code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _UpperCamelCase ( snake_case__ ):
def __init__( self :Tuple , lowerCamelCase :NestedDataStructureLike[PathLike] , lowerCamelCase :Optional[NamedSplit] = None , lowerCamelCase :Optional[Features] = None , lowerCamelCase :str = None , lowerCamelCase :bool = False , lowerCamelCase :bool = False , lowerCamelCase :Optional[int] = None , **lowerCamelCase :Any , ) -> Optional[Any]:
super().__init__(
lowerCamelCase , split=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase , streaming=lowerCamelCase , num_proc=lowerCamelCase , **lowerCamelCase , )
UpperCAmelCase__ = path_or_paths if isinstance(lowerCamelCase , lowerCamelCase ) else {self.split: path_or_paths}
UpperCAmelCase__ = Text(
cache_dir=lowerCamelCase , data_files=lowerCamelCase , features=lowerCamelCase , **lowerCamelCase , )
def UpperCAmelCase_ ( self :int ) -> str:
# Build iterable dataset
if self.streaming:
UpperCAmelCase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
self.builder.download_and_prepare(
download_config=lowerCamelCase , download_mode=lowerCamelCase , verification_mode=lowerCamelCase , base_path=lowerCamelCase , num_proc=self.num_proc , )
UpperCAmelCase__ = self.builder.as_dataset(
split=self.split , verification_mode=lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
| 169 |
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 322 | 0 |
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def A__ ( __lowerCamelCase ):
if isinstance(__lowerCamelCase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class UpperCamelCase__ :
"""simple docstring"""
def _UpperCamelCase ( self , _A , _A ) -> Optional[int]:
pass
def _UpperCamelCase ( self ) -> str:
pass
def _UpperCamelCase ( self ) -> Tuple:
pass
def _UpperCamelCase ( self , _A , _A , _A ) -> Any:
SCREAMING_SNAKE_CASE_ = np.abs((a - b) ).max()
self.assertLessEqual(_A , _A , F'''Difference between torch and flax is {diff} (>= {tol}).''' )
def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> List[Any]:
SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A )
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A )
SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> List[Any]:
SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A )
SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model}
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A )
SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> Dict:
SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A )
SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model}
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A )
SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A )
SCREAMING_SNAKE_CASE_ = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A )
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A )
SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A )
SCREAMING_SNAKE_CASE_ = after_output[0]
SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_A , 1E-3 )
def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> Tuple:
SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A )
SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model}
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A )
SCREAMING_SNAKE_CASE_ = model(
input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A )
SCREAMING_SNAKE_CASE_ = output.vision_model_output.attentions
self.assertEqual(len(_A ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.image_size )
SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.patch_size )
SCREAMING_SNAKE_CASE_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
SCREAMING_SNAKE_CASE_ = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
SCREAMING_SNAKE_CASE_ = output.text_model_output.attentions
self.assertEqual(len(_A ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def _UpperCamelCase ( self , _A , _A , _A ) -> Dict:
pt_model.to(_A )
pt_model.eval()
# prepare inputs
SCREAMING_SNAKE_CASE_ = inputs_dict
SCREAMING_SNAKE_CASE_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = pt_model(**_A ).to_tuple()
SCREAMING_SNAKE_CASE_ = fx_model(**_A ).to_tuple()
self.assertEqual(len(_A ) , len(_A ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(_A , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(_A )
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A , from_pt=_A )
SCREAMING_SNAKE_CASE_ = fx_model_loaded(**_A ).to_tuple()
self.assertEqual(len(_A ) , len(_A ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(_A , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(_A )
SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel.from_pretrained(_A , from_flax=_A )
pt_model_loaded.to(_A )
pt_model_loaded.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = pt_model_loaded(**_A ).to_tuple()
self.assertEqual(len(_A ) , len(_A ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(_A , pt_output_loaded.numpy() , 4E-2 )
def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A )
SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel(_A )
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A )
