code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = job["started_at"] UpperCAmelCase_ = job["completed_at"] UpperCAmelCase_ = date_parser.parse(snake_case_ ) UpperCAmelCase_ = date_parser.parse(snake_case_ ) UpperCAmelCase_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase_ = start UpperCAmelCase_ = end UpperCAmelCase_ = duration_in_min return job_info def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : List[str]=None ) -> int: '''simple docstring''' UpperCAmelCase_ = None if token is not None: UpperCAmelCase_ = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} UpperCAmelCase_ = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" UpperCAmelCase_ = requests.get(snake_case_ , headers=snake_case_ ).json() UpperCAmelCase_ = {} try: job_time.update({job["name"]: extract_time_from_single_job(snake_case_ ) for job in result["jobs"]} ) UpperCAmelCase_ = math.ceil((result["total_count"] - 1_00) / 1_00 ) for i in range(snake_case_ ): UpperCAmelCase_ = requests.get(url + f"""&page={i + 2}""" , headers=snake_case_ ).json() job_time.update({job["name"]: extract_time_from_single_job(snake_case_ ) for job in result["jobs"]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Dict =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE_: List[str] =parser.parse_args() SCREAMING_SNAKE_CASE_: List[Any] =get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE_: Any =dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"{k}: {v['duration']}")
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase__ = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCamelCase : Any = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: lowerCamelCase : List[Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
2
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' assert ( isinstance(snake_case__ , snake_case__ ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 A, A : Dict = 1, 1 for _ in range(number_of_steps - 1 ): A, A : Optional[Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
3
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __snake_case =[ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def a_ ( lowerCamelCase : Optional[Any]=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = None lowerCamelCase : Dict = None def __UpperCAmelCase ( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> int: with TemporaryDirectory() as tmp_dir: lowerCAmelCase = dataset_module_factory(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ) lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=UpperCAmelCase__ ) lowerCAmelCase = builder_cls( cache_dir=UpperCAmelCase__ , config_name=UpperCAmelCase__ , hash=dataset_module.hash , ) lowerCAmelCase = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase__ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) lowerCAmelCase = cached_path(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ) self.assertTrue(os.path.exists(UpperCAmelCase__ ) ) @pytest.mark.integration def a_ ( lowerCamelCase : Tuple ): lowerCAmelCase = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' lowerCAmelCase = dataset_module_factory('wikipedia' , cache_dir=lowerCamelCase ) lowerCAmelCase = import_main_class(dataset_module.module_path ) lowerCAmelCase = builder_cls( cache_dir=lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCAmelCase = None builder_instance.download_and_prepare() lowerCAmelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def a_ ( lowerCamelCase : Optional[int] ): lowerCAmelCase = dataset_module_factory('wikipedia' , cache_dir=lowerCamelCase ) lowerCAmelCase = import_main_class(dataset_module.module_path , dataset=lowerCamelCase ) lowerCAmelCase = builder_cls( cache_dir=lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) lowerCAmelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCamelCase , lowerCamelCase ) assert "train" in ds assert isinstance(ds['train'] , lowerCamelCase ) assert next(iter(ds['train'] ) )
4
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
5
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> Dict: '''simple docstring''' A__ = [] A__ = [] A__ = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator A__ = len(SCREAMING_SNAKE_CASE__ ) if (len(SCREAMING_SNAKE_CASE__ ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(SCREAMING_SNAKE_CASE__ ) , 'Postfix'.center(SCREAMING_SNAKE_CASE__ ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(SCREAMING_SNAKE_CASE__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(SCREAMING_SNAKE_CASE__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(SCREAMING_SNAKE_CASE__ ) == 0: stack.append(SCREAMING_SNAKE_CASE__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(SCREAMING_SNAKE_CASE__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(SCREAMING_SNAKE_CASE__ ) # push x to stack print( x.center(8 ) , (''.join(SCREAMING_SNAKE_CASE__ )).ljust(SCREAMING_SNAKE_CASE__ ) , (''.join(SCREAMING_SNAKE_CASE__ )).ljust(SCREAMING_SNAKE_CASE__ ) , sep=' | ' , ) # Output in tabular format while len(SCREAMING_SNAKE_CASE__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(SCREAMING_SNAKE_CASE__ )).ljust(SCREAMING_SNAKE_CASE__ ) , (''.join(SCREAMING_SNAKE_CASE__ )).ljust(SCREAMING_SNAKE_CASE__ ) , sep=' | ' , ) # Output in tabular format return "".join(SCREAMING_SNAKE_CASE__ ) # return Postfix as str def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: '''simple docstring''' A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if infix[i] == "(": A__ = ')' # change "(" to ")" elif infix[i] == ")": A__ = '(' # change ")" to "(" return (infix_2_postfix(''.join(SCREAMING_SNAKE_CASE__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowercase_ = input("\nEnter an Infix Equation = ") # Input an Infix equation lowercase_ = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
7
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
lowerCAmelCase_ = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609344, "knot": 1.852, } lowerCAmelCase_ = { "km/h": 1.0, "m/s": 0.277777778, "mph": 0.621371192, "knot": 0.539956803, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: snake_case_ = ( F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' F'''Valid values are: {', '.join(SCREAMING_SNAKE_CASE__ )}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
8
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int]=13 , lowerCAmelCase__ :List[str]=64 , lowerCAmelCase__ :Union[str, Any]=2 , lowerCAmelCase__ :int=3 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=5 , lowerCAmelCase__ :Optional[Any]=4 , lowerCAmelCase__ :Tuple=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :Union[str, Any]=[1, 16, 4, 4] , lowerCAmelCase__ :Tuple=None , ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : Optional[Any] = image_size __SCREAMING_SNAKE_CASE : List[str] = patch_size __SCREAMING_SNAKE_CASE : str = num_channels __SCREAMING_SNAKE_CASE : Any = is_training __SCREAMING_SNAKE_CASE : List[Any] = use_labels __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size __SCREAMING_SNAKE_CASE : Optional[int] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = scope __SCREAMING_SNAKE_CASE : List[Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __SCREAMING_SNAKE_CASE : List[str] = (self.image_size // 32) ** 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = num_patches + 1 def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowerCAmelCase__ , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = ViTHybridModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.type_sequence_label_size __SCREAMING_SNAKE_CASE : Optional[Any] = ViTHybridForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__( self :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = config_and_inputs __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Optional[int] = False def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = ViTHybridModelTester(self ) __SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__( self :List[str] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> str: pass def __magic_name__( self :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __SCREAMING_SNAKE_CASE : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__( self :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Dict = model_class(config=lowerCAmelCase__ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __SCREAMING_SNAKE_CASE : Any = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __magic_name__( self :Union[str, Any] ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : List[Any] = ViTHybridModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :List[Any] ) -> str: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor __SCREAMING_SNAKE_CASE : Any = prepare_img() __SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow @require_accelerate def __magic_name__( self :str ) -> str: __SCREAMING_SNAKE_CASE : Any = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) __SCREAMING_SNAKE_CASE : Dict = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Dict = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = outputs.logits # model predicts one of the 1000 ImageNet classes __SCREAMING_SNAKE_CASE : Optional[int] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
9
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = MobileBertTokenizer lowercase_ = MobileBertTokenizerFast lowercase_ = True lowercase_ = True lowercase_ = filter_non_english lowercase_ = "google/mobilebert-uncased" def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' super().setUp() lowerCamelCase__: Any =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) lowerCamelCase__: str =[ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] ="UNwant\u00E9d,running" lowerCamelCase__: Dict ="unwanted, running" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =self.tokenizer_class(self.vocab_file) lowerCamelCase__: Union[str, Any] =tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [9, 6, 7, 12, 10, 11]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__: Tuple =self.get_tokenizer() lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__: List[Any] ="UNwant\u00E9d,running" lowerCamelCase__: Optional[Any] =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =self.get_rust_tokenizer() lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # With lower casing lowerCamelCase__: Dict =self.get_tokenizer(do_lower_case=UpperCAmelCase_) lowerCamelCase__: List[str] =self.get_rust_tokenizer(do_lower_case=UpperCAmelCase_) lowerCamelCase__: Optional[int] ="UNwant\u00E9d,running" lowerCamelCase__: Tuple =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Tuple =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"]) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: str =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase__: Optional[int] ={} for i, token in enumerate(UpperCAmelCase_): lowerCamelCase__: List[str] =i lowerCamelCase__: Optional[int] =WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"]) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: Optional[Any] =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =self.tokenizer_class.from_pretrained("google/mobilebert-uncased") lowerCamelCase__: Dict =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: List[str] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[Any] =F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase__: Any =tokenizer_r.encode_plus( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =tokenizer_r.do_lower_case if hasattr(UpperCAmelCase_ , "do_lower_case") else False lowerCamelCase__: Optional[Any] =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: str =["的", "人", "有"] lowerCamelCase__: Optional[Any] ="".join(UpperCAmelCase_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: str =True lowerCamelCase__: List[str] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Tuple =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Any =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[str] =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =False lowerCamelCase__: List[Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase__: str =[ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase_) ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
10
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase__ = get_tests_dir('fixtures') class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down _A : str = mock.Mock() _A : int = 5_0_0 _A : Union[str, Any] = {} _A : Any = HTTPError _A : List[Any] = {} # Download this model to make sure it's in the cache. _A : Any = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__lowerCamelCase) as mock_head: _A : Tuple = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self) -> List[str]: # This test is for deprecated behavior and can be removed in v5 _A : List[Any] = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json") def _lowerCamelCase ( self) -> List[Any]: with self.assertRaises(__lowerCamelCase): # config is in subfolder, the following should not work without specifying the subfolder _A : Any = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") _A : Optional[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor") self.assertIsNotNone(__lowerCamelCase) @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Tuple: _A : Union[str, Any] = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor") except HTTPError: pass def _lowerCamelCase ( self) -> int: _A : Any = ViTImageProcessor.from_pretrained(__lowerCamelCase) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token) _A : Tuple = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __lowerCamelCase , repo_id="test-image-processor" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Union[str, Any] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> List[Any]: _A : int = ViTImageProcessor.from_pretrained(__lowerCamelCase) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token) _A : int = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : List[Any] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Any: CustomImageProcessor.register_for_auto_class() _A : str = CustomImageProcessor.from_pretrained(__lowerCamelCase) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _A : int = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor" , trust_remote_code=__lowerCamelCase) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor")
11
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class lowerCamelCase__: UpperCAmelCase__ : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The column name of the images in the files.'}) UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the training data.'}) UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the validation data.'}) UpperCAmelCase__ : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'}) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = {} if self.train_dir is not None: __lowerCamelCase = self.train_dir if self.validation_dir is not None: __lowerCamelCase = self.validation_dir __lowerCamelCase = data_files if data_files else None @dataclass class lowerCamelCase__: UpperCAmelCase__ : str = field( default=__lowerCamelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'}) UpperCAmelCase__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) UpperCAmelCase__ : str = field(default=__lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) UpperCAmelCase__ : float = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'}) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'}) @dataclass class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : float = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'}) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' __lowerCamelCase = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , A__ , A__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase = training_args.get_process_log_level() logger.setLevel(A__ ) transformers.utils.logging.set_verbosity(A__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. __lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowerCamelCase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A__ ) and data_args.train_val_split > 0.0: __lowerCamelCase = ds["""train"""].train_test_split(data_args.train_val_split ) __lowerCamelCase = split["""train"""] __lowerCamelCase = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **A__ ) elif model_args.model_name_or_path: __lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **A__ ) else: __lowerCamelCase = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **A__ ) elif model_args.model_name_or_path: __lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **A__ ) else: __lowerCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: __lowerCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __lowerCamelCase = ViTMAEForPreTraining(A__ ) if training_args.do_train: __lowerCamelCase = ds["""train"""].column_names else: __lowerCamelCase = ds["""validation"""].column_names if data_args.image_column_name is not None: __lowerCamelCase = data_args.image_column_name elif "image" in column_names: __lowerCamelCase = """image""" elif "img" in column_names: __lowerCamelCase = """img""" else: __lowerCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __lowerCamelCase = image_processor.size["""shortest_edge"""] else: __lowerCamelCase = (image_processor.size["""height"""], image_processor.size["""width"""]) __lowerCamelCase = Compose( [ Lambda(lambda A__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(A__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(A__ : Optional[int] ): __lowerCamelCase = [transforms(A__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __lowerCamelCase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(A__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __lowerCamelCase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(A__ ) # Compute absolute learning rate __lowerCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __lowerCamelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __lowerCamelCase = Trainer( model=A__ , args=A__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=A__ , data_collator=A__ , ) # Training if training_args.do_train: __lowerCamelCase = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase = last_checkpoint __lowerCamelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , A__ ) trainer.save_metrics("""eval""" , A__ ) # Write model card and (optionally) push to hub __lowerCamelCase = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**A__ ) else: trainer.create_model_card(**A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
12
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
from __future__ import annotations def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: list[list[str]] = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print("" ) print(len(_UpperCAmelCase ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''') A__ = AutoTokenizer.from_pretrained('''google/mt5-small''') A__ = tokenizer('''Hello there''' , return_tensors='''tf''').input_ids A__ = tokenizer('''Hi I am''' , return_tensors='''tf''').input_ids A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__).loss A__ = -tf.math.reduce_mean(UpperCAmelCase__).numpy() A__ = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)
14
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def UpperCAmelCase ( a_ ) -> list[str]: """simple docstring""" __A = [] __A = 1_1 __A = int("1" + "0" * digit_len ) for num in range(a_ , a_ ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __A = 1_0 return solutions def UpperCAmelCase ( a_ = 2 ) -> int: """simple docstring""" __A = 1.0 for fraction in fraction_list(a_ ): __A = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
15
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] lowerCAmelCase_ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ = {F'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCAmelCase_ = {F'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : int = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : Dict = FunnelTokenizer lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = 2 def __init__( self : Optional[int] ,_snake_case : Dict=None ,_snake_case : List[str]=None ,_snake_case : Optional[Any]=True ,_snake_case : Optional[int]="<unk>" ,_snake_case : Dict="<sep>" ,_snake_case : Any="<pad>" ,_snake_case : str="<cls>" ,_snake_case : Optional[Any]="<mask>" ,_snake_case : int="<s>" ,_snake_case : Dict="</s>" ,_snake_case : Optional[int]=True ,_snake_case : List[str]=True ,_snake_case : Dict=None ,_snake_case : str="##" ,**_snake_case : Optional[Any] ,) -> Any: """simple docstring""" super().__init__( _snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,clean_text=_snake_case ,tokenize_chinese_chars=_snake_case ,strip_accents=_snake_case ,wordpieces_prefix=_snake_case ,**_snake_case ,) lowercase__ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_snake_case ) != tokenize_chinese_chars ): lowercase__ : List[str] = getattr(_snake_case ,normalizer_state.pop('''type''' ) ) lowercase__ : List[str] = do_lower_case lowercase__ : Any = strip_accents lowercase__ : Union[str, Any] = tokenize_chinese_chars lowercase__ : Union[str, Any] = normalizer_class(**_snake_case ) lowercase__ : List[str] = do_lower_case def UpperCAmelCase ( self : int ,_snake_case : Tuple ,_snake_case : Tuple=None ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self : Tuple ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ : str = self._tokenizer.model.save(_snake_case ,name=_snake_case ) return tuple(_snake_case )
16
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=1_0_0, UpperCAmelCase__ : Any=1_3, UpperCAmelCase__ : List[Any]=3_0, UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Any=3, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]=3_2, UpperCAmelCase__ : Any=5, UpperCAmelCase__ : Any=4, UpperCAmelCase__ : Any=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Dict=1_0, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : List[Any]=3, ): __lowercase = parent __lowercase = vocab_size __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _lowercase ( self : int ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, ) return config, pixel_values, labels def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[str] ): __lowercase = FlaxBeitModel(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any] ): __lowercase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any] ): __lowercase = self.type_sequence_label_size __lowercase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxBeitForImageClassification(UpperCAmelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxBeitModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : str, **UpperCAmelCase__ : Dict ): return model(pixel_values=UpperCAmelCase__, **UpperCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__, UpperCAmelCase__ ): self.assertEqual(jitted_output.shape, output.shape ) def _lowercase ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def _A ( ) -> str: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowercase = np.ones((1, 1_9_6), dtype=UpperCAmelCase__ ) # forward pass __lowercase = model(pixel_values=UpperCAmelCase__, bool_masked_pos=UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], UpperCAmelCase__, atol=1E-2 ) ) @slow def _lowercase ( self : Any ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ): __lowercase = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCAmelCase__, return_tensors="np" ) # forward pass __lowercase = model(**UpperCAmelCase__ ) __lowercase = outputs.logits # verify the logits __lowercase = (1, 2_1_8_4_1) self.assertEqual(logits.shape, UpperCAmelCase__ ) __lowercase = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) __lowercase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), UpperCAmelCase__ )
17
