ : Optional[int] = 1_50 snake_case_ : Optional[int] = """ade20k-id2label.json""" snake_case_ : int = (1, 1_50, 1_28, 1_28) elif "city" in model_name: snake_case_ : int = 19 snake_case_ : Optional[int] = """cityscapes-id2label.json""" snake_case_ : str = (1, 19, 1_28, 1_28) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: snake_case_ : Optional[Any] = True snake_case_ : Optional[int] = model_name[4:6] snake_case_ : int = 10_00 snake_case_ : str = """imagenet-1k-id2label.json""" snake_case_ : Tuple = (1, 10_00) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes snake_case_ : int = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : List[str] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} snake_case_ : List[Any] = idalabel snake_case_ : int = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case_ : Tuple = [64, 1_28, 3_20, 5_12] snake_case_ : List[str] = 2_56 elif size == "b2": snake_case_ : Any = [64, 1_28, 3_20, 5_12] snake_case_ : Optional[int] = 7_68 snake_case_ : Optional[int] = [3, 4, 6, 3] elif size == "b3": snake_case_ : int = [64, 1_28, 3_20, 5_12] snake_case_ : Any = 7_68 snake_case_ : str = [3, 4, 18, 3] elif size == "b4": snake_case_ : List[str] = [64, 1_28, 3_20, 5_12] snake_case_ : List[str] = 7_68 snake_case_ : List[str] = [3, 8, 27, 3] elif size == "b5": snake_case_ : Optional[Any] = [64, 1_28, 3_20, 5_12] snake_case_ : Optional[Any] = 7_68 snake_case_ : Union[str, Any] = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) snake_case_ : List[str] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCamelCase_ , align=lowerCamelCase_ , do_random_crop=lowerCamelCase_ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : List[Any] = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: snake_case_ : Optional[Any] = torch.load(lowerCamelCase_ , map_location=torch.device("""cpu""" ) ) else: snake_case_ : Union[str, Any] = torch.load(lowerCamelCase_ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys snake_case_ : str = rename_keys(lowerCamelCase_ , encoder_only=lowerCamelCase_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowerCamelCase_ , lowerCamelCase_ ) # create HuggingFace model and load state dict if encoder_only: snake_case_ : Tuple = False snake_case_ : str = SegformerForImageClassification(lowerCamelCase_ ) else: snake_case_ : Optional[Any] = SegformerForSemanticSegmentation(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() # forward pass snake_case_ : int = model(lowerCamelCase_ ) snake_case_ : Optional[int] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case_ : Optional[Any] = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": snake_case_ : int = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.35_29, -10.03_04], [-7.5_208, -9.4_103, -9.6_239]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": snake_case_ : Any = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": snake_case_ : Tuple = torch.tensor( [ [[-9.0_878, -10.20_81, -10.18_91], [-9.3_144, -10.79_41, -10.98_43], [-9.2_294, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": snake_case_ : Dict = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": snake_case_ : Optional[int] = torch.tensor( [ [[-9.5_524, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.5_842, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case_ : Dict = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": snake_case_ : Optional[Any] = torch.tensor( [ [[-7.8_217, -9.8_767, -10.17_17], [-9.4_438, -10.90_58, -11.40_47], [-9.7_939, -12.34_95, -12.10_79]], [[-7.1_514, -9.5_336, -10.08_60], [-9.7_776, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": snake_case_ : Optional[Any] = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": snake_case_ : Union[str, Any] = torch.tensor( [ [[-9.4_959, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.8_905, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case_ : Any = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case_ : int = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case_ : str = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case_ : int = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case_ : Union[str, Any] = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: snake_case_ : Optional[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase_ , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : int = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
334
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
'''simple docstring''' import requests A = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : int = requests.get(_NEWS_API + bbc_news_api_key).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1): print(F'''{i}.) {article['title']}''') if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
320
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
0
from __future__ import annotations def a ( A__ : list[float] , A__ : list[float] ) -> float: """simple docstring""" _lowercase =sorted(numsa + numsa ) _lowercase , _lowercase =divmod(len(A__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = [float(x) for x in input('Enter the elements of first array: ').split()] lowercase_ = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
291
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase = 'base_with_context' def __UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : Tuple ): """simple docstring""" a_ = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) a_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase_ ) for lyr_num, lyr in enumerate(model.encoders ): a_ = weights[F'layers_{lyr_num}'] a_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) a_ = ly_weight['attention'] a_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : str ): """simple docstring""" a_ = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) a_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase_ ) for lyr_num, lyr in enumerate(model.encoders ): a_ = weights[F'layers_{lyr_num}'] a_ = ly_weight['attention'] a_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) a_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) a_ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __UpperCamelCase ( lowercase_ : Optional[Any] , lowercase_ : Tuple ): """simple docstring""" a_ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) a_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase_ ) a_ = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): a_ = weights[F'layers_{lyr_num}'] a_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) a_ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) a_ = ly_weight['self_attention'] a_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) a_ = ly_weight['MultiHeadDotProductAttention_0'] a_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) a_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) a_ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) a_ = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) a_ = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def __UpperCamelCase ( lowercase_ : int ): """simple docstring""" a_ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) a_ = jnp.tree_util.tree_map(onp.array , lowercase_ ) a_ = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] a_ = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) a_ = inference.parse_training_gin_file(lowercase_ , lowercase_ ) a_ = inference.InferenceModel(args.checkpoint_path , lowercase_ ) a_ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) a_ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) a_ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) a_ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) a_ = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , lowercase_ ) a_ = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , lowercase_ ) a_ = load_decoder(ta_checkpoint['target']['decoder'] , lowercase_ ) a_ = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) a_ = SpectrogramDiffusionPipeline( notes_encoder=lowercase_ , continuous_encoder=lowercase_ , decoder=lowercase_ , scheduler=lowercase_ , melgan=lowercase_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) __lowerCAmelCase = parser.parse_args() main(args)