SCREAMING_SNAKE_CASE_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A )
SCREAMING_SNAKE_CASE_ = fx_state
self.check_pt_flax_equivalence(_A , _A , _A )
def _UpperCamelCase ( self , _A , _A , _A ) -> Dict:
SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A )
SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel(_A )
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A )
SCREAMING_SNAKE_CASE_ = load_flax_weights_in_pytorch_model(_A , fx_model.params )
self.check_pt_flax_equivalence(_A , _A , _A )
def _UpperCamelCase ( self ) -> Dict:
SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**_A )
def _UpperCamelCase ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**_A )
def _UpperCamelCase ( self ) -> str:
SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
self.check_save_load(**_A )
def _UpperCamelCase ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**_A )
@is_pt_flax_cross_test
def _UpperCamelCase ( self ) -> Any:
SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ = config_inputs_dict.pop('''vision_config''' )
SCREAMING_SNAKE_CASE_ = config_inputs_dict.pop('''text_config''' )
SCREAMING_SNAKE_CASE_ = config_inputs_dict
self.check_equivalence_pt_to_flax(_A , _A , _A )
self.check_equivalence_flax_to_pt(_A , _A , _A )
@slow
def _UpperCamelCase ( self ) -> Tuple:
SCREAMING_SNAKE_CASE_ = self.get_pretrained_model_and_inputs()
SCREAMING_SNAKE_CASE_ = model_a(**_A )
SCREAMING_SNAKE_CASE_ = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(_A )
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A )
SCREAMING_SNAKE_CASE_ = model_a(**_A )
SCREAMING_SNAKE_CASE_ = after_outputs[0]
SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_A , 1E-5 )
@require_flax
class UpperCamelCase__ ( snake_case__ , unittest.TestCase ):
"""simple docstring"""
def _UpperCamelCase ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_A , text_from_pt=_A , )
SCREAMING_SNAKE_CASE_ = 13
SCREAMING_SNAKE_CASE_ = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] )
SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def _UpperCamelCase ( self , _A , _A ) -> Tuple:
SCREAMING_SNAKE_CASE_ = FlaxViTModel(_A )
SCREAMING_SNAKE_CASE_ = FlaxBertModel(_A )
return vision_model, text_model
def _UpperCamelCase ( self ) -> int:
SCREAMING_SNAKE_CASE_ = FlaxViTModelTester(self )
SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self )
SCREAMING_SNAKE_CASE_ = vit_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ = vision_config_and_inputs
SCREAMING_SNAKE_CASE_ = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class UpperCamelCase__ ( snake_case__ , unittest.TestCase ):
"""simple docstring"""
def _UpperCamelCase ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_A , text_from_pt=_A , )
SCREAMING_SNAKE_CASE_ = 13
SCREAMING_SNAKE_CASE_ = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] )
SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def _UpperCamelCase ( self , _A , _A ) -> Any:
SCREAMING_SNAKE_CASE_ = FlaxCLIPVisionModel(_A )
SCREAMING_SNAKE_CASE_ = FlaxBertModel(_A )
return vision_model, text_model
def _UpperCamelCase ( self ) -> Any:
SCREAMING_SNAKE_CASE_ = FlaxCLIPVisionModelTester(self )
SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self )
SCREAMING_SNAKE_CASE_ = clip_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ = vision_config_and_inputs
SCREAMING_SNAKE_CASE_ = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _UpperCamelCase ( self ) -> Tuple:
SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
SCREAMING_SNAKE_CASE_ = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=_A , padding=_A , return_tensors='''np''' )
SCREAMING_SNAKE_CASE_ = model(**_A )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
SCREAMING_SNAKE_CASE_ = np.array([[1.228_4727, 0.310_4122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , _A , atol=1E-3 ) )
| 299 |
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]:
super().__init__()
__lowerCAmelCase: Optional[Any] = initial_learning_rate
__lowerCAmelCase: str = warmup_steps
__lowerCAmelCase: Optional[int] = power
__lowerCAmelCase: str = decay_schedule_fn
__lowerCAmelCase: Tuple = name
def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa )
__lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa )
__lowerCAmelCase: List[str] = global_step_float / warmup_steps_float
__lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , )
def UpperCAmelCase ( self : Tuple ) -> int:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , )
if num_warmup_steps:
__lowerCAmelCase: Optional[int] = WarmUp(
initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , )
if weight_decay_rate > 0.0:
__lowerCAmelCase: List[Any] = AdamWeightDecay(
learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , )
else:
__lowerCAmelCase: Dict = tf.keras.optimizers.Adam(
learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class A_ ( snake_case__ ):
def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int:
super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
__lowerCAmelCase: List[Any] = weight_decay_rate
__lowerCAmelCase: List[str] = include_in_weight_decay
__lowerCAmelCase: Optional[Any] = exclude_from_weight_decay
@classmethod