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Union[str, Any] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ChineseCLIPFeatureExtractor'''] __lowerCamelCase : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
import numpy as np from PIL import Image def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = np.array(lowerCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 # compute the shape of the output matrix lowerCamelCase_ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase_ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase_ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 return updated_arr def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = np.array(lowerCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 # compute the shape of the output matrix lowerCamelCase_ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase_ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase_ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image __A =Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
19
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) lowercase : int = max(SCREAMING_SNAKE_CASE__ ) lowercase : int = min(SCREAMING_SNAKE_CASE__ ) # create the counting array lowercase : Dict = coll_max + 1 - coll_min lowercase : Tuple = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection lowercase : Union[str, Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , SCREAMING_SNAKE_CASE__ ) ): lowercase : Tuple = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: return "".join([chr(SCREAMING_SNAKE_CASE__ ) for i in counting_sort([ord(SCREAMING_SNAKE_CASE__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() lowercase : List[str] = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
20
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_( lowerCamelCase_ ) -> Any: warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , lowerCamelCase_ , ) if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : int = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase , _lowercase : Dict = image[0].size _lowercase , _lowercase : List[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowercase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : Optional[Any] = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Optional[int] = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Dict = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : List[Any] = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ ) -> str: if isinstance(lowerCamelCase_ , torch.Tensor ): return mask elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : Dict = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowercase , _lowercase : Dict = mask[0].size _lowercase , _lowercase : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowercase : List[str] = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] _lowercase : Any = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Any = mask.astype(np.floataa ) / 2_55.0 _lowercase : List[str] = 0 _lowercase : Dict = 1 _lowercase : int = torch.from_numpy(lowerCamelCase_ ) elif isinstance(mask[0] , torch.Tensor ): _lowercase : Tuple = torch.cat(lowerCamelCase_ , dim=0 ) return mask class _lowerCamelCase( _a ): lowercase_ : UNetaDModel lowercase_ : RePaintScheduler def __init__( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase) @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 2_50, lowerCamelCase = 0.0, lowerCamelCase = 10, lowerCamelCase = 10, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _lowercase : Tuple = image _lowercase : List[str] = _preprocess_image(lowerCamelCase) _lowercase : List[Any] = original_image.to(device=self.device, dtype=self.unet.dtype) _lowercase : int = _preprocess_mask(lowerCamelCase) _lowercase : Dict = mask_image.to(device=self.device, dtype=self.unet.dtype) _lowercase : Optional[int] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _lowercase : int = original_image.shape _lowercase : Dict = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowerCamelCase, lowerCamelCase, lowerCamelCase, self.device) _lowercase : Optional[Any] = eta _lowercase : Dict = self.scheduler.timesteps[0] + 1 _lowercase : Optional[Any] = generator[0] if isinstance(lowerCamelCase, lowerCamelCase) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): if t < t_last: # predict the noise residual _lowercase : int = self.unet(lowerCamelCase, lowerCamelCase).sample # compute previous image: x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowercase : int = self.scheduler.undo_step(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = t _lowercase : Dict = (image / 2 + 0.5).clamp(0, 1) _lowercase : Optional[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : Tuple = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase)
21
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
'''simple docstring''' from __future__ import annotations import requests __SCREAMING_SNAKE_CASE :Tuple = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def UpperCAmelCase_ ( __lowercase : str , __lowercase : int = 1 , __lowercase : str = "new" , __lowercase : list | None = None ) -> dict: '''simple docstring''' _UpperCAmelCase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__lowercase ) - valid_terms ) ): _UpperCAmelCase = f'Invalid search term: {invalid_search_terms}' raise ValueError(__lowercase ) _UpperCAmelCase = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError _UpperCAmelCase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__lowercase )} _UpperCAmelCase = {} for id_ in range(__lowercase ): _UpperCAmelCase = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
22
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[Any] = "▁" UpperCamelCase__: Tuple = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } UpperCamelCase__: Any = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } UpperCamelCase__: Dict = { "facebook/m2m100_418M": 1024, } # fmt: off UpperCamelCase__: str = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self : Dict , __snake_case : Any , __snake_case : Tuple , __snake_case : Any=None , __snake_case : Any=None , __snake_case : Optional[int]="<s>" , __snake_case : List[Any]="</s>" , __snake_case : Optional[int]="</s>" , __snake_case : Dict="<pad>" , __snake_case : str="<unk>" , __snake_case : int="m2m100" , __snake_case : Optional[Dict[str, Any]] = None , __snake_case : int=8 , **__snake_case : Optional[Any] , ) -> None: UpperCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase : Tuple = language_codes UpperCAmelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase : Union[str, Any] = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code} UpperCAmelCase : List[Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__snake_case ) for lang_code in fairseq_language_code if self.get_lang_token(__snake_case ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__snake_case , tgt_lang=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , language_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__snake_case , **__snake_case , ) UpperCAmelCase : Any = vocab_file UpperCAmelCase : List[Any] = load_json(__snake_case ) UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase : Tuple = spm_file UpperCAmelCase : Tuple = load_spm(__snake_case , self.sp_model_kwargs ) UpperCAmelCase : Optional[Any] = len(self.encoder ) UpperCAmelCase : Union[str, Any] = { self.get_lang_token(__snake_case ): self.encoder_size + i for i, lang_code in enumerate(__snake_case ) } UpperCAmelCase : Optional[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__snake_case )} UpperCAmelCase : List[Any] = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase : Union[str, Any] = src_lang if src_lang is not None else '''en''' UpperCAmelCase : Union[str, Any] = tgt_lang UpperCAmelCase : List[str] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase : Optional[int] = num_madeup_words @property def A ( self : int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def A ( self : List[str] ) -> str: return self._src_lang @src_lang.setter def A ( self : str , __snake_case : str ) -> None: UpperCAmelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A ( self : List[str] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : str , __snake_case : Tuple ) -> Tuple: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def A ( self : Any , __snake_case : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__snake_case , self.unk_token ) def A ( self : Optional[Any] , __snake_case : Tuple ) -> Tuple: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Dict = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(__snake_case ) out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def A ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) UpperCAmelCase : Optional[Any] = [1] * len(self.prefix_tokens ) UpperCAmelCase : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Dict: UpperCAmelCase : List[Any] = self.__dict__.copy() UpperCAmelCase : int = None return state def __setstate__( self : List[Any] , __snake_case : Dict ) -> None: UpperCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[int] = {} UpperCAmelCase : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def A ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[Any] = Path(__snake_case ) if not save_dir.is_dir(): raise OSError(F"""{save_directory} should be a directory""" ) UpperCAmelCase : List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def A ( self : int , __snake_case : List[str] , __snake_case : str = "en" , __snake_case : Optional[List[str]] = None , __snake_case : str = "ro" , **__snake_case : Optional[int] , ) -> BatchEncoding: UpperCAmelCase : List[Any] = src_lang UpperCAmelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def A ( self : int , __snake_case : Any , __snake_case : Optional[str] , __snake_case : Optional[str] , **__snake_case : Any ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase : Union[str, Any] = src_lang UpperCAmelCase : Dict = self(__snake_case , add_special_tokens=__snake_case , **__snake_case ) UpperCAmelCase : Any = self.get_lang_id(__snake_case ) UpperCAmelCase : Dict = tgt_lang_id return inputs def A ( self : str ) -> int: self.set_src_lang_special_tokens(self.src_lang ) def A ( self : Any ) -> int: self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : Any , __snake_case : str ) -> None: UpperCAmelCase : Dict = self.get_lang_token(__snake_case ) UpperCAmelCase : str = self.lang_token_to_id[lang_token] UpperCAmelCase : Any = [self.cur_lang_id] UpperCAmelCase : str = [self.eos_token_id] def A ( self : Dict , __snake_case : str ) -> None: UpperCAmelCase : Union[str, Any] = self.get_lang_token(__snake_case ) UpperCAmelCase : str = self.lang_token_to_id[lang_token] UpperCAmelCase : Optional[int] = [self.cur_lang_id] UpperCAmelCase : int = [self.eos_token_id] def A ( self : Optional[Any] , __snake_case : str ) -> str: return self.lang_code_to_token[lang] def A ( self : Any , __snake_case : str ) -> int: UpperCAmelCase : Any = self.get_lang_token(__snake_case ) return self.lang_token_to_id[lang_token] def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: UpperCAmelCase : Any = sentencepiece.SentencePieceProcessor(**_lowerCAmelCase ) spm.Load(str(_lowerCAmelCase ) ) return spm def snake_case_ ( _lowerCAmelCase : str ) -> Union[Dict, List]: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ) -> None: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=2 )
23
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } snake_case_ = { 'Salesforce/codegen-350M-mono': 2048, } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Dict = VOCAB_FILES_NAMES A_ : int = PRETRAINED_VOCAB_FILES_MAP A_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Union[str, Any] = ['input_ids', 'attention_mask'] A_ : Any = CodeGenTokenizer def __init__(self : Optional[int] , a__ : Any=None , a__ : List[Any]=None , a__ : Optional[int]=None , a__ : Tuple="<|endoftext|>" , a__ : Tuple="<|endoftext|>" , a__ : Any="<|endoftext|>" , a__ : Any=False , **a__ : Dict , ): """simple docstring""" super().__init__( a__ , a__ , tokenizer_file=a__ , unk_token=a__ , bos_token=a__ , eos_token=a__ , add_prefix_space=a__ , **a__ , ) if kwargs.pop('''add_bos_token''' , a__ ): __snake_case = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a__ ) != add_prefix_space: __snake_case = getattr(a__ , pre_tok_state.pop('''type''' ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**a__ ) __snake_case = add_prefix_space def a (self : Tuple , *a__ : Any , **a__ : Optional[int] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a__ , **a__ ) def a (self : Optional[int] , *a__ : List[str] , **a__ : Optional[Any] ): """simple docstring""" __snake_case = kwargs.get('''is_split_into_words''' , a__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a__ , **a__ ) def a (self : List[str] , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def a (self : Dict , a__ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , a__ : bool = False , a__ : bool = None , a__ : Optional[List[str]] = None , **a__ : List[str] , ): """simple docstring""" __snake_case = super().decode( token_ids=a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ , **a__ , ) if truncate_before_pattern is not None and len(a__ ) > 0: __snake_case = self.truncate(a__ , a__ ) return decoded_text def a (self : Any , a__ : Any , a__ : Optional[int] ): """simple docstring""" def find_re(a__ : str , a__ : Any , a__ : Any ): __snake_case = pattern.search(a__ , a__ ) return m.start() if m else -1 __snake_case = [re.compile(a__ , re.MULTILINE ) for pattern in truncate_before_pattern] __snake_case = list(re.finditer('''^print''' , a__ , re.MULTILINE ) ) if len(a__ ) > 1: __snake_case = completion[: prints[1].start()] __snake_case = list(re.finditer('''^def''' , a__ , re.MULTILINE ) ) if len(a__ ) > 1: __snake_case = completion[: defs[1].start()] __snake_case = 0 __snake_case = [ pos for pos in [find_re(a__ , a__ , a__ ) for terminal in terminals] if pos != -1 ] if len(a__ ) > 0: return completion[: min(a__ )] else: return completion
24
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def lowercase_ ( _snake_case ,_snake_case ): def run_func(_snake_case ): @wraps(_snake_case ) def run_in_eager_mode(*_snake_case ,**_snake_case ): return func(*_snake_case ,**_snake_case ) @wraps(_snake_case ) @tf.function(experimental_compile=_snake_case ) def run_in_graph_mode(*_snake_case ,**_snake_case ): return func(*_snake_case ,**_snake_case ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Dict = random.Random() SCREAMING_SNAKE_CASE__ : Union[str, Any] = [rng.randint(0 ,vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_snake_case ,shape=(batch_size, sequence_length) ,dtype=tf.intaa ) class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : TensorFlowBenchmarkArguments __UpperCamelCase : PretrainedConfig __UpperCamelCase : str = "TensorFlow" @property def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" return tf.__version__ def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_inference_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._measure_speed(_inference ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_train_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._measure_speed(_train ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_inference_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._measure_memory(_inference ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) SCREAMING_SNAKE_CASE__ : List[str] = self._prepare_train_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._measure_memory(_train ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Callable[[], None]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = ( hasattr(SCREAMING_SNAKE_CASE__ , """architectures""" ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: SCREAMING_SNAKE_CASE__ : Any = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model SCREAMING_SNAKE_CASE__ : Union[str, Any] = __import__("""transformers""" , fromlist=[model_class] ) SCREAMING_SNAKE_CASE__ : Any = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = model_cls(SCREAMING_SNAKE_CASE__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: SCREAMING_SNAKE_CASE__ : str = TF_MODEL_MAPPING[config.__class__](SCREAMING_SNAKE_CASE__ ) # encoder-decoder has vocab size saved differently SCREAMING_SNAKE_CASE__ : int = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE__ , """vocab_size""" ) else config.encoder.vocab_size SCREAMING_SNAKE_CASE__ : List[str] = random_input_ids(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Callable[[], None]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) SCREAMING_SNAKE_CASE__ : List[str] = ( hasattr(SCREAMING_SNAKE_CASE__ , """architectures""" ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: SCREAMING_SNAKE_CASE__ : Any = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model SCREAMING_SNAKE_CASE__ : List[str] = __import__("""transformers""" , fromlist=[model_class] ) SCREAMING_SNAKE_CASE__ : Tuple = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = model_cls(SCREAMING_SNAKE_CASE__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](SCREAMING_SNAKE_CASE__ ) # encoder-decoder has vocab size saved differently SCREAMING_SNAKE_CASE__ : List[Any] = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE__ , """vocab_size""" ) else config.encoder.vocab_size SCREAMING_SNAKE_CASE__ : int = random_input_ids(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE__ : Any = tf.gradients(SCREAMING_SNAKE_CASE__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): SCREAMING_SNAKE_CASE__ : Dict = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE__ : Any = tf.gradients(SCREAMING_SNAKE_CASE__ , model.trainable_variables ) return gradients SCREAMING_SNAKE_CASE__ : Any = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(SCREAMING_SNAKE_CASE__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average SCREAMING_SNAKE_CASE__ : Optional[int] = timeit.repeat( SCREAMING_SNAKE_CASE__ , repeat=self.args.repeat , number=10 , ) return min(SCREAMING_SNAKE_CASE__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() SCREAMING_SNAKE_CASE__ : List[Any] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = nvml.nvmlDeviceGetMemoryInfo(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = meminfo.used SCREAMING_SNAKE_CASE__ : str = Memory(SCREAMING_SNAKE_CASE__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) SCREAMING_SNAKE_CASE__ : Any = None else: SCREAMING_SNAKE_CASE__ : List[Any] = measure_peak_memory_cpu(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Memory(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else memory_bytes if self.args.trace_memory_line_by_line: SCREAMING_SNAKE_CASE__ : List[Any] = stop_memory_tracing(SCREAMING_SNAKE_CASE__ ) if memory is None: SCREAMING_SNAKE_CASE__ : Optional[int] = summary.total else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
25
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowercase ( UpperCamelCase__ ): _a = "levit" def __init__( self , _a=224 , _a=3 , _a=3 , _a=2 , _a=1 , _a=16 , _a=[128, 256, 384] , _a=[4, 8, 12] , _a=[4, 4, 4] , _a=[16, 16, 16] , _a=0 , _a=[2, 2, 2] , _a=[2, 2, 2] , _a=0.02 , **_a , ) -> Any: super().__init__(**_a ) _A : List[Any] = image_size _A : Union[str, Any] = num_channels _A : Optional[Any] = kernel_size _A : Optional[int] = stride _A : int = padding _A : Optional[int] = hidden_sizes _A : List[str] = num_attention_heads _A : Tuple = depths _A : Any = key_dim _A : Optional[Any] = drop_path_rate _A : Tuple = patch_size _A : Tuple = attention_ratio _A : int = mlp_ratio _A : Any = initializer_range _A : Tuple = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-4
26
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) __a : int = '' while len(_SCREAMING_SNAKE_CASE ) % 3 != 0: __a : str = '0' + bin_string __a : List[str] = [ bin_string[index : index + 3] for index in range(len(_SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __a : int = 0 for index, val in enumerate(_SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(_SCREAMING_SNAKE_CASE ) ) oct_string += str(_SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
27
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , **_UpperCamelCase ) -> Optional[int]: super().__init__(**_UpperCamelCase ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> Any: if "text_queries" in kwargs: UpperCAmelCase_ : Tuple = kwargs.pop('text_queries' ) if isinstance(_UpperCamelCase , (str, Image.Image) ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'candidate_labels': candidate_labels} else: UpperCAmelCase_ : Union[str, Any] = image UpperCAmelCase_ : Tuple = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Tuple = {} if "threshold" in kwargs: UpperCAmelCase_ : str = kwargs['threshold'] if "top_k" in kwargs: UpperCAmelCase_ : str = kwargs['top_k'] return {}, {}, postprocess_params def __UpperCAmelCase ( self , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : List[Any] = inputs['candidate_labels'] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = candidate_labels.split(',' ) UpperCAmelCase_ : Optional[int] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_UpperCamelCase ): UpperCAmelCase_ : Tuple = self.tokenizer(_UpperCamelCase , return_tensors=self.framework ) UpperCAmelCase_ : Union[str, Any] = self.image_processor(_UpperCamelCase , return_tensors=self.framework ) yield { "is_last": i == len(_UpperCamelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : List[str] = model_inputs.pop('target_size' ) UpperCAmelCase_ : Dict = model_inputs.pop('candidate_label' ) UpperCAmelCase_ : Any = model_inputs.pop('is_last' ) UpperCAmelCase_ : Tuple = self.model(**_UpperCamelCase ) UpperCAmelCase_ : Any = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0.1 , _UpperCamelCase=None ) -> Tuple: UpperCAmelCase_ : Optional[Any] = [] for model_output in model_outputs: UpperCAmelCase_ : Optional[Any] = model_output['candidate_label'] UpperCAmelCase_ : List[str] = BaseModelOutput(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = self.image_processor.post_process_object_detection( outputs=_UpperCamelCase , threshold=_UpperCamelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): UpperCAmelCase_ : List[Any] = outputs['scores'][index].item() UpperCAmelCase_ : Dict = self._get_bounding_box(outputs['boxes'][index][0] ) UpperCAmelCase_ : List[Any] = {'score': score, 'label': label, 'box': box} results.append(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x["score"] , reverse=_UpperCamelCase ) if top_k: UpperCAmelCase_ : List[str] = results[:top_k] return results def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = box.int().tolist() UpperCAmelCase_ : Optional[Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
29
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Optional[int] = 'vision-encoder-decoder' a :Any = True def __init__( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) lowercase_ = kwargs.pop('''encoder''' ) lowercase_ = encoder_config.pop('''model_type''' ) lowercase_ = kwargs.pop('''decoder''' ) lowercase_ = decoder_config.pop('''model_type''' ) lowercase_ = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = True @classmethod def _lowercase ( cls : Tuple , SCREAMING_SNAKE_CASE_ : PretrainedConfig , SCREAMING_SNAKE_CASE_ : PretrainedConfig , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> PretrainedConfig: logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase_ = True lowercase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.encoder.to_dict() lowercase_ = self.decoder.to_dict() lowercase_ = self.__class__.model_type return output class lowercase__( UpperCAmelCase ): """simple docstring""" a :Any = version.parse('1.11' ) @property def _lowercase ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self : Dict ) -> float: return 1e-4 @property def _lowercase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowercase__( UpperCAmelCase ): """simple docstring""" @property def _lowercase ( self : Any ) -> Mapping[str, Mapping[int, str]]: lowercase_ = OrderedDict() lowercase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} lowercase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} lowercase_ = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch lowercase_ = OrderedDict() lowercase_ = super().generate_dummy_inputs( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ = dummy_input['''input_ids'''].shape lowercase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase_ = dummy_input.pop('''input_ids''' ) lowercase_ = dummy_input.pop('''attention_mask''' ) lowercase_ = torch.zeros(SCREAMING_SNAKE_CASE_ ) return common_inputs class lowercase__( UpperCAmelCase ): """simple docstring""" @property def _lowercase ( self : Dict ) -> None: pass def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : PretrainedConfig , SCREAMING_SNAKE_CASE_ : PretrainedConfig , SCREAMING_SNAKE_CASE_ : str = "default" ) -> OnnxConfig: lowercase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