536
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase = None , lowercase = None , lowercase=None , lowercase=None ): """simple docstring""" if not conversation_id: A_ : int = uuid.uuida() if past_user_inputs is None: A_ : str = [] if generated_responses is None: A_ : str = [] A_ : str = conversation_id A_ : List[str] = past_user_inputs A_ : int = generated_responses A_ : Union[str, Any] = text def __eq__( self , lowercase ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase_ ( self , lowercase , lowercase = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) A_ : Union[str, Any] = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: A_ : Optional[Any] = text def lowerCAmelCase_ ( self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A_ : Dict = None def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" self.generated_responses.append(_UpperCAmelCase ) def lowerCAmelCase_ ( self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): """simple docstring""" A_ : Union[str, Any] = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): A_ : Optional[Any] = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( UpperCAmelCase__ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) if self.tokenizer.pad_token_id is None: A_ : Tuple = self.tokenizer.eos_token def lowerCAmelCase_ ( self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): """simple docstring""" A_ : Dict = {} A_ : str = {} A_ : Dict = {} if min_length_for_response is not None: A_ : List[str] = min_length_for_response if minimum_tokens is not None: A_ : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: A_ : Any = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A_ : Optional[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowercase , lowercase=0 , **lowercase ): """simple docstring""" A_ : Tuple = super().__call__(_UpperCAmelCase , num_workers=_UpperCAmelCase , **_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCAmelCase_ ( self , lowercase , lowercase=3_2 ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): A_ : Dict = self.tokenizer._build_conversation_input_ids(_UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version A_ : Dict = self._legacy_parse_and_tokenize(_UpperCAmelCase ) if self.framework == "pt": A_ : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": A_ : str = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase_ ( self , lowercase , lowercase=1_0 , **lowercase ): """simple docstring""" A_ : Optional[Any] = generate_kwargs.get('max_length' , self.model.config.max_length ) A_ : int = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) A_ : str = max_length - minimum_tokens A_ : List[Any] = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: A_ : List[Any] = model_inputs['attention_mask'][:, -trim:] A_ : str = model_inputs.pop('conversation' ) A_ : str = max_length A_ : Optional[int] = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) if self.model.config.is_encoder_decoder: A_ : Dict = 1 else: A_ : Union[str, Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase_ ( self , lowercase , lowercase=True ): """simple docstring""" A_ : Optional[Any] = model_outputs['output_ids'] A_ : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) A_ : Dict = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_UpperCAmelCase ) return conversation def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = self.tokenizer.eos_token_id A_ : Dict = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > self.tokenizer.model_max_length: A_ : int = input_ids[-self.tokenizer.model_max_length :] return input_ids
558
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ = sys.version_info >= (3, 10) def _UpperCamelCase ( A=None , A=None ): return field(default_factory=lambda: default , metadata=A ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Tuple = 42 __lowerCamelCase : Optional[Any] = 42 __lowerCamelCase : Optional[int] = 42 __lowerCamelCase : Optional[int] = 42 @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : int = 42 __lowerCamelCase : List[str] = field(default="toto" , metadata={"help": "help message"} ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Any = False __lowerCamelCase : Tuple = True __lowerCamelCase : int = None class __lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "titi" __lowerCamelCase : Any = "toto" class __lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "titi" __lowerCamelCase : str = "toto" __lowerCamelCase : Optional[int] = 42 @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : List[str] = "toto" def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =BasicEnum(self.foo ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Tuple = "toto" def UpperCamelCase__ ( self: List[str] ): UpperCamelCase_ =MixedTypeEnum(self.foo ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : int = None __lowerCamelCase : Optional[int] = field(default=UpperCAmelCase__ , metadata={"help": "help message"} ) __lowerCamelCase : Dict = None __lowerCamelCase : List[Any] = list_field(default=[] ) __lowerCamelCase : Dict = list_field(default=[] ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Optional[Any] = list_field(default=[] ) __lowerCamelCase : Union[str, Any] = list_field(default=[1, 2, 3] ) __lowerCamelCase : int = list_field(default=["Hallo", "Bonjour", "Hello"] ) __lowerCamelCase : List[Any] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Dict = field() __lowerCamelCase : Union[str, Any] = field() __lowerCamelCase : Union[str, Any] = field() def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =BasicEnum(self.required_enum ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Optional[int] = 42 __lowerCamelCase : List[str] = field() __lowerCamelCase : str = None __lowerCamelCase : int = field(default="toto" , metadata={"help": "help message"} ) __lowerCamelCase : Union[str, Any] = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : List[Any] = False __lowerCamelCase : List[Any] = True __lowerCamelCase : Optional[int] = None @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Dict = None __lowerCamelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "help message"} ) __lowerCamelCase : Dict = None __lowerCamelCase : Union[str, Any] = list_field(default=[] ) __lowerCamelCase : Tuple = list_field(default=[] ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self: Any , UpperCamelCase_: argparse.ArgumentParser , UpperCamelCase_: argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase_ ={k: v for k, v in vars(_UpperCAmelCase ).items() if k != "container"} UpperCamelCase_ ={k: v for k, v in vars(_UpperCAmelCase ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , _UpperCAmelCase ) and yy.get("choices" , _UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](_UpperCAmelCase ) , yy["type"](_UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("--bar" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("--baz" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("--flag" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="?" ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((UpperCamelCase_ ) , ) =parser.parse_args_into_dataclasses(_UpperCAmelCase , look_for_args_file=_UpperCAmelCase ) self.assertFalse(example.flag ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=_UpperCAmelCase ) expected.add_argument("--baz" , default="toto" , type=_UpperCAmelCase , help="help message" ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="?" ) expected.add_argument("--baz" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=_UpperCAmelCase , dest="baz" ) expected.add_argument("--opt" , type=_UpperCAmelCase , default=_UpperCAmelCase ) UpperCamelCase_ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) UpperCamelCase_ =parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) UpperCamelCase_ =parser.parse_args(["--foo", "--baz"] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) UpperCamelCase_ =parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) UpperCamelCase_ =parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase_ =parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase_ =parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase_ =parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase_ =parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) UpperCamelCase_ =parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCamelCase__ ( self: List[str] ): @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : List[Any] = "toto" UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase_ =parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase_ =parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=_UpperCAmelCase ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=_UpperCAmelCase ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=_UpperCAmelCase ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual( _UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase_ =parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument("--bar" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="help message" ) expected.add_argument("--baz" , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument("--ces" , nargs="+" , default=[] , type=_UpperCAmelCase ) expected.add_argument("--des" , nargs="+" , default=[] , type=_UpperCAmelCase ) UpperCamelCase_ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , bar=_UpperCAmelCase , baz=_UpperCAmelCase , ces=[] , des=[] ) ) UpperCamelCase_ =parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def UpperCamelCase__ ( self: str ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("--required_str" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=_UpperCAmelCase , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=_UpperCAmelCase , ) expected.add_argument("--opt" , type=_UpperCAmelCase , default=_UpperCAmelCase ) expected.add_argument("--baz" , default="toto" , type=_UpperCAmelCase , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } UpperCamelCase_ =parser.parse_dict(_UpperCAmelCase )[0] UpperCamelCase_ =BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(_UpperCAmelCase , parser.parse_dict , _UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ =os.path.join(_UpperCAmelCase , "temp_json" ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] UpperCamelCase_ =BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ =os.path.join(_UpperCAmelCase , "temp_yaml" ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] UpperCamelCase_ =BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
391
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCAmelCase_ ( A , A ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _a : Optional[Any] = flax_key_tuple[:-1] + ('weight',) _a : Optional[int] = torch.permute(A , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(A ): # linear layer _a : Tuple = flax_key_tuple[:-1] + ('weight',) _a : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _a : List[Any] = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' if "metadata" in layer: _a : Tuple = layer.split('metadata' ) _a : Union[str, Any] = ''.join(split_layer[0] )[:-1] _a : Dict = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: _a : Any = layer.split('kvstore' ) _a : str = ''.join(split_layer[0] )[:-1] _a : Optional[int] = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: _a : Optional[int] = layer.split('/' ) _a : Optional[Any] = '/'.join(split_layer[:-1] ) _a : int = (split_layer[-1],) if "kvstore/path" in layer: _a : List[str] = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _a : Dict = 'file' else: _a : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : Any = rename_keys(A ) _a : List[Any] = {} for k, v in current_block.items(): _a : str = v _a : Optional[int] = new_current_block torch.save(A , A ) def UpperCAmelCase_ ( A , A , A , A , A = WEIGHTS_NAME ): '''simple docstring''' _a : str = convert_file_size_to_int(A ) _a : Dict = [] _a : Optional[Any] = {} _a : Tuple = 0 _a : Union[str, Any] = 0 os.makedirs(A , exist_ok=A ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: _a : List[Any] = serialization.msgpack_restore(fp.read() )['optimizer']['target'] _a : Tuple = flatten_dict(A , sep='/' ) _a : Tuple = {} for layer in checkpoint_info.keys(): _a , _a , _a : int = get_key_and_tensorstore_dict( A , A , A ) if curr_real_layer_name in all_layers: _a : str = content else: _a : Optional[int] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _a : Tuple = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _a : Optional[Any] = torch.tensor(A ) _a : Any = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _a , _a : List[Any] = rename_base_flax_keys(tuple(key.split('/' ) ) , A ) _a : Dict = '/'.join(A ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _a : int = os.path.join( A , weights_name.replace('.bin' , f'''-{len(A )+1:05d}-of-???.bin''' ) ) rename_and_save_block(A , A ) sharded_state_dicts.append(current_block.keys() ) del current_block _a : Any = {} _a : Dict = 0 _a : List[str] = raw_weights.to(getattr(A , A ) ) current_block_size += weight_size total_size += weight_size # Add the last block _a : Union[str, Any] = os.path.join(A , weights_name.replace('.bin' , f'''-{len(A )+1:05d}-of-???.bin''' ) ) rename_and_save_block(A , A ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(A ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _a : str = {} _a : List[Any] = {} for idx, shard in enumerate(A ): _a : Tuple = weights_name.replace( '.bin' , f'''-{idx+1:05d}-of-{len(A ):05d}.bin''' ) # len(sharded_state_dicts):05d} _a : str = os.path.join(A , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(A , os.path.join(A , A ) ) _a : Optional[Any] = shard for key in shard: _a : Any = shard_file # Add the metadata _a : Optional[int] = {'total_size': total_size} _a : Optional[int] = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(A , A ) , 'w' , encoding='utf-8' ) as f: _a : Any = json.dumps(A , indent=2 , sort_keys=A ) + '\n' f.write(A ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase_ : Tuple = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCAmelCase_ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _a : str = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) _a : Any = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) _a : int = TaTokenizer.from_pretrained('t5-small' ) _a : Union[str, Any] = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' _a : str = tokenizer(A , return_tensors='pt' ).input_ids _a : str = model.generate(A , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
120
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
0
"""simple docstring""" def a ( __UpperCAmelCase : list , __UpperCAmelCase : list , __UpperCAmelCase : int ) -> int: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __magic_name__: Tuple = [p / w for p, w in zip(__UpperCAmelCase , __UpperCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order __magic_name__: Tuple = sorted(__UpperCAmelCase ) # declaring useful variables __magic_name__: Optional[Any] = len(__UpperCAmelCase ) __magic_name__: List[Any] = 0 __magic_name__: Dict = 0 __magic_name__: Any = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __magic_name__: Tuple = sorted_profit_by_weight[length - i - 1] __magic_name__: Optional[Any] = profit_by_weight.index(__UpperCAmelCase ) __magic_name__: List[str] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) __lowerCamelCase = [int(x) for x in input('Input profits separated by spaces: ').split()] __lowerCamelCase = [int(x) for x in input('Input weights separated by spaces: ').split()] __lowerCamelCase = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
96
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
0
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *__UpperCamelCase , **__UpperCamelCase ): return AutoConfig.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *__UpperCamelCase , **__UpperCamelCase ): return AutoTokenizer.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModel.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModelForCausalLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModelForMaskedLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModelForSequenceClassification.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModelForQuestionAnswering.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
140