def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]:
__lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp}
return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase )
def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__lowerCAmelCase: Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]:
__lowerCAmelCase: Dict = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
__lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) )
return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCAmelCase: Dict = apply_state or {}
__lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase )
__lowerCAmelCase: Tuple = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]:
__lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase )
__lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
with tf.control_dependencies([decay] ):
return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]:
__lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase )
__lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
with tf.control_dependencies([decay] ):
return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]:
__lowerCAmelCase: List[str] = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(UpperCAmelCase , UpperCAmelCase ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(UpperCAmelCase , UpperCAmelCase ) is not None:
return False
return True
class A_ ( snake_case__ ):
def __init__( self : int ) -> List[Any]:
__lowerCAmelCase: Tuple = []
__lowerCAmelCase: int = None
@property
def UpperCAmelCase ( self : Dict ) -> List[Any]:
if self._accum_steps is None:
__lowerCAmelCase: List[Any] = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def UpperCAmelCase ( self : Union[str, Any] ) -> int:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any:
if not self._gradients:
__lowerCAmelCase: Any = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(UpperCAmelCase ) != len(self._gradients ):
raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' )
for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(UpperCAmelCase )
self._accum_steps.assign_add(1 )
def UpperCAmelCase ( self : int ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(UpperCAmelCase ) )
| 322 | 0 |
'''simple docstring'''
from manim import *
class _a ( snake_case__ ):
def A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCAmelCase = [mem.copy() for i in range(6 )]
UpperCAmelCase = [mem.copy() for i in range(6 )]
UpperCAmelCase = VGroup(*lowercase ).arrange(lowercase , buff=0 )
UpperCAmelCase = VGroup(*lowercase ).arrange(lowercase , buff=0 )
UpperCAmelCase = VGroup(lowercase , lowercase ).arrange(lowercase , buff=0 )
UpperCAmelCase = Text('''CPU''' , font_size=24 )
UpperCAmelCase = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowercase )
UpperCAmelCase = [mem.copy() for i in range(1 )]
UpperCAmelCase = VGroup(*lowercase ).arrange(lowercase , buff=0 )
UpperCAmelCase = Text('''GPU''' , font_size=24 )
UpperCAmelCase = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase )
gpu.align_to(lowercase , lowercase )
gpu.set_x(gpu.get_x() - 1 )
self.add(lowercase )
UpperCAmelCase = [mem.copy() for i in range(6 )]
UpperCAmelCase = VGroup(*lowercase ).arrange(lowercase , buff=0 )
UpperCAmelCase = Text('''Model''' , font_size=24 )
UpperCAmelCase = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase )
model.move_to([3, -1.0, 0] )
self.play(
Create(lowercase , run_time=1 ) , Create(lowercase , run_time=1 ) , Create(lowercase , run_time=1 ) , )
UpperCAmelCase = MarkupText(
f"First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM." , font_size=24 , )
UpperCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(lowercase , run_time=2.5 ) , Write(lowercase ) , Write(lowercase ) )
self.add(lowercase )
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for i, rect in enumerate(lowercase ):
UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowercase , opacity=0.7 )
cpu_target.move_to(lowercase )
cpu_target.generate_target()
UpperCAmelCase = 0.46 / 4
UpperCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=lowercase , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowercase , buff=0.0 )
cpu_targs.append(lowercase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowercase ) )
second_animations.append(MoveToTarget(lowercase , run_time=1.5 ) )
self.play(*lowercase )
self.play(*lowercase )
self.wait()
| 34 |
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str:
"""simple docstring"""
__lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2
__lowerCAmelCase: str = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
__lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55
__lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 )
if "l" in remove_borders:
__lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
__lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
__lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
__lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]:
"""simple docstring"""
return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int:
"""simple docstring"""
return (
clamp(rect[0] , min[0] , max[0] ),
clamp(rect[1] , min[1] , max[1] ),
clamp(rect[2] , min[0] , max[0] ),
clamp(rect[3] , min[1] , max[1] ),
)
def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE )
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
__lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] )
return rect
def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any:
"""simple docstring"""
__lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) )
result.paste(
original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , )
result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) )
return result
def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str:
"""simple docstring"""
__lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
__lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE )
return tile
def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowerCAmelCase: List[str] = n % d
return n - divisor
class A_ ( snake_case__ ):
def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]:
super().__init__(
vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , )
def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]:
torch.manual_seed(0 )
__lowerCAmelCase: Optional[int] = (
min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ),
min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ),
min(image.size[0] , (x + 1) * tile_size ),
min(image.size[1] , (y + 1) * tile_size ),
)
__lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size )
__lowerCAmelCase: Any = image.crop(UpperCAmelCase )
__lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
__lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2)
__lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase )
__lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__lowerCAmelCase: Union[str, Any] = to_input.size
__lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC )
__lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0]
__lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC )
__lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase )
__lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC )
__lowerCAmelCase: Optional[int] = []
if x == 0:
remove_borders.append('l' )
elif crop_rect[2] == image.size[0]:
remove_borders.append('r' )
if y == 0:
remove_borders.append('t' )
elif crop_rect[3] == image.size[1]:
remove_borders.append('b' )
__lowerCAmelCase: int = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , )
final_image.paste(
UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str:
__lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) )
__lowerCAmelCase: str = math.ceil(image.size[0] / tile_size )
__lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size )
__lowerCAmelCase: Optional[Any] = tcx * tcy
__lowerCAmelCase: Tuple = 0
for y in range(UpperCAmelCase ):
for x in range(UpperCAmelCase ):
self._process_tile(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , )
current_count += 1
if callback is not None:
callback({'progress': current_count / total_tile_count, 'image': final_image} )
return final_image
def _a ( ) -> int:
"""simple docstring"""
__lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler'
__lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa )
__lowerCAmelCase: Optional[Any] = pipe.to('cuda' )
__lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' )
def callback(SCREAMING_SNAKE_CASE : Tuple ):
print(f'''progress: {obj['progress']:.4f}''' )
obj["image"].save('diffusers_library_progress.jpg' )
__lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE )
final_image.save('diffusers_library.jpg' )
if __name__ == "__main__":
main()
| 322 | 0 |
'''simple docstring'''
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
_UpperCamelCase = version.parse(importlib_metadata.version('nltk'))
if NLTK_VERSION >= version.Version('3.6.4'):
from nltk import word_tokenize
_UpperCamelCase = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n'
_UpperCamelCase = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n'
_UpperCamelCase = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase_ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Union[str, Any] ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[
'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score',
'https://en.wikipedia.org/wiki/METEOR',
] , )
def _lowercase ( self : str , _a : Dict ) -> Dict:
import nltk
nltk.download('wordnet' )
if NLTK_VERSION >= version.Version('3.6.5' ):
nltk.download('punkt' )
if NLTK_VERSION >= version.Version('3.6.6' ):
nltk.download('omw-1.4' )
def _lowercase ( self : str , _a : List[str] , _a : Optional[int] , _a : Union[str, Any]=0.9 , _a : Any=3 , _a : int=0.5 ) -> Union[str, Any]:
if NLTK_VERSION >= version.Version('3.6.5' ):
__lowerCamelCase : Any = [
meteor_score.single_meteor_score(
word_tokenize(_a ) , word_tokenize(_a ) , alpha=_a , beta=_a , gamma=_a )
for ref, pred in zip(_a , _a )
]
else:
__lowerCamelCase : str = [
meteor_score.single_meteor_score(_a , _a , alpha=_a , beta=_a , gamma=_a )
for ref, pred in zip(_a , _a )
]