30
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCamelCase_ ( _UpperCAmelCase : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = [] for line in lines: _UpperCAmelCase : Optional[Any] = re.sub(R"#.*" , "" , _UpperCAmelCase ) # remove comments if line: filtered_lines.append(_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = "\n".join(_UpperCAmelCase ) # Make a hash from all this code _UpperCAmelCase : Optional[int] = full_str.encode("utf-8" ) return shaaaa(_UpperCAmelCase ).hexdigest() # get importable module names and hash for caching __SCREAMING_SNAKE_CASE : Optional[Any] = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __SCREAMING_SNAKE_CASE : Tuple = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __SCREAMING_SNAKE_CASE : str = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __SCREAMING_SNAKE_CASE : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
31
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a_ : str = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: a_ : Tuple = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: a_ : int = 4 a_ : str = 48 a_ : Union[str, Any] = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: a_ : List[Any] = [6, 6, 6, 6] a_ : Tuple = 60 a_ : Union[str, Any] = [6, 6, 6, 6] a_ : Optional[int] = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: a_ : Tuple = 4 a_ : Optional[int] = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: a_ : List[str] = 1 a_ : Optional[int] = 1 a_ : int = 1_26 a_ : Optional[Any] = 7 a_ : Optional[int] = 255.0 a_ : Tuple = '' return config def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Optional[int] ) -> List[str]: """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: a_ : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a_ : List[Any] = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: a_ : Any = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: a_ : Tuple = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: a_ : Union[str, Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a_ : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a_ : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a_ : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a_ : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a_ : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: a_ : str = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: a_ : Optional[int] = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: a_ : Optional[int] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: a_ : List[str] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: a_ : List[Any] = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": a_ : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a_ : Optional[int] = 'layernorm.bias' if "conv_first" in name: a_ : Tuple = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: a_ : Optional[int] = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: a_ : Union[str, Any] = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: a_ : Union[str, Any] = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: a_ : Union[str, Any] = name.replace('upsample.2' , 'upsample.convolution_1' ) a_ : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": a_ : Union[str, Any] = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) a_ : Union[str, Any] = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: a_ : List[str] = 'swin2sr.' + name return name def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : List[str] ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): a_ : List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: a_ : List[Any] = key.split('.' ) a_ : Optional[Any] = int(key_split[1] ) a_ : Optional[Any] = int(key_split[4] ) a_ : Tuple = config.embed_dim if "weight" in key: a_ : Union[str, Any] = val[:dim, :] a_ : Tuple = val[dim : dim * 2, :] a_ : Union[str, Any] = val[-dim:, :] else: a_ : Tuple = val[:dim] a_ : Optional[Any] = val[dim : dim * 2] a_ : Any = val[-dim:] pass else: a_ : Union[str, Any] = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Optional[int] , __A : List[Any] ) -> Optional[int]: """simple docstring""" a_ : Any = get_config(__A ) a_ : Any = SwinaSRForImageSuperResolution(__A ) model.eval() a_ : List[str] = torch.hub.load_state_dict_from_url(__A , map_location='cpu' ) a_ : List[Any] = convert_state_dict(__A , __A ) a_ , a_ : Tuple = model.load_state_dict(__A , strict=__A ) if len(__A ) > 0: raise ValueError('Missing keys when converting: {}'.format(__A ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values a_ : Union[str, Any] = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' a_ : Tuple = Image.open(requests.get(__A , stream=__A ).raw ).convert('RGB' ) a_ : Union[str, Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values a_ : Any = 1_26 if 'Jpeg' in checkpoint_url else 2_56 a_ : Optional[int] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ : str = transforms(__A ).unsqueeze(0 ) if config.num_channels == 1: a_ : int = pixel_values[:, 0, :, :].unsqueeze(1 ) a_ : int = model(__A ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: a_ : Optional[int] = torch.Size([1, 3, 5_12, 5_12] ) a_ : str = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: a_ : Dict = torch.Size([1, 3, 10_24, 10_24] ) a_ : Union[str, Any] = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here a_ : Union[str, Any] = torch.Size([1, 3, 10_24, 10_24] ) a_ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: a_ : Union[str, Any] = torch.Size([1, 3, 5_12, 5_12] ) a_ : Optional[int] = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: a_ : Any = torch.Size([1, 3, 10_24, 10_24] ) a_ : Tuple = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __A , atol=1e-3 ) print('Looks ok!' ) a_ : int = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } a_ : List[str] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') UpperCAmelCase_ : List[str] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
32
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
"""simple docstring""" def lowercase ( __snake_case : List[str] , __snake_case : Optional[int] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowercase_ : List[Any] = (boundary[1] - boundary[0]) / steps lowercase_ : List[str] = boundary[0] lowercase_ : int = boundary[1] lowercase_ : Optional[int] = make_points(__snake_case , __snake_case , __snake_case ) lowercase_ : str = 0.0 y += (h / 2.0) * f(__snake_case ) for i in x_i: # print(i) y += h * f(__snake_case ) y += (h / 2.0) * f(__snake_case ) return y def lowercase ( __snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] ): lowercase_ : Dict = a + h while x < (b - h): yield x lowercase_ : Optional[int] = x + h def lowercase ( __snake_case : int ): # enter your function here lowercase_ : Any = (x - 0) * (x - 0) return y def lowercase ( ): lowercase_ : int = 0.0 # Lower bound of integration lowercase_ : List[Any] = 1.0 # Upper bound of integration lowercase_ : List[Any] = 10.0 # define number of steps or resolution lowercase_ : List[Any] = [a, b] # define boundary of integration lowercase_ : Optional[Any] = method_a(__snake_case , __snake_case ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
33
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _a ( __a ): def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = 5 # Realm tok UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(lowercase , exist_ok=lowercase ) UpperCAmelCase = os.path.join(lowercase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(lowercase , exist_ok=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def A ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = RealmConfig(num_block_records=self.num_block_records ) return config def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=lowercase , ) return block_records def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_config() UpperCAmelCase = self.get_dummy_retriever() UpperCAmelCase = retriever.tokenizer UpperCAmelCase = np.array([0, 3] , dtype='''long''' ) UpperCAmelCase = tokenizer(['''Test question'''] ).input_ids UpperCAmelCase = tokenizer( ['''the fourth'''] , add_special_tokens=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , ).input_ids UpperCAmelCase = config.reader_seq_len UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever( lowercase , lowercase , answer_ids=lowercase , max_length=lowercase , return_tensors='''np''' ) self.assertEqual(len(lowercase ) , 2 ) self.assertEqual(len(lowercase ) , 2 ) self.assertEqual(len(lowercase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_config() UpperCAmelCase = self.get_dummy_retriever() UpperCAmelCase = retriever.tokenizer UpperCAmelCase = np.array([0, 3, 5] , dtype='''long''' ) UpperCAmelCase = tokenizer(['''Test question'''] ).input_ids UpperCAmelCase = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , ).input_ids UpperCAmelCase = config.reader_seq_len UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever( lowercase , lowercase , answer_ids=lowercase , max_length=lowercase , return_tensors='''np''' ) self.assertEqual([False, True, True] , lowercase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowercase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path UpperCAmelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: UpperCAmelCase = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
34
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _snake_case = logging.getLogger(__name__) _snake_case = tf.data.AUTOTUNE def A ( ): '''simple docstring''' _lowerCAmelCase : str = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=_lowerCamelCase , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=_lowerCamelCase , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=_lowerCamelCase , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=_lowerCamelCase , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=_lowerCamelCase , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=_lowerCamelCase , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=_lowerCamelCase , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=_lowerCamelCase , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=_lowerCamelCase , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=_lowerCamelCase , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=_lowerCamelCase , default=1e-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=_lowerCamelCase , default=1e-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=_lowerCamelCase , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=_lowerCamelCase , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=_lowerCamelCase , help="Model ID to upload to on the Hugging Face Hub." ) _lowerCAmelCase : List[Any] = parser.parse_args() return args def A ( _lowerCamelCase ): '''simple docstring''' try: if args.tpu_name: _lowerCAmelCase : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _lowerCAmelCase : Dict = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(_lowerCamelCase ) tf.tpu.experimental.initialize_tpu_system(_lowerCamelCase ) return tpu def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = 0 for file in file_list: _lowerCAmelCase : Optional[int] = file.split("/" )[-1] _lowerCAmelCase : str = re.search(r"-\d+-(\d+)\.tfrecord" , _lowerCamelCase ).group(1 ) _lowerCAmelCase : Tuple = int(_lowerCamelCase ) num_samples += sample_count return num_samples def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = count_samples(_lowerCamelCase ) _lowerCAmelCase : Tuple = tf.data.Dataset.from_tensor_slices(_lowerCamelCase ) if shuffle: _lowerCAmelCase : Union[str, Any] = dataset.shuffle(len(_lowerCamelCase ) ) _lowerCAmelCase : List[Any] = tf.data.TFRecordDataset(_lowerCamelCase , num_parallel_reads=_lowerCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _lowerCAmelCase : Optional[Any] = dataset.apply(tf.data.experimental.assert_cardinality(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = dataset.map(_lowerCamelCase , num_parallel_calls=_lowerCamelCase ) if shuffle: assert shuffle_buffer_size is not None _lowerCAmelCase : Any = dataset.shuffle(args.shuffle_buffer_size ) _lowerCAmelCase : Optional[Any] = dataset.batch(_lowerCamelCase , drop_remainder=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = dataset.map(_lowerCamelCase , num_parallel_calls=_lowerCamelCase ) _lowerCAmelCase : List[str] = dataset.prefetch(_lowerCamelCase ) return dataset def A ( _lowerCamelCase ): '''simple docstring''' if not args.no_tpu: _lowerCAmelCase : Optional[Any] = initialize_tpu(_lowerCamelCase ) _lowerCAmelCase : int = tf.distribute.TPUStrategy(_lowerCamelCase ) else: _lowerCAmelCase : int = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) _lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer ) _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(args.pretrained_model_config ) _lowerCAmelCase : Dict = tokenizer.vocab_size _lowerCAmelCase : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F"No .tfrecord files found in {args.train_dataset}." ) _lowerCAmelCase : int = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F"No .tfrecord files found in {args.eval_dataset}." ) _lowerCAmelCase : Tuple = count_samples(_lowerCamelCase ) _lowerCAmelCase : List[str] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _lowerCAmelCase : Any = steps_per_epoch * args.num_epochs with strategy.scope(): _lowerCAmelCase : str = TFAutoModelForMaskedLM.from_config(_lowerCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _lowerCAmelCase , _lowerCAmelCase : str = create_optimizer( num_train_steps=_lowerCamelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_lowerCamelCase , metrics=["accuracy"] ) def decode_fn(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_lowerCamelCase , _lowerCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _lowerCAmelCase : str = DataCollatorForLanguageModeling( tokenizer=_lowerCamelCase , mlm_probability=args.mlm_probability , mlm=_lowerCamelCase , return_tensors="tf" ) def mask_with_collator(_lowerCamelCase ): # TF really needs an isin() function _lowerCAmelCase : Optional[int] = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) _lowerCAmelCase , _lowerCAmelCase : Dict = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(_lowerCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_lowerCamelCase , ) return batch _lowerCAmelCase : Union[str, Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync _lowerCAmelCase : Optional[int] = prepare_dataset( _lowerCamelCase , decode_fn=_lowerCamelCase , mask_fn=_lowerCamelCase , batch_size=_lowerCamelCase , shuffle=_lowerCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) _lowerCAmelCase : Optional[Any] = prepare_dataset( _lowerCamelCase , decode_fn=_lowerCamelCase , mask_fn=_lowerCamelCase , batch_size=_lowerCamelCase , shuffle=_lowerCamelCase , ) _lowerCAmelCase : Dict = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_lowerCamelCase ) ) model.fit( _lowerCamelCase , validation_data=_lowerCamelCase , epochs=args.num_epochs , callbacks=_lowerCamelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _snake_case = parse_args() main(args)
36
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
'''simple docstring''' from math import sqrt def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 10001 ): """simple docstring""" lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Optional[int] = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
37
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase_ : Optional[Any] = '''.''' if __name__ == "__main__": UpperCAmelCase_ : List[Any] = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase_ : Any = line.strip() UpperCAmelCase_ : int = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase_ : Union[str, Any] = '''\n'''.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
38
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
from __future__ import annotations def __A ( __lowerCAmelCase )-> float: """simple docstring""" if not nums: raise ValueError('List is empty' ) return sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
39
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( _lowercase ): a = (DDPMParallelScheduler,) def lowerCamelCase_ ( self: Union[str, Any] , **UpperCamelCase__: str ): lowerCamelCase__ : str = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**UpperCamelCase__ ) return config def lowerCamelCase_ ( self: Tuple ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): self.check_over_configs(thresholding=UpperCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , ) def lowerCamelCase_ ( self: str ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : int = self.scheduler_classes[0] lowerCamelCase__ : Union[str, Any] = self.get_scheduler_config() lowerCamelCase__ : Union[str, Any] = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : int = self.scheduler_classes[0] lowerCamelCase__ : List[Any] = self.get_scheduler_config() lowerCamelCase__ : List[str] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : str = len(UpperCamelCase__ ) lowerCamelCase__ : str = self.dummy_model() lowerCamelCase__ : int = self.dummy_sample_deter lowerCamelCase__ : Optional[int] = self.dummy_sample_deter + 0.1 lowerCamelCase__ : Optional[int] = self.dummy_sample_deter - 0.1 lowerCamelCase__ : Union[str, Any] = samplea.shape[0] lowerCamelCase__ : Union[str, Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCamelCase__ : str = torch.arange(UpperCamelCase__ )[0:3, None].repeat(1 , UpperCamelCase__ ) lowerCamelCase__ : Tuple = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCamelCase__ : Dict = scheduler.batch_step_no_noise(UpperCamelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) lowerCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase__ : List[str] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : List[Any] = self.scheduler_classes[0] lowerCamelCase__ : Dict = self.get_scheduler_config() lowerCamelCase__ : List[Any] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : List[Any] = len(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.dummy_model() lowerCamelCase__ : int = self.dummy_sample_deter lowerCamelCase__ : Optional[int] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase__ ) ): # 1. predict noise residual lowerCamelCase__ : Dict = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : Any = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowerCamelCase__ : List[str] = pred_prev_sample lowerCamelCase__ : List[Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[Any] = self.scheduler_classes[0] lowerCamelCase__ : Any = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase__ : Any = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : int = len(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.dummy_model() lowerCamelCase__ : List[Any] = self.dummy_sample_deter lowerCamelCase__ : List[str] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase__ ) ): # 1. predict noise residual lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : List[str] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowerCamelCase__ : List[Any] = pred_prev_sample lowerCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase__ : List[str] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Dict = self.scheduler_classes[0] lowerCamelCase__ : List[str] = self.get_scheduler_config() lowerCamelCase__ : Optional[int] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase__ ) lowerCamelCase__ : Any = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase__ ): if i == len(UpperCamelCase__ ) - 1: lowerCamelCase__ : List[str] = -1 else: lowerCamelCase__ : int = timesteps[i + 1] lowerCamelCase__ : List[Any] = scheduler.previous_timestep(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = prev_t.item() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[int] = self.scheduler_classes[0] lowerCamelCase__ : Union[str, Any] = self.get_scheduler_config() lowerCamelCase__ : Any = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(UpperCamelCase__ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Tuple = self.scheduler_classes[0] lowerCamelCase__ : Dict = self.get_scheduler_config() lowerCamelCase__ : str = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : Dict = [100, 87, 50, 1, 0] lowerCamelCase__ : List[str] = len(UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase__ , timesteps=UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase__ : Tuple = self.get_scheduler_config() lowerCamelCase__ : List[Any] = scheduler_class(**UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase__ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=UpperCamelCase__ )
41
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowercase : Optional[Any] = False class __UpperCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger ' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = generator.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase ( self ): """simple docstring""" _snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger ' _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _snake_case = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
42