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _UpperCamelCase : Optional[Any] = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex _UpperCamelCase : Optional[Any] = 10 _UpperCamelCase : Any = 2_56 def __snake_case ( lowerCAmelCase : List[str] ): if len(lowerCAmelCase ) < MIN_NUM_TOKENS: return None __UpperCAmelCase = MinHash(num_perm=lowerCAmelCase ) for token in set(lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def __snake_case ( lowerCAmelCase : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase ) if len(t.strip() ) > 0} class _lowercase: """simple docstring""" def __init__( self: Optional[int] ,*, a: float = 0.85 ,): __UpperCAmelCase = duplication_jaccard_threshold __UpperCAmelCase = NUM_PERM __UpperCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold ,num_perm=self._num_perm ) __UpperCAmelCase = defaultdict(_UpperCAmelCase ) def snake_case ( self: List[Any] ,a: Tuple ,a: MinHash ): __UpperCAmelCase = self._index.query(_UpperCAmelCase ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(_UpperCAmelCase ,_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCAmelCase ) def snake_case ( self: List[Any] ): __UpperCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): __UpperCAmelCase = [base] + list(_UpperCAmelCase ) # reformat the cluster to be a list of dict __UpperCAmelCase = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(_UpperCAmelCase ) return duplicate_clusters def snake_case ( self: int ,a: str ): __UpperCAmelCase = self.get_duplicate_clusters() with open(_UpperCAmelCase ,'w' ) as f: json.dump(_UpperCAmelCase ,_UpperCAmelCase ) def __snake_case ( lowerCAmelCase : Any ): __UpperCAmelCase , __UpperCAmelCase = element __UpperCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __snake_case ( lowerCAmelCase : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def __snake_case ( lowerCAmelCase : Type[Dataset] , lowerCAmelCase : float ): __UpperCAmelCase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase , lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): __UpperCAmelCase = get_tokens(lowerCAmelCase ) __UpperCAmelCase = get_tokens(lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _UpperCamelCase : Tuple = None def __snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): __UpperCAmelCase = [] for elementa in cluster: __UpperCAmelCase = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: __UpperCAmelCase = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(lowerCAmelCase , lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: __UpperCAmelCase = 1 extremes.append(lowerCAmelCase ) return extremes def __snake_case ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] ): global _shared_dataset __UpperCAmelCase = dataset __UpperCAmelCase = [] __UpperCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase , lowerCAmelCase , ) , total=len(lowerCAmelCase ) , ): extremes_list.append(lowerCAmelCase ) return extremes_list def __snake_case ( lowerCAmelCase : Type[Dataset] , lowerCAmelCase : float = 0.85 ): __UpperCAmelCase = make_duplicate_clusters(lowerCAmelCase , lowerCAmelCase ) __UpperCAmelCase = {x['base_index'] for cluster in duplicate_clusters for x in cluster} __UpperCAmelCase = {} __UpperCAmelCase = find_extremes(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: __UpperCAmelCase = element __UpperCAmelCase = duplicate_indices - set(extreme_dict.keys() ) __UpperCAmelCase = dataset.filter(lambda lowerCAmelCase , lowerCAmelCase : idx not in remove_indices , with_indices=lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __UpperCAmelCase = element['base_index'] in extreme_dict if element["is_extreme"]: __UpperCAmelCase = extreme_dict[element['base_index']]['copies'] print(F"""Original dataset size: {len(lowerCAmelCase )}""" ) print(F"""Number of duplicate clusters: {len(lowerCAmelCase )}""" ) print(F"""Files in duplicate cluster: {len(lowerCAmelCase )}""" ) print(F"""Unique files in duplicate cluster: {len(lowerCAmelCase )}""" ) print(F"""Filtered dataset size: {len(lowerCAmelCase )}""" ) return ds_filter, duplicate_clusters
396
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __A = False class _snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowerCamelCase : List[Any] = "A painting of a squirrel eating a burger " __lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCamelCase : List[str] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) __lowerCamelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowerCamelCase : str = generator.manual_seed(0 ) __lowerCamelCase : List[Any] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = "A painting of a squirrel eating a burger " __lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCamelCase : Dict = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __lowerCamelCase : Optional[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : int = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
646
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __A : List[Any] = None __A : Optional[Any] = logging.get_logger(__name__) __A : str = '▁' __A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __A : Optional[int] = { 'google/pegasus-xsum': 512, } class __UpperCamelCase ( UpperCAmelCase__ ): lowercase : Dict = VOCAB_FILES_NAMES lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple = PegasusTokenizer lowercase : List[str] = ['input_ids', 'attention_mask'] def __init__( self :Tuple ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Union[str, Any]="<pad>" ,_UpperCamelCase :int="</s>" ,_UpperCamelCase :int="<unk>" ,_UpperCamelCase :Optional[Any]="<mask_2>" ,_UpperCamelCase :Optional[Any]="<mask_1>" ,_UpperCamelCase :Optional[Any]=None ,_UpperCamelCase :Dict=1_0_3 ,**_UpperCamelCase :Dict ,): snake_case_ : List[str] = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError( F'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' F''' {type(_UpperCAmelCase )}''' ) snake_case_ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) ,self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case_ : List[str] = additional_special_tokens_extended else: snake_case_ : Any = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 ,self.offset )] super().__init__( _UpperCAmelCase ,tokenizer_file=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,mask_token_sent=_UpperCAmelCase ,offset=_UpperCAmelCase ,additional_special_tokens=_UpperCAmelCase ,**_UpperCAmelCase ,) snake_case_ : Dict = vocab_file snake_case_ : str = False if not self.vocab_file else True def a__ ( self :Optional[Any] ,_UpperCamelCase :Tuple ): snake_case_ : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def a__ ( self :Optional[Any] ,_UpperCamelCase :List ,_UpperCamelCase :Optional[List] = None ,_UpperCamelCase :bool = False ): if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def a__ ( self :int ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self :str ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : List[Any] = os.path.join( _UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file ,_UpperCAmelCase ) return (out_vocab_file,)
334
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCAmelCase ( UpperCAmelCase__ : int = 8): lowerCamelCase : Optional[Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCAmelCase__) for _ in range(UpperCAmelCase__)) def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int): i -= len(UpperCAmelCase__) lowerCamelCase : Optional[int] = i // 3 lowerCamelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase : Union[str, Any] = ( chars_incl + random(UpperCAmelCase__ , quotient + remainder) + random(UpperCAmelCase__ , UpperCAmelCase__) + random(UpperCAmelCase__ , UpperCAmelCase__) ) lowerCamelCase : Any = list(UpperCAmelCase__) shuffle(UpperCAmelCase__) return "".join(UpperCAmelCase__) # random is a generalised function for letters, characters and numbers def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int): return "".join(secrets.choice(UpperCAmelCase__) for _ in range(UpperCAmelCase__)) def UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any]): pass # Put your code here... def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple): pass # Put your code here... def UpperCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any]): pass # Put your code here... def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int = 8): if len(UpperCAmelCase__) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase : Dict = any(char in ascii_uppercase for char in password) lowerCamelCase : Any = any(char in ascii_lowercase for char in password) lowerCamelCase : Optional[int] = any(char in digits for char in password) lowerCamelCase : Optional[int] = any(char in punctuation for char in password) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCAmelCase ( ): lowerCamelCase : Optional[int] = int(input('Please indicate the max length of your password: ').strip()) lowerCamelCase : Union[str, Any] = input( 'Please indicate the characters that must be in your password: ').strip() print('Password generated:' , password_generator(UpperCAmelCase__)) print( 'Alternative Password generated:' , alternative_password_generator(UpperCAmelCase__ , UpperCAmelCase__) , ) print('[If you are thinking of using this passsword, You better save it.]') if __name__ == "__main__": main()
320
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): _a = RobertaTokenizer _a = RobertaTokenizerFast _a = True _a = {"""cls_token""": """<s>"""} def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowercase =dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowercase =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase ={'unk_token': '<unk>'} _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def A__ ( self , **lowerCAmelCase ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def A__ ( self , **lowerCAmelCase ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase ='lower newer' _lowercase ='lower newer' return input_text, output_text def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowercase ='lower newer' _lowercase =['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase =tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.tokenizer_class.from_pretrained('roberta-base' ) _lowercase =tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) _lowercase =tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) _lowercase =tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _lowercase =tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _lowercase =tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _lowercase =tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.get_tokenizer() _lowercase ='Encode this sequence.' _lowercase =tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowercase =tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _lowercase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowercase =tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _lowercase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowercase =tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _lowercase =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens _lowercase ='<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space _lowercase =tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) _lowercase ='Encode <mask> sequence' _lowercase ='Encode <mask>sequence' _lowercase =tokenizer.encode(_UpperCAmelCase ) _lowercase =encoded.index(_UpperCAmelCase ) _lowercase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowercase =tokenizer.encode(_UpperCAmelCase ) _lowercase =encoded.index(_UpperCAmelCase ) _lowercase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' pass def A__ ( self ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase =self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _lowercase =self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _lowercase ='A, <mask> AllenNLP sentence.' _lowercase =tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) _lowercase =tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowercase =tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowercase =tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def A__ ( self ) -> List[str]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowercase =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _lowercase =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowercase =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase ='hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase =F'''{text_of_1_token} {text_of_1_token}''' _lowercase =self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _lowercase =tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _lowercase =self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _lowercase =tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _lowercase =self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _lowercase =tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _lowercase =self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _lowercase =tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _lowercase =F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowercase =self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _lowercase =tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _lowercase =self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _lowercase =tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _lowercase =self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _lowercase =tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
291
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
0
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __SCREAMING_SNAKE_CASE (UpperCAmelCase__ ): """simple docstring""" _a : str = ['''image_processor''', '''tokenizer'''] _a : int = '''AutoImageProcessor''' _a : Dict = '''AutoTokenizer''' def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" a_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) a_ = kwargs.pop('feature_extractor' ) a_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) a_ = self.image_processor a_ = False def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase ) a_ = kwargs.pop('images' , _UpperCAmelCase ) a_ = kwargs.pop('text' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: a_ = args[0] a_ = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: a_ = self.image_processor(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) if text is not None: a_ = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: a_ = encodings['input_ids'] return inputs def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @contextmanager def _a ( self ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) a_ = True a_ = self.tokenizer yield a_ = self.image_processor a_ = False def _a ( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=None ): """simple docstring""" if added_vocab is None: a_ = self.tokenizer.get_added_vocab() a_ = {} while tokens: a_ = re.search(R'<s_(.*?)>' , _UpperCAmelCase , re.IGNORECASE ) if start_token is None: break a_ = start_token.group(1 ) a_ = re.search(Rf'</s_{key}>' , _UpperCAmelCase , re.IGNORECASE ) a_ = start_token.group() if end_token is None: a_ = tokens.replace(_UpperCAmelCase , '' ) else: a_ = end_token.group() a_ = re.escape(_UpperCAmelCase ) a_ = re.escape(_UpperCAmelCase ) a_ = re.search(f'{start_token_escaped}(.*?){end_token_escaped}' , _UpperCAmelCase , re.IGNORECASE ) if content is not None: a_ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node a_ = self.tokenajson(_UpperCAmelCase , is_inner_value=_UpperCAmelCase , added_vocab=_UpperCAmelCase ) if value: if len(_UpperCAmelCase ) == 1: a_ = value[0] a_ = value else: # leaf nodes a_ = [] for leaf in content.split(R'<sep/>' ): a_ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": a_ = leaf[1:-2] # for categorical special tokens output[key].append(_UpperCAmelCase ) if len(output[key] ) == 1: a_ = output[key][0] a_ = tokens[tokens.find(_UpperCAmelCase ) + len(_UpperCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_UpperCAmelCase , added_vocab=_UpperCAmelCase ) if len(_UpperCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _a ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def _a ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
536