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowercase = 16 __lowercase = 32 def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 , SCREAMING_SNAKE_CASE = "bert-base-cased" ): '''simple docstring''' __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase :int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase :Tuple = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase :List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __UpperCamelCase :Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase :int = config['''lr'''] __UpperCamelCase :str = int(config['''num_epochs'''] ) __UpperCamelCase :Any = int(config['''seed'''] ) __UpperCamelCase :Dict = int(config['''batch_size'''] ) __UpperCamelCase :Optional[Any] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Dict = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase :Any = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) # Instantiate optimizer __UpperCamelCase :List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase :Optional[Any] = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase :Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __UpperCamelCase :Dict = 1 __UpperCamelCase :Tuple = (len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase :str = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE , ) else: __UpperCamelCase :Dict = DummyScheduler(SCREAMING_SNAKE_CASE , total_num_steps=SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase :List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase :Dict = 0 # Now we train the model __UpperCamelCase :Any = evaluate.load('''glue''' , '''mrpc''' ) __UpperCamelCase :Union[str, Any] = 0 __UpperCamelCase :Optional[int] = {} for epoch in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = outputs.loss __UpperCamelCase :str = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase :Any = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase :Any = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase , __UpperCamelCase :List[Any] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE ) - 1: __UpperCamelCase :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __UpperCamelCase :int = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=SCREAMING_SNAKE_CASE , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '''--output_dir''' , type=SCREAMING_SNAKE_CASE , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=SCREAMING_SNAKE_CASE , default=3 , help='''Number of train epochs.''' , ) __UpperCamelCase :List[str] = parser.parse_args() __UpperCamelCase :Tuple = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} _a : int = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } _a : Optional[Any] = { 'allenai/longformer-base-4096': 4_096, 'allenai/longformer-large-4096': 4_096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Optional[Any] = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) _lowerCAmelCase : Dict = bs[:] _lowerCAmelCase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : List[Any] = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase ,_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Dict: _lowerCAmelCase : int = set() _lowerCAmelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Tuple = char return pairs class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self , a__ , a__ , a__="replace" , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=False , **a__ , ): _lowerCAmelCase : Union[str, Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token _lowerCAmelCase : Optional[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token _lowerCAmelCase : List[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token _lowerCAmelCase : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token _lowerCAmelCase : List[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token _lowerCAmelCase : Dict = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( errors=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , **a__ , ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase : List[Any] = json.load(a__ ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Dict = errors # how to handle errors in decoding _lowerCAmelCase : Any = bytes_to_unicode() _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase : Dict = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : List[str] = {} _lowerCAmelCase : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : int = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): if token in self.cache: return self.cache[token] _lowerCAmelCase : Any = tuple(a__ ) _lowerCAmelCase : Tuple = get_pairs(a__ ) if not pairs: return token while True: _lowerCAmelCase : Optional[Any] = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : List[str] = 0 while i < len(a__ ): try: _lowerCAmelCase : str = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Tuple = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : List[Any] = tuple(a__ ) _lowerCAmelCase : Optional[int] = new_word if len(a__ ) == 1: break else: _lowerCAmelCase : Any = get_pairs(a__ ) _lowerCAmelCase : str = """ """.join(a__ ) _lowerCAmelCase : str = word return word def __A ( self , a__ ): _lowerCAmelCase : Tuple = [] for token in re.findall(self.pat , a__ ): _lowerCAmelCase : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a__ ).split(""" """ ) ) return bpe_tokens def __A ( self , a__ ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ ) def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = """""".join(a__ ) _lowerCAmelCase : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Tuple = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[str] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) _lowerCAmelCase : Optional[int] = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase : List[str] = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] _lowerCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Dict = [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__=False , **a__ ): _lowerCAmelCase : int = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a__ ) > 0 and not text[0].isspace()): _lowerCAmelCase : int = """ """ + text return (text, kwargs)
44
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] = FunnelTokenizer __UpperCAmelCase : List[Any] = FunnelTokenizerFast __UpperCAmelCase : Any = True __UpperCAmelCase : List[str] = True def __UpperCAmelCase ( self ): super().setUp() __a = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , **_a ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , **_a ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def __UpperCAmelCase ( self ): __a = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: __a = tokenizer('''UNwant\u00E9d,running''' ) __a = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __a = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
45
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 2_00 ): '''simple docstring''' lowerCAmelCase = [1, 2, 5, 10, 20, 50, 1_00, 2_00] lowerCAmelCase = [0] * (pence + 1) lowerCAmelCase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
46
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A__ ( A__ ): A__ = 'pix2struct_text_model' A__ = ['past_key_values'] A__ = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , _a : Optional[int]=5_0244 , _a : Tuple=768 , _a : Tuple=64 , _a : List[Any]=2048 , _a : Tuple=12 , _a : int=12 , _a : List[str]=32 , _a : List[str]=128 , _a : List[str]=0.1 , _a : Dict=1e-6 , _a : int=1.0 , _a : Optional[int]="gelu_new" , _a : Dict=0 , _a : List[str]=False , _a : List[Any]=0 , _a : Optional[Any]=1 , _a : int=False , _a : Optional[int]=True , **_a : int , ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =d_kv _SCREAMING_SNAKE_CASE =d_ff _SCREAMING_SNAKE_CASE =num_layers _SCREAMING_SNAKE_CASE =num_heads _SCREAMING_SNAKE_CASE =relative_attention_num_buckets _SCREAMING_SNAKE_CASE =relative_attention_max_distance _SCREAMING_SNAKE_CASE =dropout_rate _SCREAMING_SNAKE_CASE =layer_norm_epsilon _SCREAMING_SNAKE_CASE =initializer_factor _SCREAMING_SNAKE_CASE =use_cache _SCREAMING_SNAKE_CASE =eos_token_id _SCREAMING_SNAKE_CASE =decoder_start_token_id # for backwards compatibility _SCREAMING_SNAKE_CASE =dense_act_fn super().__init__( pad_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , tie_word_embeddings=_a , is_decoder=_a , **_a , ) @classmethod def A ( cls : List[str] , _a : Union[str, os.PathLike] , **_a : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": _SCREAMING_SNAKE_CASE =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class A__ ( A__ ): A__ = 'pix2struct_vision_model' def __init__( self : Dict , _a : List[str]=768 , _a : List[str]=768 , _a : Tuple=2048 , _a : Any=64 , _a : List[str]=12 , _a : List[str]=12 , _a : str="gelu_new" , _a : List[str]=1e-6 , _a : int=0.0 , _a : Union[str, Any]=0.0 , _a : Optional[int]=1e-10 , _a : str=1.0 , _a : Optional[int]=4096 , _a : str=32 , _a : Tuple=128 , **_a : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_a ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =patch_embed_hidden_size _SCREAMING_SNAKE_CASE =d_ff _SCREAMING_SNAKE_CASE =dropout_rate _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =initializer_factor _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =dense_act_fn _SCREAMING_SNAKE_CASE =seq_len _SCREAMING_SNAKE_CASE =relative_attention_num_buckets _SCREAMING_SNAKE_CASE =relative_attention_max_distance _SCREAMING_SNAKE_CASE =d_kv @classmethod def A ( cls : List[Any] , _a : Union[str, os.PathLike] , **_a : Dict ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": _SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class A__ ( A__ ): A__ = 'pix2struct' A__ = True def __init__( self : Optional[int] , _a : Any=None , _a : Union[str, Any]=None , _a : Optional[int]=1.0 , _a : Optional[int]=0.02 , _a : int=False , _a : Dict=False , _a : List[Any]=True , **_a : str , ) -> Optional[int]: '''simple docstring''' super().__init__(tie_word_embeddings=_a , is_encoder_decoder=_a , **_a ) if text_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) _SCREAMING_SNAKE_CASE =PixaStructTextConfig(**_a ) _SCREAMING_SNAKE_CASE =PixaStructVisionConfig(**_a ) _SCREAMING_SNAKE_CASE =self.text_config.decoder_start_token_id _SCREAMING_SNAKE_CASE =self.text_config.pad_token_id _SCREAMING_SNAKE_CASE =self.text_config.eos_token_id _SCREAMING_SNAKE_CASE =initializer_factor _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =self.initializer_range _SCREAMING_SNAKE_CASE =self.initializer_range _SCREAMING_SNAKE_CASE =is_vqa @classmethod def A ( cls : Union[str, Any] , _a : PixaStructTextConfig , _a : PixaStructVisionConfig , **_a : Optional[Any] ) -> List[str]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def A ( self : List[str] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.text_config.to_dict() _SCREAMING_SNAKE_CASE =self.vision_config.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
47
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> str: lowerCamelCase : int = size if size is not None else {"height": 18, "width": 18} lowerCamelCase : int = parent lowerCamelCase : str = batch_size lowerCamelCase : List[Any] = num_channels lowerCamelCase : Any = image_size lowerCamelCase : Optional[int] = min_resolution lowerCamelCase : Dict = max_resolution lowerCamelCase : Tuple = do_resize lowerCamelCase : Tuple = size lowerCamelCase : Tuple = do_normalize lowerCamelCase : Any = image_mean lowerCamelCase : int = image_std def _lowercase ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Dict = ViTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = EfficientFormerImageProcessorTester(self ) @property def _lowercase ( self ) -> Tuple: return self.image_proc_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "size" ) ) def _lowercase ( self ) -> List[Any]: pass def _lowercase ( self ) -> List[str]: # Initialize image_processor lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input lowerCamelCase : Dict = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Union[str, Any] = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _lowercase ( self ) -> str: # Initialize image_processor lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input lowerCamelCase : List[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Tuple = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _lowercase ( self ) -> int: # Initialize image_processor lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input lowerCamelCase : Union[str, Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Tuple = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
48
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : str = StableDiffusionDiffEditPipeline UpperCamelCase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} UpperCamelCase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} UpperCamelCase__ : List[str] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ : Any = frozenset([] ) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' torch.manual_seed(0) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__SCREAMING_SNAKE_CASE , ) __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) __a = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_zero=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(__SCREAMING_SNAKE_CASE) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') __a = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any]=0): '''simple docstring''' __a = floats_tensor((1, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE)).to(__SCREAMING_SNAKE_CASE) __a = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE)).to(__SCREAMING_SNAKE_CASE) if str(__SCREAMING_SNAKE_CASE).startswith('''mps'''): __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) else: __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(__SCREAMING_SNAKE_CASE) __a = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=0): '''simple docstring''' __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE)).to(__SCREAMING_SNAKE_CASE) __a = image.cpu().permute(0 , 2 , 3 , 1)[0] __a = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE)).convert('''RGB''') if str(__SCREAMING_SNAKE_CASE).startswith('''mps'''): __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) else: __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(__SCREAMING_SNAKE_CASE) __a = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]=0): '''simple docstring''' __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE)).to(__SCREAMING_SNAKE_CASE) __a = image.cpu().permute(0 , 2 , 3 , 1)[0] __a = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE)).convert('''RGB''') if str(__SCREAMING_SNAKE_CASE).startswith('''mps'''): __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) else: __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(__SCREAMING_SNAKE_CASE) __a = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' if not hasattr(self.pipeline_class , '''_optional_components'''): return __a = self.get_dummy_components() __a = self.pipeline_class(**__SCREAMING_SNAKE_CASE) pipe.to(__SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) __a = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE) __a = pipe(**__SCREAMING_SNAKE_CASE)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__SCREAMING_SNAKE_CASE) __a = self.pipeline_class.from_pretrained(__SCREAMING_SNAKE_CASE) pipe_loaded.to(__SCREAMING_SNAKE_CASE) pipe_loaded.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) for optional_component in pipe._optional_components: self.assertTrue( getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is None , F'`{optional_component}` did not stay set to None after loading.' , ) __a = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE) __a = pipe_loaded(**__SCREAMING_SNAKE_CASE)[0] __a = np.abs(output - output_loaded).max() self.assertLess(__SCREAMING_SNAKE_CASE , 1E-4) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**__SCREAMING_SNAKE_CASE) pipe.to(__SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = self.get_dummy_mask_inputs(__SCREAMING_SNAKE_CASE) __a = pipe.generate_mask(**__SCREAMING_SNAKE_CASE) __a = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16)) __a = np.array([0] * 9) __a = np.abs(mask_slice.flatten() - expected_slice).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3) self.assertEqual(mask[0, -3, -4] , 0) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**__SCREAMING_SNAKE_CASE) pipe.to(__SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = self.get_dummy_inversion_inputs(__SCREAMING_SNAKE_CASE) __a = pipe.invert(**__SCREAMING_SNAKE_CASE).images __a = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3)) __a = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) __a = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = {'''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''beta_schedule''': '''scaled_linear'''} __a = DPMSolverMultistepScheduler(**__SCREAMING_SNAKE_CASE) __a = DPMSolverMultistepInverseScheduler(**__SCREAMING_SNAKE_CASE) __a = self.pipeline_class(**__SCREAMING_SNAKE_CASE) pipe.to(__SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = self.get_dummy_inversion_inputs(__SCREAMING_SNAKE_CASE) __a = pipe.invert(**__SCREAMING_SNAKE_CASE).images __a = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3)) __a = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) __a = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-3) @require_torch_gpu @slow class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[str]): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowerCamelCase ( cls : str): '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''') __a = raw_image.convert('''RGB''').resize((768, 768)) __a = raw_image def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = torch.manual_seed(0) __a = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa) __a = DDIMScheduler.from_config(pipe.scheduler.config) __a = DDIMInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''a bowl of fruit''' __a = '''a bowl of pears''' __a = pipe.generate_mask( image=self.raw_image , source_prompt=__SCREAMING_SNAKE_CASE , target_prompt=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , ) __a = pipe.invert( prompt=__SCREAMING_SNAKE_CASE , image=self.raw_image , inpaint_strength=0.7 , generator=__SCREAMING_SNAKE_CASE).latents __a = pipe( prompt=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , image_latents=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , negative_prompt=__SCREAMING_SNAKE_CASE , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] __a = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''').resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5E-1 def _lowerCamelCase ( self : Any): '''simple docstring''' __a = torch.manual_seed(0) __a = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa) __a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __a = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''a bowl of fruit''' __a = '''a bowl of pears''' __a = pipe.generate_mask( image=self.raw_image , source_prompt=__SCREAMING_SNAKE_CASE , target_prompt=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , ) __a = pipe.invert( prompt=__SCREAMING_SNAKE_CASE , image=self.raw_image , inpaint_strength=0.7 , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=25 , ).latents __a = pipe( prompt=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , image_latents=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , negative_prompt=__SCREAMING_SNAKE_CASE , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] __a = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''').resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5E-1
49
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _UpperCAmelCase : Optional[Any] = False class lowerCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : str ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase__ : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowerCamelCase__ : int = torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = pipe.dual_guided( prompt='first prompt' , image=UpperCAmelCase , text_to_image_strength=0.7_5 , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase__ : Any = generator.manual_seed(0 ) lowerCamelCase__ : int = pipe.dual_guided( prompt='first prompt' , image=UpperCAmelCase , text_to_image_strength=0.7_5 , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A_ ( self : str ) -> int: lowerCamelCase__ : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = 'cyberpunk 2077' lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowerCamelCase__ : List[str] = torch.manual_seed(0 ) lowerCamelCase__ : List[str] = pipe.dual_guided( prompt=UpperCAmelCase , image=UpperCAmelCase , text_to_image_strength=0.7_5 , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images lowerCamelCase__ : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Tuple = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowerCamelCase__ : Union[str, Any] = 'A painting of a squirrel eating a burger ' lowerCamelCase__ : Dict = torch.manual_seed(0 ) lowerCamelCase__ : int = pipe.text_to_image( prompt=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowerCamelCase__ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Optional[Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowerCamelCase__ : Optional[Any] = pipe.image_variation(UpperCAmelCase , generator=UpperCAmelCase , output_type='numpy' ).images lowerCamelCase__ : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Optional[int] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
50
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def A (__A : Any ) -> Tuple: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __snake_case ( a ): @staticmethod def lowerCamelCase ( _snake_case : ArgumentParser): """simple docstring""" UpperCAmelCase_ = parser.add_parser('''download''') download_parser.add_argument( '''--cache-dir''' , type=_snake_case , default=_snake_case , help='''Path to location to store the models''') download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''') download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=_snake_case , help='''Name of the model to download''') download_parser.set_defaults(func=_snake_case) def __init__( self : Tuple , _snake_case : str , _snake_case : str , _snake_case : bool , _snake_case : bool): """simple docstring""" UpperCAmelCase_ = model UpperCAmelCase_ = cache UpperCAmelCase_ = force UpperCAmelCase_ = trust_remote_code def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code)
51
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = tempfile.mkdtemp() # fmt: off UpperCamelCase : Union[str, Any] = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase : int = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCamelCase : int = {"unk_token": "<unk>"} UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A_ ) ) UpperCamelCase : Optional[int] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase : Tuple = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A_ , A_ ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **A_ ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **A_ ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase : Optional[Any] = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.get_tokenizer() UpperCamelCase : List[Any] = self.get_rust_tokenizer() UpperCamelCase : Tuple = self.get_image_processor() UpperCamelCase : List[Any] = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase : List[str] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) UpperCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase : Dict = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase : List[str] = self.get_image_processor(do_normalize=A_ ) UpperCamelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.get_image_processor() UpperCamelCase : Union[str, Any] = self.get_tokenizer() UpperCamelCase : Dict = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : Dict = self.prepare_image_inputs() UpperCamelCase : Optional[Any] = image_processor(A_ , return_tensors="np" ) UpperCamelCase : Tuple = processor(images=A_ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.get_image_processor() UpperCamelCase : Dict = self.get_tokenizer() UpperCamelCase : str = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : Optional[Any] = "lower newer" UpperCamelCase : List[str] = processor(text=A_ , return_tensors="np" ) UpperCamelCase : str = tokenizer(A_ , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.get_image_processor() UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Tuple = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : int = "lower newer" UpperCamelCase : List[str] = self.prepare_image_inputs() UpperCamelCase : Any = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = "google/owlvit-base-patch32" UpperCamelCase : int = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase : Union[str, Any] = ["cat", "nasa badge"] UpperCamelCase : Any = processor(text=A_ ) UpperCamelCase : Union[str, Any] = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = "google/owlvit-base-patch32" UpperCamelCase : List[str] = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase : Dict = [["cat", "nasa badge"], ["person"]] UpperCamelCase : Tuple = processor(text=A_ ) UpperCamelCase : str = 16 UpperCamelCase : Optional[Any] = len(A_ ) UpperCamelCase : Tuple = max([len(A_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = "google/owlvit-base-patch32" UpperCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase : List[Any] = ["cat", "nasa badge"] UpperCamelCase : Any = processor(text=A_ ) UpperCamelCase : Optional[int] = 16 UpperCamelCase : Tuple = inputs["input_ids"] UpperCamelCase : int = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.get_image_processor() UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : Tuple = self.prepare_image_inputs() UpperCamelCase : Optional[Any] = self.prepare_image_inputs() UpperCamelCase : Tuple = processor(images=A_ , query_images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.get_image_processor() UpperCamelCase : Dict = self.get_tokenizer() UpperCamelCase : int = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : Dict = processor.batch_decode(A_ ) UpperCamelCase : Optional[int] = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