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _UpperCAmelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase_ = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) lowerCamelCase_ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) lowerCamelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase_ = field(default=UpperCAmelCase__ , metadata={'''help''': '''whether to use adafactor'''} ) lowerCamelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) lowerCamelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) lowerCamelCase_ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) lowerCamelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) lowerCamelCase_ = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
558
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
"""simple docstring""" import datasets from .evaluate import evaluate A_ = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' A_ = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' A_ = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self: Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Tuple ): UpperCamelCase_ ={prediction["id"]: prediction["prediction_text"] for prediction in predictions} UpperCamelCase_ =[ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] UpperCamelCase_ =evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
391
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Dict = LxmertTokenizer __lowerCAmelCase : List[Any] = LxmertTokenizerFast __lowerCAmelCase : Any = True __lowerCAmelCase : Optional[int] = True def __UpperCamelCase ( self ) -> List[Any]: super().setUp() _a : str = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> Tuple: _a : Dict = 'UNwant\u00E9d,running' _a : Union[str, Any] = 'unwanted, running' return input_text, output_text def __UpperCamelCase ( self ) -> Union[str, Any]: _a : List[str] = self.tokenizer_class(self.vocab_file ) _a : Any = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 1_0, 8, 9] ) def __UpperCamelCase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Tuple = self.get_tokenizer() _a : Union[str, Any] = self.get_rust_tokenizer() _a : Dict = 'I was born in 92000, and this is falsé.' _a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) _a : List[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _a : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _a : str = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _a : Tuple = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(_UpperCAmelCase ) _a : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
120
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=UpperCAmelCase__ ): UpperCAmelCase__ = ["onnx"] def __init__( self : List[Any] , *__snake_case : Tuple , **__snake_case : Any ) -> List[str]: requires_backends(self , ["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls : Dict , *__snake_case : List[Any] , **__snake_case : str ) -> Optional[int]: requires_backends(cls , ["""onnx"""] ) @classmethod def lowerCamelCase__ ( cls : List[Any] , *__snake_case : Dict , **__snake_case : str ) -> Any: requires_backends(cls , ["""onnx"""] )
96
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "ylacombe/bark-small" SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = "en_speaker_1" SCREAMING_SNAKE_CASE_ = "This is a test string" SCREAMING_SNAKE_CASE_ = "speaker_embeddings_path.json" SCREAMING_SNAKE_CASE_ = "speaker_embeddings" def __A ( self : str , **__magic_name__ : Optional[int] ) -> str: return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def __A ( self : str ) -> List[str]: shutil.rmtree(self.tmpdirname ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __A ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) SCREAMING_SNAKE_CASE_ = 35 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = { "semantic_prompt": np.ones(_UpperCAmelCase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset SCREAMING_SNAKE_CASE_ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , "file.npz" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub SCREAMING_SNAKE_CASE_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BarkProcessor(tokenizer=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = processor(text=self.input_string ) SCREAMING_SNAKE_CASE_ = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
140
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
0
'''simple docstring''' def __snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __UpperCAmelCase = str(bin(lowerCAmelCase ) )[2:] # remove the leading "0b" __UpperCAmelCase = str(bin(lowerCAmelCase ) )[2:] # remove the leading "0b" __UpperCAmelCase = max(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase ) , b_binary.zfill(lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
396
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
646
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __A : Union[str, Any] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __A : int = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __A : int = r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def a__ ( self :List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) ,homepage="""https://github.com/hendrycks/math""" ,codebase_urls=["""https://github.com/hendrycks/math"""] ,) def a__ ( self :Any ,_UpperCamelCase :str ,_UpperCamelCase :Any ): snake_case_ : Dict = 0.0 for i, j in zip(_UpperCAmelCase ,_UpperCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_UpperCAmelCase ,_UpperCAmelCase ) else 0.0 snake_case_ : str = n_correct / len(_UpperCAmelCase ) return { "accuracy": accuracy, }
334
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( UpperCAmelCase__): _lowerCAmelCase = '''poolformer''' def __init__( self, A=3, A=16, A=16, A=3, A=4.0, A=[2, 2, 6, 2], A=[64, 128, 320, 512], A=[7, 3, 3, 3], A=[4, 2, 2, 2], A=[2, 1, 1, 1], A=4, A=0.0, A="gelu", A=True, A=1e-5, A=0.02, **A, ): """simple docstring""" lowerCamelCase : List[Any] = num_channels lowerCamelCase : Optional[Any] = patch_size lowerCamelCase : int = stride lowerCamelCase : Optional[Any] = padding lowerCamelCase : int = pool_size lowerCamelCase : Optional[Any] = hidden_sizes lowerCamelCase : Tuple = mlp_ratio lowerCamelCase : Tuple = depths lowerCamelCase : List[str] = patch_sizes lowerCamelCase : int = strides lowerCamelCase : List[Any] = num_encoder_blocks lowerCamelCase : Optional[Any] = drop_path_rate lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Optional[Any] = use_layer_scale lowerCamelCase : int = layer_scale_init_value lowerCamelCase : Optional[int] = initializer_range super().__init__(**_UpperCAmelCase ) class __snake_case ( UpperCAmelCase__): _lowerCAmelCase = version.parse('''1.11''') @property def UpperCAmelCase_ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self ): """simple docstring""" return 2e-3
320
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase_ = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a ( A__ : List[str] ) -> Union[str, Any]: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a ( A__ : int , A__ : str ) -> Optional[int]: """simple docstring""" if args.student_type == "roberta": _lowercase =False elif args.student_type == "gpt2": _lowercase =False def a ( A__ : Tuple , A__ : Tuple ) -> Tuple: """simple docstring""" if args.student_type == "roberta": _lowercase =False def a ( ) -> str: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=A__ , required=A__ , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=A__ , required=A__ , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=A__ , choices=['distilbert', 'roberta', 'gpt2'] , required=A__ , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=A__ , required=A__ , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=A__ , type=A__ , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=A__ , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=A__ , required=A__ , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=A__ , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=A__ , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=A__ , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=A__ , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=A__ , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=A__ , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=A__ , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=A__ , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=A__ , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=A__ , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=A__ , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=A__ , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=A__ , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=A__ , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=A__ , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=A__ , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=A__ , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5e-4 , type=A__ , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1e-6 , type=A__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=A__ , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=A__ , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=A__ , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=A__ , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=A__ , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=A__ , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=A__ , default=500 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=A__ , default=4000 , help='Checkpoint interval.' ) _lowercase =parser.parse_args() sanity_checks(A__ ) # ARGS # init_gpu_params(A__ ) set_seed(A__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(A__ ) , A__ , indent=4 ) git_log(args.dump_path ) _lowercase , _lowercase , _lowercase =MODEL_CLASSES[args.student_type] _lowercase , _lowercase , _lowercase =MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowercase =teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowercase ={} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowercase =tokenizer.all_special_tokens.index(A__ ) _lowercase =tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _lowercase =special_tok_ids _lowercase =tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _lowercase =pickle.load(A__ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _lowercase =pickle.load(A__ ) _lowercase =np.maximum(A__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowercase =0.0 # do not predict special tokens _lowercase =torch.from_numpy(A__ ) else: _lowercase =None _lowercase =LmSeqsDataset(params=A__ , data=A__ ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _lowercase =student_config_class.from_pretrained(args.student_config ) _lowercase =True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _lowercase =student_model_class.from_pretrained(args.student_pretrained_weights , config=A__ ) else: _lowercase =student_model_class(A__ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _lowercase =teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A__ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A__ , A__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A__ , A__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowercase =Distiller( params=A__ , dataset=A__ , token_probs=A__ , student=A__ , teacher=A__ ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
291
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } __lowerCAmelCase = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } __lowerCAmelCase = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } __lowerCAmelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __SCREAMING_SNAKE_CASE (UpperCAmelCase__ ): """simple docstring""" _a : Any = VOCAB_FILES_NAMES _a : Any = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _a : Dict = DPRContextEncoderTokenizer class __SCREAMING_SNAKE_CASE (UpperCAmelCase__ ): """simple docstring""" _a : List[str] = VOCAB_FILES_NAMES _a : Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : str = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _a : Tuple = DPRQuestionEncoderTokenizer __lowerCAmelCase = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __lowerCAmelCase = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __lowerCAmelCase = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __call__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: a_ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) a_ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] a_ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] a_ = len(_UpperCAmelCase ) a_ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.' a_ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )['input_ids'] a_ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )['input_ids'] a_ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: a_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) a_ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 16 , UpperCamelCase__ = 64 , UpperCamelCase__ = 4 , ): """simple docstring""" a_ = reader_input['input_ids'] a_ , a_ , a_ = reader_output[:3] a_ = len(_UpperCAmelCase ) a_ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) a_ = [] for doc_id in sorted_docs: a_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence a_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a_ = sequence_ids.index(self.pad_token_id ) else: a_ = len(_UpperCAmelCase ) a_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): """simple docstring""" a_ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) a_ = sorted(_UpperCAmelCase , key=lambda UpperCamelCase__ : x[1] , reverse=_UpperCAmelCase ) a_ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' a_ = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class __SCREAMING_SNAKE_CASE (UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" _a : Union[str, Any] = VOCAB_FILES_NAMES _a : List[str] = READER_PRETRAINED_VOCAB_FILES_MAP _a : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _a : Optional[Any] = ['''input_ids''', '''attention_mask'''] _a : Optional[Any] = DPRReaderTokenizer
536
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase_ = '''swin''' lowerCamelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase=2_2_4 , lowercase=4 , lowercase=3 , lowercase=9_6 , lowercase=[2, 2, 6, 2] , lowercase=[3, 6, 1_2, 2_4] , lowercase=7 , lowercase=4.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=False , lowercase=0.02 , lowercase=1E-5 , lowercase=3_2 , lowercase=None , lowercase=None , **lowercase , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : List[Any] = image_size A_ : List[str] = patch_size A_ : Dict = num_channels A_ : Union[str, Any] = embed_dim A_ : Optional[int] = depths A_ : str = len(_UpperCAmelCase ) A_ : Dict = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Any = qkv_bias A_ : Tuple = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : List[str] = drop_path_rate A_ : Union[str, Any] = hidden_act A_ : List[Any] = use_absolute_embeddings A_ : Tuple = layer_norm_eps A_ : Tuple = initializer_range A_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : Optional[int] = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) A_ : Dict = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(_UpperCAmelCase ) + 1 )] A_ , A_ : Any = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase_ = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return 1E-4
558
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
0
"""simple docstring""" from __future__ import annotations import math def _UpperCamelCase ( A , A , A , A , A ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(A ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) return min( minimax(depth + 1 , node_index * 2 , A , A , A ) , minimax(depth + 1 , node_index * 2 + 1 , A , A , A ) , ) def _UpperCamelCase ( ): UpperCamelCase_ =[90, 23, 6, 33, 21, 65, 123, 34_423] UpperCamelCase_ =math.log(len(A ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , A , A , A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
391
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
0