52
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter a__ : str =True except ImportError: a__ : Tuple =False a__ : int =logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase__ ( __lowercase : Namespace ) -> List[str]: """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class snake_case ( __lowerCamelCase ): """simple docstring""" @staticmethod def _lowerCamelCase ( __A : ArgumentParser ): __UpperCamelCase = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=__A , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=__A , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=__A ) def __init__( self : Dict , __A : bool , __A : str , __A : Any=None , *__A : Optional[int] ): __UpperCamelCase = testing __UpperCamelCase = testing_file __UpperCamelCase = path def _lowerCamelCase ( self : str ): warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __UpperCamelCase = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:2_2]] if len(__A ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) __UpperCamelCase = ( Path(__A ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __UpperCamelCase = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(__A ) ) else: with open(self._testing_file , 'r' ) as configuration_file: __UpperCamelCase = json.load(__A ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__A , extra_context=__A , ) __UpperCamelCase = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:2_2]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: __UpperCamelCase = json.load(__A ) __UpperCamelCase = configuration['lowercase_modelname'] __UpperCamelCase = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f'''{directory}/configuration.json''' ) __UpperCamelCase = 'PyTorch' in generate_tensorflow_pytorch_and_flax __UpperCamelCase = 'TensorFlow' in generate_tensorflow_pytorch_and_flax __UpperCamelCase = 'Flax' in generate_tensorflow_pytorch_and_flax __UpperCamelCase = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(__A , exist_ok=__A ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=__A ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , 'w' ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(__A : Any ): with open(__A , 'r' ) as f: __UpperCamelCase = f.readlines() with open(__A , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__A ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__A : str , __A : str , __A : List[str] ): # Create temp file __UpperCamelCase , __UpperCamelCase = mkstemp() __UpperCamelCase = False with fdopen(__A , 'w' ) as new_file: with open(__A ) as old_file: for line in old_file: new_file.write(__A ) if line_to_copy_below in line: __UpperCamelCase = True for line_to_copy in lines_to_copy: new_file.write(__A ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(__A , __A ) # Remove original file remove(__A ) # Move new file move(__A , __A ) def skip_units(__A : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__A : Optional[Any] ): with open(__A ) as datafile: __UpperCamelCase = [] __UpperCamelCase = False __UpperCamelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: __UpperCamelCase = line.split('"' )[1] __UpperCamelCase = skip_units(__A ) elif "# Below: " in line and "##" not in line: __UpperCamelCase = line.split('"' )[1] __UpperCamelCase = skip_units(__A ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__A , __A , __A ) __UpperCamelCase = [] elif "# Replace with" in line and "##" not in line: __UpperCamelCase = [] elif "##" not in line: lines_to_copy.append(__A ) remove(__A ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(__A )
53
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example a__ : Dict = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a__ : List[str] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for i in range(len(lowerCAmelCase_ ) ): __SCREAMING_SNAKE_CASE = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __SCREAMING_SNAKE_CASE = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCAmelCase_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCAmelCase_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCAmelCase_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __SCREAMING_SNAKE_CASE = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCAmelCase_ ) return next_generation def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for _ in range(lowerCAmelCase_ ): # Create output image __SCREAMING_SNAKE_CASE = Image.new("RGB" , (len(cells[0] ), len(lowerCAmelCase_ )) ) __SCREAMING_SNAKE_CASE = img.load() # Save cells to image for x in range(len(lowerCAmelCase_ ) ): for y in range(len(cells[0] ) ): __SCREAMING_SNAKE_CASE = 255 - cells[y][x] * 255 __SCREAMING_SNAKE_CASE = (colour, colour, colour) # Save image images.append(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = new_generation(lowerCAmelCase_ ) return images if __name__ == "__main__": a__ : Optional[Any] = generate_images(GLIDER, 1_6) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
54
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : List[Any] = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "glpn" def __init__( self , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=[2, 2, 2, 2] , UpperCamelCase=[8, 4, 2, 1] , UpperCamelCase=[32, 64, 160, 256] , UpperCamelCase=[7, 3, 3, 3] , UpperCamelCase=[4, 2, 2, 2] , UpperCamelCase=[1, 2, 5, 8] , UpperCamelCase=[4, 4, 4, 4] , UpperCamelCase="gelu" , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.02 , UpperCamelCase=0.1 , UpperCamelCase=1e-6 , UpperCamelCase=64 , UpperCamelCase=10 , UpperCamelCase=-1 , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase ) lowerCamelCase_ = num_channels lowerCamelCase_ = num_encoder_blocks lowerCamelCase_ = depths lowerCamelCase_ = sr_ratios lowerCamelCase_ = hidden_sizes lowerCamelCase_ = patch_sizes lowerCamelCase_ = strides lowerCamelCase_ = mlp_ratios lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = drop_path_rate lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = decoder_hidden_size lowerCamelCase_ = max_depth lowerCamelCase_ = head_in_index
55
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' snake_case_ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = StableDiffusionLatentUpscalePipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case_ = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case_ = frozenset([] ) snake_case_ = True @property def A_ ( self : List[str] ): snake_case_ = 1 snake_case_ = 4 snake_case_ = (16, 16) snake_case_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase_ ) return image def A_ ( self : Optional[int] ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=lowercase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=lowercase_ , only_cross_attention=lowercase_ , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case_ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case_ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) snake_case_ = CLIPTextModel(lowercase_ ) snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def A_ ( self : Any , lowercase_ : int , lowercase_ : Dict=0 ): if str(lowercase_ ).startswith('''mps''' ): snake_case_ = torch.manual_seed(lowercase_ ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A_ ( self : Tuple ): snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = self.get_dummy_inputs(lowercase_ ) snake_case_ = pipe(**lowercase_ ).images snake_case_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) snake_case_ = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) snake_case_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_ , 1e-3 ) def A_ ( self : Optional[int] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def A_ ( self : str ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def A_ ( self : str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def A_ ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def A_ ( self : List[str] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def A_ ( self : Tuple ): super().test_save_load_local(expected_max_difference=3e-3 ) def A_ ( self : int ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def A_ ( self : int ): snake_case_ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**lowercase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = self.get_dummy_inputs(lowercase_ ) snake_case_ = 2 snake_case_ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case_ = getattr(lowercase_ , scheduler_enum.name ) snake_case_ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case_ = pipe(**lowercase_ )[0] outputs.append(lowercase_ ) assert check_same_shape(lowercase_ ) @require_torch_gpu @slow class a ( unittest.TestCase ): def A_ ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Optional[int] ): snake_case_ = torch.manual_seed(33 ) snake_case_ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case_ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case_ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case_ = pipe(lowercase_ , generator=lowercase_ , output_type='''latent''' ).images snake_case_ = upscaler( prompt=lowercase_ , image=lowercase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowercase_ , output_type='''np''' , ).images[0] snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def A_ ( self : List[str] ): snake_case_ = torch.manual_seed(33 ) snake_case_ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case_ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case_ = upscaler( prompt=lowercase_ , image=lowercase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowercase_ , output_type='''np''' , ).images[0] snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
56
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =LayoutLMTokenizer __UpperCAmelCase : Optional[int] =LayoutLMTokenizerFast __UpperCAmelCase : List[Any] =True __UpperCAmelCase : Dict =True def snake_case ( self ): super().setUp() __lowerCAmelCase = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case ( self , **__a ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , __a ): __lowerCAmelCase = "UNwant\u00E9d,running" __lowerCAmelCase = "unwanted, running" return input_text, output_text def snake_case ( self ): __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [7, 4, 5, 10, 8, 9] ) def snake_case ( self ): pass
57
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : int = "distilbert" A__ : List[str] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : str , snake_case__ : Union[str, Any]=3_05_22 , snake_case__ : int=5_12 , snake_case__ : Optional[int]=False , snake_case__ : Optional[int]=6 , snake_case__ : Any=12 , snake_case__ : List[Any]=7_68 , snake_case__ : int=4 * 7_68 , snake_case__ : int=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : str="gelu" , snake_case__ : Any=0.02 , snake_case__ : Optional[Any]=0.1 , snake_case__ : List[Any]=0.2 , snake_case__ : Dict=0 , **snake_case__ : List[str] , ) -> Optional[int]: '''simple docstring''' snake_case : Any = vocab_size snake_case : int = max_position_embeddings snake_case : Optional[Any] = sinusoidal_pos_embds snake_case : List[str] = n_layers snake_case : List[Any] = n_heads snake_case : str = dim snake_case : Tuple = hidden_dim snake_case : Union[str, Any] = dropout snake_case : List[str] = attention_dropout snake_case : Any = activation snake_case : int = initializer_range snake_case : List[Any] = qa_dropout snake_case : str = seq_classif_dropout super().__init__(**snake_case__ , pad_token_id=snake_case__ ) class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : str = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
59
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def _snake_case ( _snake_case : float ): if num <= 0: raise ValueError('''math domain error''' ) return quad(_snake_case , 0 , _snake_case , args=(_snake_case) )[0] def _snake_case ( _snake_case : float , _snake_case : float ): return math.pow(_snake_case , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
60
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
"""simple docstring""" import enum import shutil import sys _a , _a = shutil.get_terminal_size() _a = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class A_ (enum.Enum ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : List[Any] = 1 def __a ( __lowerCamelCase, __lowerCamelCase="" ): sys.stdout.write(str(__lowerCamelCase ) + end ) sys.stdout.flush() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="" ): forceWrite(f"""\u001b[{color}m{content}\u001b[0m""", __lowerCamelCase ) def __a ( ): forceWrite("\r" ) def __a ( __lowerCamelCase, __lowerCamelCase ): forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def __a ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
61
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _A = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _A = 0 _A = 0xe_0_0_0 _A = 0xe_0_0_1 _A = 0xe_0_0_2 _A = 0xe_0_0_3 _A = 0xe_0_0_4 # Maps special codepoints to human-readable names. _A = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _A = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_=chr(A_ ) , A_=chr(A_ ) , A_=chr(A_ ) , A_=chr(A_ ) , A_=chr(A_ ) , A_=chr(A_ ) , A_=False , A_=2048 , **A_ , ) -> str: __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , model_max_length=A_ , **A_ , ) # Creates a mapping for looking up the IDs of special symbols. __UpperCamelCase ={} for codepoint, name in SPECIAL_CODEPOINTS.items(): __UpperCamelCase =codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __UpperCamelCase ={ codepoint: name for name, codepoint in self._special_codepoints.items() } __UpperCamelCase =UNICODE_VOCAB_SIZE __UpperCamelCase =len(self._special_codepoints ) @property def _a ( self ) -> int: return self._unicode_vocab_size def _a ( self , A_ ) -> List[str]: return list(A_ ) def _a ( self , A_ ) -> int: try: return ord(A_ ) except TypeError: raise ValueError(f'invalid token: \'{token}\'' ) def _a ( self , A_ ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(A_ ) except TypeError: raise ValueError(f'invalid id: {index}' ) def _a ( self , A_ ) -> List[str]: return "".join(A_ ) def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] __UpperCamelCase =cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] + ([0] * len(A_ )) + [1] if token_ids_a is not None: result += ([0] * len(A_ )) + [1] return result def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] __UpperCamelCase =len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _a ( self , A_ , A_ = None ) -> List[Any]: return ()
62
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : List[Any] ) -> str: _a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _a = 128 elif "12-12" in model_name: _a = 12 _a = 12 elif "14-14" in model_name: _a = 14 _a = 14 elif "16-16" in model_name: _a = 16 _a = 16 else: raise ValueError("Model not supported" ) _a = "huggingface/label-files" if "speech-commands" in model_name: _a = 35 _a = "speech-commands-v2-id2label.json" else: _a = 527 _a = "audioset-id2label.json" _a = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) _a = {int(lowercase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( lowercase : Dict ) -> Optional[Any]: if "module.v" in name: _a = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: _a = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: _a = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: _a = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: _a = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _a = name.replace("attn" , "attention.self" ) if "norm1" in name: _a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _a = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _a = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: _a = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: _a = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> List[str]: for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(lowercase ) if "qkv" in key: _a = key.split("." ) _a = int(key_split[3] ) _a = config.hidden_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = val return orig_state_dict def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) @torch.no_grad() def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Dict=False ) -> int: _a = get_audio_spectrogram_transformer_config(lowercase ) _a = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict _a = model_name_to_url[model_name] _a = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" ) # remove some keys remove_keys(lowercase ) # rename some keys _a = convert_state_dict(lowercase , lowercase ) # load 🤗 model _a = ASTForAudioClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _a = -4.2_67_73_93 if "speech-commands" not in model_name else -6.84_59_78 _a = 4.5_68_99_74 if "speech-commands" not in model_name else 5.5_65_45_26 _a = 1024 if "speech-commands" not in model_name else 128 _a = ASTFeatureExtractor(mean=lowercase , std=lowercase , max_length=lowercase ) if "speech-commands" in model_name: _a = load_dataset("speech_commands" , "v0.02" , split="validation" ) _a = dataset[0]["audio"]["array"] else: _a = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) _a , _a = torchaudio.load(lowercase ) _a = waveform.squeeze().numpy() _a = feature_extractor(lowercase , sampling_rate=1_6000 , return_tensors="pt" ) # forward pass _a = model(**lowercase ) _a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _a = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _a = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _a = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _a = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _a = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _a = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _a = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": _a = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , lowercase , atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(lowercase ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ : Dict = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
63
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" if not sentence: return "" _snake_case : str = dict(zip(snake_case__ , snake_case__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
64
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase_ ( __A, __A=False ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): UpperCAmelCase__ = "segformer.encoder." + key if key.startswith("backbone" ): UpperCAmelCase__ = key.replace("backbone", "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase__ = key[key.find("patch_embed" ) + len("patch_embed" )] UpperCAmelCase__ = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(__A )-1}""" ) if "norm" in key: UpperCAmelCase__ = key.replace("norm", "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase__ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] UpperCAmelCase__ = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(__A )-1}""" ) if "layer_norm1" in key: UpperCAmelCase__ = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: UpperCAmelCase__ = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase__ = key[key.find("block" ) + len("block" )] UpperCAmelCase__ = key.replace(f"""block{idx}""", f"""block.{int(__A )-1}""" ) if "attn.q" in key: UpperCAmelCase__ = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: UpperCAmelCase__ = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: UpperCAmelCase__ = key.replace("attn", "attention.self" ) if "fc1" in key: UpperCAmelCase__ = key.replace("fc1", "dense1" ) if "fc2" in key: UpperCAmelCase__ = key.replace("fc2", "dense2" ) if "linear_pred" in key: UpperCAmelCase__ = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: UpperCAmelCase__ = key.replace("linear_fuse.conv", "linear_fuse" ) UpperCAmelCase__ = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase__ = key[key.find("linear_c" ) + len("linear_c" )] UpperCAmelCase__ = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(__A )-1}""" ) if key.startswith("head" ): UpperCAmelCase__ = key.replace("head", "classifier" ) UpperCAmelCase__ = value return new_state_dict def lowerCAmelCase_ ( __A, __A ) -> Any: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase__ = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) UpperCAmelCase__ = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict UpperCAmelCase__ = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase__ = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase__ = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase__ = kv_bias[ config.hidden_sizes[i] : ] def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ = Image.open(requests.get(__A, stream=__A ).raw ) return image @torch.no_grad() def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = SegformerConfig() UpperCAmelCase__ = False # set attributes based on model_name UpperCAmelCase__ = "huggingface/label-files" if "segformer" in model_name: UpperCAmelCase__ = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: UpperCAmelCase__ = 150 UpperCAmelCase__ = "ade20k-id2label.json" UpperCAmelCase__ = (1, 150, 128, 128) elif "city" in model_name: UpperCAmelCase__ = 19 UpperCAmelCase__ = "cityscapes-id2label.json" UpperCAmelCase__ = (1, 19, 128, 128) else: raise ValueError(f"""Model {model_name} not supported""" ) elif "mit" in model_name: UpperCAmelCase__ = True UpperCAmelCase__ = model_name[4:6] UpperCAmelCase__ = 1_000 UpperCAmelCase__ = "imagenet-1k-id2label.json" UpperCAmelCase__ = (1, 1_000) else: raise ValueError(f"""Model {model_name} not supported""" ) # set config attributes UpperCAmelCase__ = json.load(open(hf_hub_download(__A, __A, repo_type="dataset" ), "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCAmelCase__ = [64, 128, 320, 512] UpperCAmelCase__ = 256 elif size == "b2": UpperCAmelCase__ = [64, 128, 320, 512] UpperCAmelCase__ = 768 UpperCAmelCase__ = [3, 4, 6, 3] elif size == "b3": UpperCAmelCase__ = [64, 128, 320, 512] UpperCAmelCase__ = 768 UpperCAmelCase__ = [3, 4, 18, 3] elif size == "b4": UpperCAmelCase__ = [64, 128, 320, 512] UpperCAmelCase__ = 768 UpperCAmelCase__ = [3, 8, 27, 3] elif size == "b5": UpperCAmelCase__ = [64, 128, 320, 512] UpperCAmelCase__ = 768 UpperCAmelCase__ = [3, 6, 40, 3] else: raise ValueError(f"""Size {size} not supported""" ) # load image processor (only resize + normalize) UpperCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=__A, align=__A, do_random_crop=__A ) # prepare image UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=__A, return_tensors="pt" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict if encoder_only: UpperCAmelCase__ = torch.load(__A, map_location=torch.device("cpu" ) ) else: UpperCAmelCase__ = torch.load(__A, map_location=torch.device("cpu" ) )["state_dict"] # rename keys UpperCAmelCase__ = rename_keys(__A, encoder_only=__A ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__A, __A ) # create HuggingFace model and load state dict if encoder_only: UpperCAmelCase__ = False UpperCAmelCase__ = SegformerForImageClassification(__A ) else: UpperCAmelCase__ = SegformerForSemanticSegmentation(__A ) model.load_state_dict(__A ) model.eval() # forward pass UpperCAmelCase__ = model(__A ) UpperCAmelCase__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCAmelCase__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCAmelCase__ = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCAmelCase__ = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCAmelCase__ = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCAmelCase__ = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCAmelCase__ = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCAmelCase__ = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCAmelCase__ = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCAmelCase__ = torch.tensor( [ [ [-1.1_372e01, -1.2_787e01, -1.3_477e01], [-1.2_536e01, -1.4_194e01, -1.4_409e01], [-1.3_217e01, -1.4_888e01, -1.5_327e01], ], [ [-1.4_791e01, -1.7_122e01, -1.8_277e01], [-1.7_163e01, -1.9_192e01, -1.9_533e01], [-1.7_897e01, -1.9_991e01, -2.0_315e01], ], [ [7.6_723e-01, 4.1_921e-01, -7.7_878e-02], [4.7_772e-01, 9.5_557e-03, -2.8_082e-01], [3.6_032e-01, -2.4_826e-01, -5.1_168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCAmelCase__ = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCAmelCase__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCAmelCase__ = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCAmelCase__ = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCAmelCase__ = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCAmelCase__ = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: UpperCAmelCase__ = logits.argmax(-1 ).item() print("Predicted class:", model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3], __A, atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