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def UpperCAmelCase_ ( A , A , A , A ): '''simple docstring''' def constraint_to_multiple_of(A , A , A=0 , A=None ): _a : Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: _a : Any = math.floor(val / multiple ) * multiple if x < min_val: _a : Union[str, Any] = math.ceil(val / multiple ) * multiple return x _a : Tuple = (output_size, output_size) if isinstance(A , A ) else output_size _a , _a : str = get_image_size(A ) _a , _a : Optional[Any] = output_size # determine new height and width _a : Optional[int] = output_height / input_height _a : Optional[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _a : int = scale_width else: # fit height _a : str = scale_height _a : int = constraint_to_multiple_of(scale_height * input_height , multiple=A ) _a : str = constraint_to_multiple_of(scale_width * input_width , multiple=A ) return (new_height, new_width) class a ( UpperCAmelCase__ ): '''simple docstring''' __lowerCAmelCase : Optional[Any] = ["""pixel_values"""] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = False , lowerCamelCase_ = 1 , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_5_5 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: super().__init__(**_UpperCAmelCase ) _a : Optional[int] = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} _a : Dict = get_size_dict(_UpperCAmelCase ) _a : Optional[Any] = do_resize _a : Optional[int] = size _a : List[Any] = keep_aspect_ratio _a : Union[str, Any] = ensure_multiple_of _a : Any = resample _a : Optional[int] = do_rescale _a : Any = rescale_factor _a : Optional[int] = do_normalize _a : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = 1 , lowerCamelCase_ = PILImageResampling.BICUBIC , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: _a : Union[str, Any] = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _a : Dict = get_resize_output_image_size( _UpperCAmelCase , output_size=(size['height'], size['width']) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : str = size if size is not None else self.size _a : List[str] = get_size_dict(_UpperCAmelCase ) _a : Tuple = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _a : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _a : int = resample if resample is not None else self.resample _a : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _a : int = rescale_factor if rescale_factor is not None else self.rescale_factor _a : str = do_normalize if do_normalize is not None else self.do_normalize _a : Dict = image_mean if image_mean is not None else self.image_mean _a : Optional[int] = image_std if image_std is not None else self.image_std _a : Dict = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _a : str = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: _a : List[Any] = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: _a : List[Any] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: _a : Union[str, Any] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] _a : Any = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] _a : str = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Dict: _a : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_UpperCAmelCase ): _a : Any = target_sizes.numpy() _a : Optional[int] = [] for idx in range(len(_UpperCAmelCase ) ): _a : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_UpperCAmelCase ) _a : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_UpperCAmelCase ) else: _a : str = logits.argmax(dim=1 ) _a : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
120
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ['text', 'image', 'audio'] def a ( __UpperCAmelCase : List[str] ) -> Optional[Any]: __magic_name__: Any = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): inputs.append(create_inputs(__UpperCAmelCase ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def a ( __UpperCAmelCase : List ) -> Tuple: __magic_name__: Union[str, Any] = [] for output in outputs: if isinstance(__UpperCAmelCase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__UpperCAmelCase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__UpperCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class __A : def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) __magic_name__: Any = self.tool.inputs for _input in inputs: if isinstance(_input , _UpperCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __magic_name__: int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self : List[Any] ) -> int: __magic_name__: Union[str, Any] = create_inputs(self.tool.inputs ) __magic_name__: Dict = self.tool(*_UpperCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: __magic_name__: Dict = [outputs] self.assertListEqual(output_types(_UpperCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self : Any ) -> Any: self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: __magic_name__: List[str] = create_inputs(self.tool.inputs ) __magic_name__: Optional[Any] = self.tool(*_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __magic_name__: int = [outputs] self.assertEqual(len(_UpperCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(_UpperCAmelCase , self.tool.outputs ): __magic_name__: Union[str, Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: __magic_name__: Dict = create_inputs(self.tool.inputs ) __magic_name__: Union[str, Any] = [] for _input, input_type in zip(_UpperCAmelCase , self.tool.inputs ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __magic_name__: List[str] = self.tool(*_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __magic_name__: Optional[int] = [outputs] self.assertEqual(len(_UpperCAmelCase ) , len(self.tool.outputs ) )
96
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase (UpperCAmelCase__ ): """simple docstring""" lowerCamelCase__ = (UnCLIPScheduler,) def __A ( self : Union[str, Any] , **__magic_name__ : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = { "num_train_timesteps": 1_000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**_UpperCAmelCase ) return config def __A ( self : Union[str, Any] ) -> str: for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def __A ( self : Tuple ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def __A ( self : Tuple ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def __A ( self : Tuple ) -> Any: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_UpperCAmelCase ) def __A ( self : str ) -> List[Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def __A ( self : str ) -> Union[str, Any]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_UpperCAmelCase , prev_timestep=_UpperCAmelCase ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(variance_type="fixed_small_log" ) SCREAMING_SNAKE_CASE_ = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(variance_type="learned_range" ) SCREAMING_SNAKE_CASE_ = scheduler_class(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=_UpperCAmelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_UpperCAmelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_UpperCAmelCase ) - -0.001_0011 < 1e-5 def __A ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = scheduler.timesteps SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample SCREAMING_SNAKE_CASE_ = pred_prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def __A ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE_ = scheduler.timesteps SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ = model(_UpperCAmelCase , _UpperCAmelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE_ = None else: SCREAMING_SNAKE_CASE_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ = scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , prev_timestep=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample SCREAMING_SNAKE_CASE_ = pred_prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def __A ( self : Optional[int] ) -> int: pass def __A ( self : List[str] ) -> str: pass
140
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' from __future__ import annotations def __snake_case ( lowerCAmelCase : list[int] , lowerCAmelCase : list[int] , lowerCAmelCase : int ): __UpperCAmelCase = list(range(len(lowerCAmelCase ) ) ) __UpperCAmelCase = [v / w for v, w in zip(lowerCAmelCase , lowerCAmelCase )] index.sort(key=lambda lowerCAmelCase : ratio[i] , reverse=lowerCAmelCase ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * len(lowerCAmelCase ) for i in index: if weight[i] <= capacity: __UpperCAmelCase = 1 max_value += value[i] capacity -= weight[i] else: __UpperCAmelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
396
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
0