65
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
"""simple docstring""" import string import numpy def A_ ( _lowercase, _lowercase ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a, _lowercase ) class lowerCamelCase : '''simple docstring''' _A : int = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _A : Union[str, Any] = numpy.vectorize(lambda _lowerCAmelCase : x % 3_6 ) _A : List[Any] = numpy.vectorize(_lowerCAmelCase ) def __init__( self: Optional[int] , snake_case: numpy.ndarray ) -> None: snake_case_ :Optional[int] = self.modulus(snake_case ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key snake_case_ :Union[str, Any] = encrypt_key.shape[0] def lowerCAmelCase_ ( self: Tuple , snake_case: str ) -> int: return self.key_string.index(snake_case ) def lowerCAmelCase_ ( self: Tuple , snake_case: int ) -> str: return self.key_string[round(snake_case )] def lowerCAmelCase_ ( self: int ) -> None: snake_case_ :Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case_ :Any = det % len(self.key_string ) snake_case_ :Union[str, Any] = len(self.key_string ) if greatest_common_divisor(snake_case , len(self.key_string ) ) != 1: snake_case_ :str = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(snake_case ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: str ) -> str: snake_case_ :Union[str, Any] = [char for char in text.upper() if char in self.key_string] snake_case_ :Union[str, Any] = chars[-1] while len(snake_case ) % self.break_key != 0: chars.append(snake_case ) return "".join(snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: str ) -> str: snake_case_ :List[str] = self.process_text(text.upper() ) snake_case_ :List[Any] = """""" for i in range(0 , len(snake_case ) - self.break_key + 1 , self.break_key ): snake_case_ :int = text[i : i + self.break_key] snake_case_ :int = [self.replace_letters(snake_case ) for char in batch] snake_case_ :Optional[int] = numpy.array([vec] ).T snake_case_ :Any = self.modulus(self.encrypt_key.dot(snake_case ) ).T.tolist()[ 0 ] snake_case_ :Optional[Any] = """""".join( self.replace_digits(snake_case ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase_ ( self: Union[str, Any] ) -> numpy.ndarray: snake_case_ :Dict = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case_ :List[Any] = det % len(self.key_string ) snake_case_ :Optional[int] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: snake_case_ :Dict = i break snake_case_ :Optional[int] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(snake_case ) ) def lowerCAmelCase_ ( self: Optional[Any] , snake_case: str ) -> str: snake_case_ :Dict = self.make_decrypt_key() snake_case_ :Tuple = self.process_text(text.upper() ) snake_case_ :Optional[int] = """""" for i in range(0 , len(snake_case ) - self.break_key + 1 , self.break_key ): snake_case_ :Tuple = text[i : i + self.break_key] snake_case_ :Dict = [self.replace_letters(snake_case ) for char in batch] snake_case_ :List[str] = numpy.array([vec] ).T snake_case_ :Optional[Any] = self.modulus(decrypt_key.dot(snake_case ) ).T.tolist()[0] snake_case_ :int = """""".join( self.replace_digits(snake_case ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def A_ ( ): '''simple docstring''' snake_case_ :Dict = int(input("""Enter the order of the encryption key: """ ) ) snake_case_ :Union[str, Any] = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_lowercase ): snake_case_ :Union[str, Any] = [int(_lowercase ) for x in input().split()] hill_matrix.append(_lowercase ) snake_case_ :List[Any] = HillCipher(numpy.array(_lowercase ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) snake_case_ :int = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": snake_case_ :Optional[Any] = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_lowercase ) ) elif option == "2": snake_case_ :Dict = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
66
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: __lowerCamelCase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowerCamelCase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowerCamelCase = 0.0_1 with locka.acquire(): with pytest.raises(UpperCamelCase__ ): __lowerCamelCase = time.time() locka.acquire(UpperCamelCase__ ) assert time.time() - _start > timeout def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: __lowerCamelCase = '''a''' * 10_00 + '''.lock''' __lowerCamelCase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(UpperCamelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 __lowerCamelCase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase__ ): locka.acquire(0 )
67
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a__ : """simple docstring""" def __init__( self , lowercase , ) -> Any: '''simple docstring''' A__ = parent A__ = 13 A__ = 7 A__ = 30 A__ = self.seq_length + self.mem_len A__ = 15 A__ = True A__ = True A__ = 99 A__ = [10, 50, 80] A__ = 32 A__ = 32 A__ = 4 A__ = 8 A__ = 128 A__ = 2 A__ = 2 A__ = None A__ = 1 A__ = 0 A__ = 3 A__ = self.vocab_size - 1 A__ = 0.01 def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' A__ = TFTransfoXLModel(lowercase ) A__ , A__ = model(lowercase ).to_tuple() A__ = {"input_ids": input_ids_a, "mems": mems_a} A__ , A__ = model(lowercase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> List[str]: '''simple docstring''' A__ = TFTransfoXLLMHeadModel(lowercase ) A__ , A__ = model(lowercase ).to_tuple() A__ = {"input_ids": input_ids_a, "labels": lm_labels} A__ , A__ = model(lowercase ).to_tuple() A__ , A__ = model([input_ids_a, mems_a] ).to_tuple() A__ = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} A__ , A__ = model(lowercase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' A__ = TFTransfoXLForSequenceClassification(lowercase ) A__ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __lowerCamelCase = () if is_tf_available() else () __lowerCamelCase = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = TFTransfoXLModelTester(self ) A__ = ConfigTester(self , config_class=lowercase , d_embed=37 ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' self.model_tester.set_seed() A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' self.model_tester.set_seed() A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: A__ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: A__ = model.get_output_embeddings() assert isinstance(lowercase , tf.keras.layers.Layer ) A__ = model.get_bias() assert name is None else: A__ = model.get_output_embeddings() assert x is None A__ = model.get_bias() assert name is None def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @slow def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFTransfoXLModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @require_tf class a__ ( unittest.TestCase ): """simple docstring""" @unittest.skip("Skip test until #12651 is resolved." ) @slow def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off A__ = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off A__ = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> A__ = model.generate(lowercase , max_length=200 , do_sample=lowercase ) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase )
68
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = data snake_case_ = None class UpperCamelCase : def __init__( self) -> Dict: snake_case_ = None snake_case_ = None def __iter__( self) -> Iterator[Any]: snake_case_ = self.head while self.head: yield node.data snake_case_ = node.next if node == self.head: break def __len__( self) -> int: return sum(1 for _ in self) def __repr__( self) -> str: return "->".join(str(lowerCAmelCase__) for item in iter(self)) def a_ ( self, lowerCAmelCase__) -> None: self.insert_nth(len(self), lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> None: self.insert_nth(0, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> None: if index < 0 or index > len(self): raise IndexError('list index out of range.') snake_case_ = Node(lowerCAmelCase__) if self.head is None: snake_case_ = new_node # first node points itself snake_case_ = snake_case_ = new_node elif index == 0: # insert at head snake_case_ = self.head snake_case_ = snake_case_ = new_node else: snake_case_ = self.head for _ in range(index - 1): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = new_node if index == len(self) - 1: # insert at tail snake_case_ = new_node def a_ ( self) -> str: return self.delete_nth(0) def a_ ( self) -> Any: return self.delete_nth(len(self) - 1) def a_ ( self, lowerCAmelCase__ = 0) -> Any: if not 0 <= index < len(self): raise IndexError('list index out of range.') snake_case_ = self.head if self.head == self.tail: # just one node snake_case_ = snake_case_ = None elif index == 0: # delete head node snake_case_ = self.tail.next.next snake_case_ = self.head.next else: snake_case_ = self.head for _ in range(index - 1): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = temp.next.next if index == len(self) - 1: # delete at tail snake_case_ = temp return delete_node.data def a_ ( self) -> bool: return len(self) == 0 def UpperCAmelCase ( ) -> None: snake_case_ = CircularLinkedList() assert len(UpperCAmelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCAmelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCAmelCase ) == i circular_linked_list.insert_nth(UpperCAmelCase , i + 1 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
69
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
'''simple docstring''' from collections.abc import Sequence def UpperCamelCase__ ( lowerCAmelCase = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) _lowerCAmelCase = nums[0] for i in range(1 , len(lowerCAmelCase ) ): _lowerCAmelCase = nums[i] _lowerCAmelCase = max(lowerCAmelCase , ans + num , lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user A__ : Optional[Any] =int(input('''Enter number of elements : ''').strip()) A__ : Any =list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
70
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
def A ( a_ ) -> float: return 10 - x * x def A ( a_ ,a_ ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(a_ ) * equation(a_ ) >= 0: raise ValueError('Wrong space!' ) __UpperCamelCase : Optional[Any] =a while (b - a) >= 0.01: # Find middle point __UpperCamelCase : int =(a + b) / 2 # Check if middle point is root if equation(a_ ) == 0.0: break # Decide the side to repeat the steps if equation(a_ ) * equation(a_ ) < 0: __UpperCamelCase : List[Any] =c else: __UpperCamelCase : Tuple =c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
71
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=_lowercase): snake_case__ : Union[str, Any] = ["torch", "scipy"] def __init__( self : List[Any] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ): """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Dict ): """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
72
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : torch.FloatTensor class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int = 3_2 ,SCREAMING_SNAKE_CASE__ : int = 6_4 ,SCREAMING_SNAKE_CASE__ : int = 2_0 ,SCREAMING_SNAKE_CASE__ : int = 7_6_8 ,SCREAMING_SNAKE_CASE__ : Any=7_7 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : str = "silu" ,SCREAMING_SNAKE_CASE__ : Optional[str] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = "linear" ,SCREAMING_SNAKE_CASE__ : Optional[str] = "prd" ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,): super().__init__() __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Union[str, Any] = attention_head_dim __lowerCamelCase : Tuple = num_attention_heads * attention_head_dim __lowerCamelCase : List[Any] = additional_embeddings __lowerCamelCase : List[str] = time_embed_dim or inner_dim __lowerCamelCase : Union[str, Any] = embedding_proj_dim or embedding_dim __lowerCamelCase : Optional[int] = clip_embed_dim or embedding_dim __lowerCamelCase : Tuple = Timesteps(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,0) __lowerCamelCase : int = TimestepEmbedding(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,out_dim=SCREAMING_SNAKE_CASE__ ,act_fn=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if embedding_proj_norm_type is None: __lowerCamelCase : List[Any] = None elif embedding_proj_norm_type == "layer": __lowerCamelCase : Any = nn.LayerNorm(SCREAMING_SNAKE_CASE__) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}") __lowerCamelCase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if encoder_hid_proj_type is None: __lowerCamelCase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": __lowerCamelCase : Any = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}") __lowerCamelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,SCREAMING_SNAKE_CASE__)) if added_emb_type == "prd": __lowerCamelCase : int = nn.Parameter(torch.zeros(1 ,1 ,SCREAMING_SNAKE_CASE__)) elif added_emb_type is None: __lowerCamelCase : Dict = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.") __lowerCamelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dropout=SCREAMING_SNAKE_CASE__ ,activation_fn='gelu' ,attention_bias=SCREAMING_SNAKE_CASE__ ,) for d in range(SCREAMING_SNAKE_CASE__) ]) if norm_in_type == "layer": __lowerCamelCase : List[str] = nn.LayerNorm(SCREAMING_SNAKE_CASE__) elif norm_in_type is None: __lowerCamelCase : Tuple = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}.") __lowerCamelCase : Any = nn.LayerNorm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-10000.0) causal_attention_mask.triu_(1) __lowerCamelCase : Union[str, Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,SCREAMING_SNAKE_CASE__ ,persistent=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = nn.Parameter(torch.zeros(1 ,SCREAMING_SNAKE_CASE__)) __lowerCamelCase : str = nn.Parameter(torch.zeros(1 ,SCREAMING_SNAKE_CASE__)) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Tuple = {} def fn_recursive_add_processors(SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : torch.nn.Module ,SCREAMING_SNAKE_CASE__ : Dict[str, AttentionProcessor]): if hasattr(SCREAMING_SNAKE_CASE__ ,'set_processor'): __lowerCamelCase : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) return processors for name, module in self.named_children(): fn_recursive_add_processors(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) return processors def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]]): __lowerCamelCase : List[Any] = len(self.attn_processors.keys()) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) and len(SCREAMING_SNAKE_CASE__) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(SCREAMING_SNAKE_CASE__)} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : torch.nn.Module ,SCREAMING_SNAKE_CASE__ : Tuple): if hasattr(SCREAMING_SNAKE_CASE__ ,'set_processor'): if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): module.set_processor(SCREAMING_SNAKE_CASE__) else: module.set_processor(processor.pop(F"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) for name, module in self.named_children(): fn_recursive_attn_processor(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str): self.set_attn_processor(AttnProcessor()) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, float, int] ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None ,SCREAMING_SNAKE_CASE__ : Optional[torch.BoolTensor] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,): __lowerCamelCase : List[str] = hidden_states.shape[0] __lowerCamelCase : int = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE__): __lowerCamelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device) elif torch.is_tensor(SCREAMING_SNAKE_CASE__) and len(timesteps.shape) == 0: __lowerCamelCase : int = timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase : str = timesteps * torch.ones(SCREAMING_SNAKE_CASE__ ,dtype=timesteps.dtype ,device=timesteps.device) __lowerCamelCase : Optional[int] = self.time_proj(SCREAMING_SNAKE_CASE__) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase : str = timesteps_projected.to(dtype=self.dtype) __lowerCamelCase : Dict = self.time_embedding(SCREAMING_SNAKE_CASE__) if self.embedding_proj_norm is not None: __lowerCamelCase : Optional[Any] = self.embedding_proj_norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = self.embedding_proj(SCREAMING_SNAKE_CASE__) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase : Optional[Any] = self.encoder_hidden_states_proj(SCREAMING_SNAKE_CASE__) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set') __lowerCamelCase : Optional[Any] = self.proj_in(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = self.positional_embedding.to(hidden_states.dtype) __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(SCREAMING_SNAKE_CASE__) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape) == 2: __lowerCamelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape) == 2: __lowerCamelCase : int = hidden_states[:, None, :] __lowerCamelCase : List[str] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase : Any = self.prd_embedding.to(hidden_states.dtype).expand(SCREAMING_SNAKE_CASE__ ,-1 ,-1) additional_embeds.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = torch.cat( SCREAMING_SNAKE_CASE__ ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase : Any = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase : Tuple = F.pad( SCREAMING_SNAKE_CASE__ ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) __lowerCamelCase : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase : Dict = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 __lowerCamelCase : int = F.pad(SCREAMING_SNAKE_CASE__ ,(0, self.additional_embeddings) ,value=0.0) __lowerCamelCase : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) __lowerCamelCase : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0) if self.norm_in is not None: __lowerCamelCase : Union[str, Any] = self.norm_in(SCREAMING_SNAKE_CASE__) for block in self.transformer_blocks: __lowerCamelCase : List[Any] = block(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.norm_out(SCREAMING_SNAKE_CASE__) if self.prd_embedding is not None: __lowerCamelCase : Dict = hidden_states[:, -1] else: __lowerCamelCase : Union[str, Any] = hidden_states[:, additional_embeddings_len:] __lowerCamelCase : int = self.proj_to_clip_embeddings(SCREAMING_SNAKE_CASE__) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
73
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
"""simple docstring""" import math def _snake_case ( snake_case__ : list , snake_case__ : int = 0 , snake_case__ : int = 0 ): A = end or len(snake_case__ ) for i in range(snake_case__ , snake_case__ ): A = i A = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: A = array[temp_index - 1] temp_index -= 1 A = temp_index_value return array def _snake_case ( snake_case__ : list , snake_case__ : int , snake_case__ : int ): # Max Heap A = index A = 2 * index + 1 # Left Node A = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: A = left_index if right_index < heap_size and array[largest] < array[right_index]: A = right_index if largest != index: A , A = array[largest], array[index] heapify(snake_case__ , snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : list ): A = len(snake_case__ ) for i in range(n // 2 , -1 , -1 ): heapify(snake_case__ , snake_case__ , snake_case__ ) for i in range(n - 1 , 0 , -1 ): A , A = array[0], array[i] heapify(snake_case__ , 0 , snake_case__ ) return array def _snake_case ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _snake_case ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ): A = low A = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i A , A = array[j], array[i] i += 1 def _snake_case ( snake_case__ : list ): if len(snake_case__ ) == 0: return array A = 2 * math.ceil(math.loga(len(snake_case__ ) ) ) A = 16 return intro_sort(snake_case__ , 0 , len(snake_case__ ) , snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ): while end - start > size_threshold: if max_depth == 0: return heap_sort(snake_case__ ) max_depth -= 1 A = median_of_a(snake_case__ , snake_case__ , start + ((end - start) // 2) + 1 , end - 1 ) A = partition(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) intro_sort(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A = p return insertion_sort(snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input('''Enter numbers separated by a comma : ''').strip() _lowercase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
74
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets a_ : Optional[Any] = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ a_ : List[Any] = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ a_ : Optional[Any] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''', id='''sequence''' ), id='''references''' ), } ), codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''], reference_urls=[ '''https://github.com/m-popovic/chrF''', ], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = CHRF.CHAR_ORDER, lowerCAmelCase = CHRF.WORD_ORDER, lowerCAmelCase = CHRF.BETA, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, ): """simple docstring""" lowerCamelCase_ =len(references[0] ) if any(len(lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowerCamelCase_ =[[refs[i] for refs in references] for i in range(lowerCAmelCase )] lowerCamelCase_ =CHRF(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =sb_chrf.corpus_score(lowerCAmelCase, lowerCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
75
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
def lowerCamelCase__ ( _a = 4000000): SCREAMING_SNAKE_CASE : Any = [0, 1] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 SCREAMING_SNAKE_CASE : List[str] = 0 for j in range(len(_a) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
76
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
"""simple docstring""" import inspect import unittest class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[str]: try: import diffusers # noqa: F401 except ImportError: assert False def _UpperCAmelCase ( self ) -> Optional[int]: import diffusers from diffusers.dependency_versions_table import deps lowercase__ : Any = inspect.getmembers(a , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowercase__ : Optional[int] = 'k-diffusion' elif backend == "invisible_watermark": lowercase__ : Optional[Any] = 'invisible-watermark' assert backend in deps, f"""{backend} is not in the deps table!"""
77
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available snake_case_ = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Any: '''simple docstring''' if isinstance(__lowercase , torch.Tensor ): return image elif isinstance(__lowercase , PIL.Image.Image ): _A = [image] if isinstance(image[0] , PIL.Image.Image ): _A = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] _A = np.concatenate(__lowercase , axis=0 ) _A = np.array(__lowercase ).astype(np.floataa ) / 255.0 _A = image.transpose(0 , 3 , 1 , 2 ) _A = 2.0 * image - 1.0 _A = torch.from_numpy(__lowercase ) elif isinstance(image[0] , torch.Tensor ): _A = torch.cat(__lowercase , dim=0 ) return image def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase=0.9995 ) -> Any: '''simple docstring''' if not isinstance(__lowercase , np.ndarray ): _A = True _A = va.device _A = va.cpu().numpy() _A = va.cpu().numpy() _A = np.sum(va * va / (np.linalg.norm(__lowercase ) * np.linalg.norm(__lowercase )) ) if np.abs(__lowercase ) > DOT_THRESHOLD: _A = (1 - t) * va + t * va else: _A = np.arccos(__lowercase ) _A = np.sin(__lowercase ) _A = theta_a * t _A = np.sin(__lowercase ) _A = np.sin(theta_a - theta_t ) / sin_theta_a _A = sin_theta_t / sin_theta_a _A = sa * va + sa * va if inputs_are_torch: _A = torch.from_numpy(__lowercase ).to(__lowercase ) return va def __lowercase ( __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' _A = F.normalize(__lowercase , dim=-1 ) _A = F.normalize(__lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowercase ( __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' for param in model.parameters(): _A = value class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __UpperCAmelCase : CLIPFeatureExtractor , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Tuple=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , clip_model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , coca_model=__UpperCAmelCase , coca_tokenizer=__UpperCAmelCase , coca_transform=__UpperCAmelCase , ) _A = ( feature_extractor.size if isinstance(feature_extractor.size , __UpperCAmelCase ) else feature_extractor.size["shortest_edge"] ) _A = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __UpperCAmelCase ) set_requires_grad(self.clip_model , __UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.enable_attention_slicing(__UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' set_requires_grad(self.vae , __UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' set_requires_grad(self.vae , __UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' set_requires_grad(self.unet , __UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' set_requires_grad(self.unet , __UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any ): '''simple docstring''' _A = min(int(num_inference_steps * strength ) , __UpperCAmelCase ) _A = max(num_inference_steps - init_timestep , 0 ) _A = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Dict=None ): '''simple docstring''' if not isinstance(__UpperCAmelCase , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(__UpperCAmelCase )}''' ) _A = image.to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCAmelCase ) ] _A = torch.cat(__UpperCAmelCase , dim=0 ) else: _A = self.vae.encode(__UpperCAmelCase ).latent_dist.sample(__UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _A = 0.18215 * init_latents _A = init_latents.repeat_interleave(__UpperCAmelCase , dim=0 ) _A = randn_tensor(init_latents.shape , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) # get latents _A = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = init_latents return latents def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Dict ): '''simple docstring''' _A = self.coca_transform(__UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _A = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _A = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : int ): '''simple docstring''' _A = self.feature_extractor.preprocess(__UpperCAmelCase ) _A = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() _A = self.clip_model.get_image_features(__UpperCAmelCase ) _A = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCAmelCase ) _A = image_embeddings_clip.repeat_interleave(__UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , ): '''simple docstring''' _A = latents.detach().requires_grad_() _A = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual _A = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _A = self.scheduler.alphas_cumprod[timestep] _A = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _A = torch.sqrt(__UpperCAmelCase ) _A = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __UpperCAmelCase ): _A = self.scheduler.sigmas[index] _A = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _A = 1 / 0.18215 * sample _A = self.vae.decode(__UpperCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = transforms.Resize(self.feature_extractor_size )(__UpperCAmelCase ) _A = self.normalize(__UpperCAmelCase ).to(latents.dtype ) _A = self.clip_model.get_image_features(__UpperCAmelCase ) _A = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCAmelCase ) _A = spherical_dist_loss(__UpperCAmelCase , __UpperCAmelCase ).mean() * clip_guidance_scale _A = -torch.autograd.grad(__UpperCAmelCase , __UpperCAmelCase )[0] if isinstance(self.scheduler , __UpperCAmelCase ): _A = latents.detach() + grads * (sigma**2) _A = noise_pred_original else: _A = noise_pred_original - torch.sqrt(__UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Union[str, Any] , __UpperCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , __UpperCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[int] = 512 , __UpperCAmelCase : Optional[int] = 512 , __UpperCAmelCase : float = 0.6 , __UpperCAmelCase : Optional[int] = 50 , __UpperCAmelCase : Optional[float] = 7.5 , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[float] = 100 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : float = 0.8 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(__UpperCAmelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(__UpperCAmelCase , torch.Generator ) and batch_size > 1: _A = [generator] + [None] * (batch_size - 1) _A = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] _A = [x[0] for x in coca_is_none if x[1]] _A = ", ".join(__UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__UpperCAmelCase ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _A = self.get_image_description(__UpperCAmelCase ) if style_prompt is None: if len(__UpperCAmelCase ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _A = self.get_image_description(__UpperCAmelCase ) # get prompt text embeddings for content and style _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="pt" , ) _A = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="pt" , ) _A = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _A = slerp(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _A = text_embeddings.repeat_interleave(__UpperCAmelCase , dim=0 ) # set timesteps _A = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _A = {} if accepts_offset: _A = 1 self.scheduler.set_timesteps(__UpperCAmelCase , **__UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _A , _A = self.get_timesteps(__UpperCAmelCase , __UpperCAmelCase , self.device ) _A = timesteps[:1].repeat(__UpperCAmelCase ) # Preprocess image _A = preprocess(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = self.prepare_latents( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , text_embeddings.dtype , self.device , __UpperCAmelCase ) _A = preprocess(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = self.prepare_latents( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , text_embeddings.dtype , self.device , __UpperCAmelCase ) _A = slerp(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if clip_guidance_scale > 0: _A = self.get_clip_image_embeddings(__UpperCAmelCase , __UpperCAmelCase ) _A = self.get_clip_image_embeddings(__UpperCAmelCase , __UpperCAmelCase ) _A = slerp( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _A = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _A = content_text_input.input_ids.shape[-1] _A = self.tokenizer([""] , padding="max_length" , max_length=__UpperCAmelCase , return_tensors="pt" ) _A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _A = uncond_embeddings.repeat_interleave(__UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _A = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _A = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _A = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device="cpu" , dtype=__UpperCAmelCase ).to( self.device ) else: _A = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _A = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A = {} if accepts_eta: _A = eta # check if the scheduler accepts generator _A = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _A = generator with self.progress_bar(total=__UpperCAmelCase ): for i, t in enumerate(__UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual _A = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _A , _A = noise_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _A = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _A , _A = self.cond_fn( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _A = 1 / 0.18215 * latents _A = self.vae.decode(__UpperCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase )
79
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def __a ( self ): torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) UpperCamelCase__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def __a ( self ): UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCamelCase__ = DDPMScheduler() UpperCamelCase__ = AudioDiffusionPipeline(vqvae=a , unet=self.dummy_unet , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a , steps=4 ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = output.images[0] UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a , steps=4 , return_dict=a ) UpperCamelCase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCamelCase__ = DDIMScheduler() UpperCamelCase__ = self.dummy_vqvae_and_unet UpperCamelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) np.random.seed(0 ) UpperCamelCase__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(raw_audio=a , generator=a , start_step=5 , steps=10 ) UpperCamelCase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase__ = self.dummy_unet_condition UpperCamelCase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=a , mel=a , scheduler=a ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) np.random.seed(0 ) UpperCamelCase__ = torch.rand((1, 1, 10) ) UpperCamelCase__ = pipe(generator=a , encoding=a ) UpperCamelCase__ = output.images[0] UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): UpperCamelCase__ = torch_device UpperCamelCase__ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) UpperCamelCase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = torch.Generator(device=a ).manual_seed(42 ) UpperCamelCase__ = pipe(generator=a ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCamelCase__ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCamelCase__ = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
80
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=24 , __A=2 , __A=6 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=None , __A=1000 , ) -> str: a =parent a =batch_size a =seq_length a =is_training a =use_input_mask a =use_token_type_ids a =use_labels a =vocab_size a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =type_vocab_size a =type_sequence_label_size a =initializer_range a =num_labels a =scope a =range_bbox def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a =bbox[i, j, 3] a =bbox[i, j, 1] a =t if bbox[i, j, 2] < bbox[i, j, 0]: a =bbox[i, j, 2] a =bbox[i, j, 0] a =t a =None if self.use_input_mask: a =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) a =None if self.use_token_type_ids: a =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a =None a =None if self.use_labels: a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE ( self ) -> Tuple: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Any: a =LiltModel(config=__A ) model.to(__A ) model.eval() a =model(__A , bbox=__A , attention_mask=__A , token_type_ids=__A ) a =model(__A , bbox=__A , token_type_ids=__A ) a =model(__A , bbox=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A , ) -> List[str]: a =self.num_labels a =LiltForTokenClassification(config=__A ) model.to(__A ) model.eval() a =model( __A , bbox=__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Any: a =LiltForQuestionAnswering(config=__A ) model.to(__A ) model.eval() a =model( __A , bbox=__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) =config_and_inputs a ={ '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A ) -> Any: return True def SCREAMING_SNAKE_CASE ( self ) -> Any: a =LiltModelTester(self ) a =ConfigTester(self , config_class=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a =type self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =LiltModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @slow class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__A ) a =torch.tensor([[1, 2]] , device=__A ) a =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__A ) # forward pass with torch.no_grad(): a =model(input_ids=__A , bbox=__A ) a =torch.Size([1, 2, 768] ) a =torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__A , ) self.assertTrue(outputs.last_hidden_state.shape , __A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __A , atol=1E-3 ) )
81
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case=10_24 ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = list(zip(snake_case , snake_case ) ) _lowerCAmelCase , _lowerCAmelCase = sorted_examples[0] def is_too_big(snake_case ): return tok(snake_case , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _lowerCAmelCase = new_src + """ """ + src _lowerCAmelCase = new_tgt + """ """ + tgt if is_too_big(snake_case ) or is_too_big(snake_case ): # cant fit, finalize example finished_src.append(snake_case ) finished_tgt.append(snake_case ) _lowerCAmelCase , _lowerCAmelCase = src, tgt else: # can fit, keep adding _lowerCAmelCase , _lowerCAmelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(snake_case ) finished_tgt.append(snake_case ) return finished_src, finished_tgt def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = Path(snake_case ) save_path.mkdir(exist_ok=snake_case ) for split in ["train"]: _lowerCAmelCase , _lowerCAmelCase = data_dir / F'{split}.source', data_dir / F'{split}.target' _lowerCAmelCase = [x.rstrip() for x in Path(snake_case ).open().readlines()] _lowerCAmelCase = [x.rstrip() for x in Path(snake_case ).open().readlines()] _lowerCAmelCase , _lowerCAmelCase = pack_examples(snake_case , snake_case , snake_case , snake_case ) print(F'packed {split} split from {len(snake_case )} examples -> {len(snake_case )}.' ) Path(save_path / F'{split}.source' ).open("""w""" ).write("""\n""".join(snake_case ) ) Path(save_path / F'{split}.target' ).open("""w""" ).write("""\n""".join(snake_case ) ) for split in ["val", "test"]: _lowerCAmelCase , _lowerCAmelCase = data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(snake_case , save_path / F'{split}.source' ) shutil.copyfile(snake_case , save_path / F'{split}.target' ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=snake_case , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=snake_case , default=1_28 ) parser.add_argument("""--data_dir""" , type=snake_case ) parser.add_argument("""--save_path""" , type=snake_case ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(snake_case , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
82
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : str=3 ,lowerCamelCase__ : Union[str, Any]=32 ,lowerCamelCase__ : List[str]=3 ,lowerCamelCase__ : Union[str, Any]=10 ,lowerCamelCase__ : List[str]=[10, 20, 30, 40] ,lowerCamelCase__ : int=[1, 1, 2, 1] ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : List[str]="relu" ,lowerCamelCase__ : List[str]=3 ,lowerCamelCase__ : str=None ,): '''simple docstring''' _UpperCamelCase : Optional[int] = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Dict = image_size _UpperCamelCase : List[str] = num_channels _UpperCamelCase : Union[str, Any] = embeddings_size _UpperCamelCase : Union[str, Any] = hidden_sizes _UpperCamelCase : str = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : int = scope _UpperCamelCase : Union[str, Any] = len(lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : List[str] = self.get_config() return config, pixel_values def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = FlaxRegNetModel(config=lowerCamelCase__ ) _UpperCamelCase : Optional[int] = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.num_labels _UpperCamelCase : Optional[int] = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) _UpperCamelCase : Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : Tuple = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : str = FlaxRegNetModelTester(self ) _UpperCamelCase : Optional[int] = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Tuple = model_class(lowerCamelCase__ ) _UpperCamelCase : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[Any] = [*signature.parameters.keys()] _UpperCamelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str] ): _UpperCamelCase : Union[str, Any] = model_class(lowerCamelCase__ ) _UpperCamelCase : int = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : int = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) _UpperCamelCase , _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase : Any = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Dict = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Any ): return model(pixel_values=lowerCamelCase__ ,**lowerCamelCase__ ) with self.subTest('JIT Enabled' ): _UpperCamelCase : Optional[int] = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _UpperCamelCase : List[Any] = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def A__ ( ): _UpperCamelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) _UpperCamelCase : Dict = self.default_image_processor _UpperCamelCase : str = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=lowerCamelCase__ ,return_tensors='np' ) _UpperCamelCase : Any = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : List[Any] = (1, 1000) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) )
83
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _snake_case ( lowercase__ : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = args.pruning_method lowerCAmelCase_ :Tuple = args.threshold lowerCAmelCase_ :int = args.model_name_or_path.rstrip("""/""" ) lowerCAmelCase_ :Dict = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) lowerCAmelCase_ :Optional[int] = torch.load(os.path.join(lowercase__ , """pytorch_model.bin""" ) ) lowerCAmelCase_ :Union[str, Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase_ :Tuple = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase_ :Any = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: lowerCAmelCase_ :List[str] = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowerCAmelCase_ :Any = MagnitudeBinarizer.apply(inputs=lowercase__ , threshold=lowercase__ ) lowerCAmelCase_ :str = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase_ :str = name[:-6] lowerCAmelCase_ :Any = model[f"""{prefix_}mask_scores"""] lowerCAmelCase_ :Optional[Any] = TopKBinarizer.apply(lowercase__ , lowercase__ ) lowerCAmelCase_ :int = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase_ :int = name[:-6] lowerCAmelCase_ :Optional[Any] = model[f"""{prefix_}mask_scores"""] lowerCAmelCase_ :Union[str, Any] = ThresholdBinarizer.apply(lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase_ :Optional[Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase_ :Dict = name[:-6] lowerCAmelCase_ :Any = model[f"""{prefix_}mask_scores"""] lowerCAmelCase_ , lowerCAmelCase_ :str = -0.1, 1.1 lowerCAmelCase_ :Optional[int] = torch.sigmoid(lowercase__ ) lowerCAmelCase_ :Any = s * (r - l) + l lowerCAmelCase_ :Dict = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase_ :Any = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: lowerCAmelCase_ :int = os.path.join( os.path.dirname(lowercase__ ) , f"""bertarized_{os.path.basename(lowercase__ )}""" ) if not os.path.isdir(lowercase__ ): shutil.copytree(lowercase__ , lowercase__ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase__ , os.path.join(lowercase__ , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __UpperCAmelCase = parser.parse_args() main(args)
84
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCamelCase_( snake_case : Optional[int] ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def UpperCamelCase_( snake_case : str ): '''simple docstring''' for char in word: snake_case_ = ord(snake_case ) if not _is_chinese_char(snake_case ): return 0 return 1 def UpperCamelCase_( snake_case : List[str] ): '''simple docstring''' snake_case_ = set() for token in tokens: snake_case_ = len(snake_case ) > 1 and is_chinese(snake_case ) if chinese_word: word_set.add(snake_case ) snake_case_ = list(snake_case ) return word_list def UpperCamelCase_( snake_case : List[str] , snake_case : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case_ = max([len(snake_case ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(snake_case ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , snake_case ) for i in range(snake_case , 1 , -1 ): snake_case_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = "##" + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def UpperCamelCase_( snake_case : List[str] , snake_case : LTP , snake_case : BertTokenizer ): '''simple docstring''' snake_case_ = [] for i in range(0 , len(snake_case ) , 1_0_0 ): snake_case_ = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] snake_case_ = [get_chinese_word(snake_case ) for r in res] ltp_res.extend(snake_case ) assert len(snake_case ) == len(snake_case ) snake_case_ = [] for i in range(0 , len(snake_case ) , 1_0_0 ): snake_case_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=snake_case , truncation=snake_case , max_length=5_1_2 ) bert_res.extend(res["input_ids"] ) assert len(snake_case ) == len(snake_case ) snake_case_ = [] for input_ids, chinese_word in zip(snake_case , snake_case ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(snake_case ) input_tokens.append(snake_case ) snake_case_ = add_sub_symbol(snake_case , snake_case ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(snake_case ) == 1 and _is_chinese_char(ord(snake_case ) ): ref_id.append(snake_case ) ref_ids.append(snake_case ) assert len(snake_case ) == len(snake_case ) return ref_ids def UpperCamelCase_( snake_case : int ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(snake_case , snake_case , snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case_ = [json.dumps(snake_case ) + "\n" for ref in ref_ids] f.writelines(snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") _SCREAMING_SNAKE_CASE : str = parser.parse_args() main(args)
85
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[Any] = 2 __lowerCAmelCase : List[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCamelCase ) if n > 1: factors.append(_UpperCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
86
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case_ ( __A ): __A : List[Any] = (UnCLIPScheduler,) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> List[str]: lowercase__ : int = { "num_train_timesteps": 10_00, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**lowercase_ ) return config def __UpperCamelCase ( self : Tuple ) -> Tuple: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase_ ) def __UpperCamelCase ( self : int ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def __UpperCamelCase ( self : str ) -> int: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[int]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase_ ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase_ , prev_timestep=lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : Optional[Any] = self.get_scheduler_config(variance_type="fixed_small_log" ) lowercase__ : Optional[int] = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_99_49_87 ) ) < 1E-5 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : Optional[Any] = self.get_scheduler_config(variance_type="learned_range" ) lowercase__ : Any = scheduler_class(**lowercase_ ) lowercase__ : Tuple = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase_ ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=lowercase_ ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=lowercase_ ) - -0.0_01_00_11 < 1E-5 def __UpperCamelCase ( self : str ) -> List[Any]: lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : Optional[Any] = scheduler_class(**lowercase_ ) lowercase__ : Union[str, Any] = scheduler.timesteps lowercase__ : List[Any] = self.dummy_model() lowercase__ : str = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0 ) for i, t in enumerate(lowercase_ ): # 1. predict noise residual lowercase__ : Optional[int] = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample lowercase__ : List[str] = pred_prev_sample lowercase__ : List[str] = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : List[Any] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: lowercase__ : Optional[Any] = self.scheduler_classes[0] lowercase__ : Any = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(25 ) lowercase__ : Union[str, Any] = scheduler.timesteps lowercase__ : Tuple = self.dummy_model() lowercase__ : int = self.dummy_sample_deter lowercase__ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(lowercase_ ): # 1. predict noise residual lowercase__ : Tuple = model(lowercase_ , lowercase_ ) if i + 1 == timesteps.shape[0]: lowercase__ : int = None else: lowercase__ : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase__ : str = scheduler.step( lowercase_ , lowercase_ , lowercase_ , prev_timestep=lowercase_ , generator=lowercase_ ).prev_sample lowercase__ : str = pred_prev_sample lowercase__ : Dict = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : List[Any] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def __UpperCamelCase ( self : Any ) -> Tuple: pass def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: pass
87
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = int(A_ ) # Initialize Result __magic_name__ = [] # Traverse through all denomination for denomination in reversed(A_ ): # Find denominations while int(A_ ) >= int(A_ ): total_value -= int(A_ ) answer.append(A_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : List[Any] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): __lowerCAmelCase : Any = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __lowerCAmelCase : Union[str, Any] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter __lowerCAmelCase : Optional[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __lowerCAmelCase : Optional[Any] = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F'''Following is minimal change for {value}: ''') __lowerCAmelCase : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
88
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase = 3 def __lowerCamelCase ( lowerCAmelCase_ ) -> int: print('Generating primitive root of p' ) while True: _a : str = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _a : Optional[Any] = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _a : List[Any] = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _a : Tuple = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _a : Union[str, Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _a : Any = (key_size, e_a, e_a, p) _a : Dict = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _a , _a : List[str] = generate_key(lowerCAmelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
89
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> int: """simple docstring""" __lowerCamelCase = {} with open(UpperCamelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCamelCase__ ): __lowerCamelCase = line.strip() if line: __lowerCamelCase = line.split() __lowerCamelCase = line_number __lowerCamelCase = words[0] __lowerCamelCase = value return result def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): __lowerCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __lowerCamelCase = 'param' if weight_type is not None and weight_type != "param": __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape elif weight_type is not None and weight_type == "param": __lowerCamelCase = hf_pointer for attribute in hf_param_name.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = shape_pointer.shape # let's reduce dimension __lowerCamelCase = value[0] else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): __lowerCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __lowerCamelCase = 'param' if weight_type is not None and weight_type != "param": __lowerCamelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowerCamelCase = '.'.join([key, hf_param_name] ) else: __lowerCamelCase = key __lowerCamelCase = value if 'lm_head' in full_key else value[0] __A = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = False for key, mapped_key in MAPPING.items(): __lowerCamelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = 'weight' else: __lowerCamelCase = None if hf_dict is not None: rename_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return is_used return is_used def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: __lowerCamelCase = load_wavaveca_layer(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> Any: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Any=None , UpperCamelCase__ : str=None , UpperCamelCase__ : int=True , UpperCamelCase__ : str=False ) -> str: """simple docstring""" if config_path is not None: __lowerCamelCase = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = WavaVecaConfig() if is_seq_class: __lowerCamelCase = read_txt_into_dict(UpperCamelCase__ ) __lowerCamelCase = idalabel __lowerCamelCase = WavaVecaForSequenceClassification(UpperCamelCase__ ) __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) feature_extractor.save_pretrained(UpperCamelCase__ ) elif is_finetuned: if dict_path: __lowerCamelCase = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCamelCase = target_dict.pad_index __lowerCamelCase = target_dict.bos_index __lowerCamelCase = target_dict.eos_index __lowerCamelCase = len(target_dict.symbols ) __lowerCamelCase = os.path.join(UpperCamelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCamelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __lowerCamelCase = 0 __lowerCamelCase = 1 with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = WavaVecaCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCamelCase__ , ) __lowerCamelCase = True if config.feat_extract_norm == 'layer' else False __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) __lowerCamelCase = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = WavaVecaForCTC(UpperCamelCase__ ) else: __lowerCamelCase = WavaVecaForPreTraining(UpperCamelCase__ ) if is_finetuned or is_seq_class: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __lowerCamelCase = argparse.Namespace(task='audio_pretraining' ) __lowerCamelCase = fairseq.tasks.setup_task(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase__ ) __lowerCamelCase = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __A = parser.parse_args() __A = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
90
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "WhisperFeatureExtractor" __UpperCamelCase = "WhisperTokenizer" def __init__( self : List[str] , lowercase_ : List[Any] , lowercase_ : Dict): '''simple docstring''' super().__init__(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.feature_extractor SCREAMING_SNAKE_CASE_ : Dict = False def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Any=True): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowercase_ , language=lowercase_ , no_timestamps=lowercase_) def __call__( self : Dict , *lowercase_ : Dict , **lowercase_ : Union[str, Any]): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('''sampling_rate''' , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('''text''' , lowercase_) if len(lowercase_) > 0: SCREAMING_SNAKE_CASE_ : Optional[int] = args[0] SCREAMING_SNAKE_CASE_ : Tuple = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) if text is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer(lowercase_ , **lowercase_) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = encodings['''input_ids'''] return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[Any]): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : str , lowercase_ : Optional[Any]="np"): '''simple docstring''' return self.tokenizer.get_prompt_ids(lowercase_ , return_tensors=lowercase_)
91
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
import re from filelock import FileLock try: import nltk UpperCamelCase__ = True except (ImportError, ModuleNotFoundError): UpperCamelCase__ = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def _a ( SCREAMING_SNAKE_CASE_ : str ): re.sub("<n>" , "" , SCREAMING_SNAKE_CASE_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE_ ) )
92
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase : Dict = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main lowercase_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__SCREAMING_SNAKE_CASE , id=__SCREAMING_SNAKE_CASE )
93
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) a :Optional[Any] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCAmelCase_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
94
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _A ( ): """simple docstring""" a__ : Union[str, Any] =[randint(-1_000 , 1_000 ) for i in range(10 )] a__ : Optional[Any] =randint(-5_000 , 5_000 ) return (arr, r) UpperCAmelCase : int = make_dataset() def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" for triplet in permutations(SCREAMING_SNAKE_CASE , 3 ): if sum(SCREAMING_SNAKE_CASE ) == target: return tuple(sorted(SCREAMING_SNAKE_CASE ) ) return (0, 0, 0) def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" arr.sort() a__ : int =len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): a__ , a__ : Dict =i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _A ( ): """simple docstring""" a__ : Any ="\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" a__ : str ="\ntriplet_sum1(*dataset)\n" a__ : str ="\ntriplet_sum2(*dataset)\n" a__ : Optional[int] =repeat(setup=SCREAMING_SNAKE_CASE , stmt=SCREAMING_SNAKE_CASE , repeat=5 , number=10_000 ) a__ : List[Any] =repeat(setup=SCREAMING_SNAKE_CASE , stmt=SCREAMING_SNAKE_CASE , repeat=5 , number=10_000 ) return (min(SCREAMING_SNAKE_CASE ), min(SCREAMING_SNAKE_CASE )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
95
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = len(lowercase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCamelCase : Any = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None _lowerCamelCase : str = sorted_collection[point] if current_item == item: return point else: if point < left: _lowerCamelCase : Union[str, Any] = left _lowerCamelCase : int = point elif point > right: _lowerCamelCase : Any = right _lowerCamelCase : List[str] = point else: if item < current_item: _lowerCamelCase : List[Any] = point - 1 else: _lowerCamelCase : str = point + 1 return None def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCamelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) elif point > right: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase__ , lowercase__ , lowercase__ , point - 1 ) else: return interpolation_search_by_recursion( lowercase__ , lowercase__ , point + 1 , lowercase__ ) def _snake_case ( lowercase__ ): if collection != sorted(lowercase__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase__ = 0 if debug == 1: lowercase__ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") lowercase__ = 67 lowercase__ = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print("""Not found""")
96
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a ( __a ) -> bool: '''simple docstring''' UpperCamelCase__ :int = int(number**0.5 ) return number == sq * sq def a ( __a , __a , __a , __a , __a , __a ) -> tuple[int, int]: '''simple docstring''' UpperCamelCase__ :int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase__ :int = x_den * y_den * z_den UpperCamelCase__ :int = gcd(__a , __a ) top //= hcf bottom //= hcf return top, bottom def a ( __a = 35 ) -> int: '''simple docstring''' UpperCamelCase__ :set = set() UpperCamelCase__ :int UpperCamelCase__ :Fraction = Fraction(0 ) UpperCamelCase__ :tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCamelCase__ :int = x_num * y_den + x_den * y_num UpperCamelCase__ :Any = x_den * y_den UpperCamelCase__ :Tuple = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Tuple = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=2 UpperCamelCase__ :List[str] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase__ :Dict = x_den * x_den * y_den * y_den if is_sq(__a ) and is_sq(__a ): UpperCamelCase__ :Any = int(sqrt(__a ) ) UpperCamelCase__ :Optional[int] = int(sqrt(__a ) ) UpperCamelCase__ :int = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Tuple = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=-1 UpperCamelCase__ :Tuple = x_num * y_num UpperCamelCase__ :Union[str, Any] = x_den * y_num + x_num * y_den UpperCamelCase__ :List[str] = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :Union[str, Any] = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=2 UpperCamelCase__ :Optional[Any] = x_num * x_num * y_num * y_num UpperCamelCase__ :Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__a ) and is_sq(__a ): UpperCamelCase__ :str = int(sqrt(__a ) ) UpperCamelCase__ :Any = int(sqrt(__a ) ) UpperCamelCase__ :Dict = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ :int = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) for num, den in unique_s: total += Fraction(__a , __a ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
97
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ : Any = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Any = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCAmelCase__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def A_ ( A__ , A__ , A__ , A__ , A__ ) -> float: a__ : Optional[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(A__ )] ) a__ : Dict = np.array(A__ ) a__ : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , A__ ) ) , x.transpose() ) , A__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def A_ ( A__ , A__ , A__ ) -> float: a__ : List[Any] = (1, 2, 1) a__ : Union[str, Any] = (1, 1, 0, 7) a__ : str = SARIMAX( A__ , exog=A__ , order=A__ , seasonal_order=A__ ) a__ : List[str] = model.fit(disp=A__ , maxiter=600 , method='nm' ) a__ : List[Any] = model_fit.predict(1 , len(A__ ) , exog=[test_match] ) return result[0] def A_ ( A__ , A__ , A__ ) -> float: a__ : Optional[Any] = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(A__ , A__ ) a__ : Optional[int] = regressor.predict(A__ ) return y_pred[0] def A_ ( A__ ) -> float: train_user.sort() a__ : Union[str, Any] = np.percentile(A__ , 25 ) a__ : Dict = np.percentile(A__ , 75 ) a__ : Union[str, Any] = qa - qa a__ : str = qa - (iqr * 0.1) return low_lim def A_ ( A__ , A__ ) -> bool: a__ : Optional[Any] = 0 a__ : List[Any] = 0 for i in list_vote: if i > actual_result: a__ : Tuple = not_safe + 1 else: if abs(abs(A__ ) - abs(A__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase : Optional[int] = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] lowercase : List[str] = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowercase : str = Normalizer().fit_transform(data_input_df.values) # split data lowercase : List[str] = normalize_df[:, 2].tolist() lowercase : int = normalize_df[:, 0].tolist() lowercase : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase : Optional[int] = normalize_df[:, [1, 2]].tolist() lowercase : Optional[Any] = x[: len(x) - 1] lowercase : Any = x[len(x) - 1 :] # for linear regression & sarimax lowercase : Union[str, Any] = total_date[: len(total_date) - 1] lowercase : Optional[Any] = total_user[: len(total_user) - 1] lowercase : List[Any] = total_match[: len(total_match) - 1] lowercase : List[Any] = total_date[len(total_date) - 1 :] lowercase : Optional[Any] = total_user[len(total_user) - 1 :] lowercase : Union[str, Any] = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase : Dict = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
99
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __magic_name__ = 0B101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __magic_name__ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self): __SCREAMING_SNAKE_CASE = WATERMARK_BITS __SCREAMING_SNAKE_CASE = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark) def snake_case_ ( self , lowerCAmelCase__): # can't encode images that are smaller than 256 if images.shape[-1] < 2_5_6: return images __SCREAMING_SNAKE_CASE = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() __SCREAMING_SNAKE_CASE = [self.encoder.encode(lowerCAmelCase__ , """dwtDct""") for image in images] __SCREAMING_SNAKE_CASE = torch.from_numpy(np.array(lowerCAmelCase__)).permute(0 , 3 , 1 , 2) __SCREAMING_SNAKE_CASE = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0) return images
100
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0