return {"meteor": np.mean(_a )}
| 208 |
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE )
__lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE )
__lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__lowerCAmelCase: Tuple = True
for i in range(1 , s + 1 ):
__lowerCAmelCase: Any = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__lowerCAmelCase: Optional[int] = dp[i][j - 1]
if arr[i - 1] <= j:
__lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__lowerCAmelCase: Tuple = s - 2 * j
break
return diff
| 322 | 0 |
import numpy as np
def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = int(np.ceil((x_end - xa) / h ) )
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros((n + 1,) )
__SCREAMING_SNAKE_CASE : Any = ya
__SCREAMING_SNAKE_CASE : Tuple = xa
for k in range(snake_case ):
__SCREAMING_SNAKE_CASE : Optional[int] = f(snake_case , y[k] )
__SCREAMING_SNAKE_CASE : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__SCREAMING_SNAKE_CASE : Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__SCREAMING_SNAKE_CASE : str = f(x + h , y[k] + h * ka )
__SCREAMING_SNAKE_CASE : str = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 303 |
from __future__ import annotations
def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]:
"""simple docstring"""
__lowerCAmelCase: int = 0
__lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
__lowerCAmelCase: Tuple = i + 1
else:
__lowerCAmelCase: List[str] = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
| 322 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( snake_case__ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = GPTSanJapaneseTokenizer
__UpperCamelCase = False
__UpperCamelCase = {'do_clean_text': False, 'add_prefix_space': False}
def UpperCAmelCase__ ( self :Dict ) -> Optional[int]:
super().setUp()
# fmt: off
UpperCAmelCase = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>']
# fmt: on
UpperCAmelCase = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀
UpperCAmelCase = {'unk_token': '<unk>'}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
with open(self.emoji_file , 'w' ) as emoji_writer:
emoji_writer.write(json.dumps(lowercase_ ) )
def UpperCAmelCase__ ( self :int , **lowercase_ :Optional[Any] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase_ )
def UpperCAmelCase__ ( self :str , lowercase_ :List[Any] ) -> int:
UpperCAmelCase = 'こんにちは、世界。 \nこんばんは、㔺界。😀'
UpperCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。😀'
return input_text, output_text
def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[int] ) -> List[str]:
UpperCAmelCase = self.get_input_output_texts(lowercase_ )
UpperCAmelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
UpperCAmelCase = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ )
return text, ids
def UpperCAmelCase__ ( self :List[str] ) -> str:
pass # TODO add if relevant
def UpperCAmelCase__ ( self :List[Any] ) -> Optional[int]:
pass # TODO add if relevant
def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[Any]:
pass # TODO add if relevant
def UpperCAmelCase__ ( self :Dict ) -> str:
UpperCAmelCase = self.get_tokenizer()
# Testing tokenization
UpperCAmelCase = 'こんにちは、世界。 こんばんは、㔺界。'
UpperCAmelCase = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。']
UpperCAmelCase = tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
# Testing conversion to ids without special tokens
UpperCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
# Testing conversion to ids with special tokens
UpperCAmelCase = tokens + [tokenizer.unk_token]
UpperCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def UpperCAmelCase__ ( self :List[str] ) -> Optional[int]:
UpperCAmelCase = self.get_tokenizer()
# Testing tokenization
UpperCAmelCase = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'
UpperCAmelCase = 'こんにちは、、、、世界。こんばんは、、、、世界。'
UpperCAmelCase = tokenizer.encode(lowercase_ )
UpperCAmelCase = tokenizer.decode(lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
@slow
def UpperCAmelCase__ ( self :int ) -> Optional[int]:
UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
UpperCAmelCase = 'こんにちは、世界。'
UpperCAmelCase = 'こんばんは、㔺界。😀'
UpperCAmelCase = 'こんにちは、世界。こんばんは、世界。😀'
UpperCAmelCase = tokenizer.encode(prefix_text + input_text )
UpperCAmelCase = tokenizer.encode('' , prefix_text=prefix_text + input_text )
UpperCAmelCase = tokenizer.encode(lowercase_ , prefix_text=lowercase_ )
UpperCAmelCase = tokenizer.decode(lowercase_ )
UpperCAmelCase = tokenizer.decode(lowercase_ )
UpperCAmelCase = tokenizer.decode(lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
@slow
def UpperCAmelCase__ ( self :Union[str, Any] ) -> int:
UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
UpperCAmelCase = 'こんにちは、世界。'
UpperCAmelCase = 'こんばんは、㔺界。😀'
UpperCAmelCase = len(tokenizer.encode(lowercase_ ) ) - 2
UpperCAmelCase = len(tokenizer.encode(lowercase_ ) ) - 2
UpperCAmelCase = [1] + [0] * (len_prefix + len_text + 1)
UpperCAmelCase = [1] * (len_prefix + len_text + 1) + [0]
UpperCAmelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
UpperCAmelCase = tokenizer(prefix_text + input_text ).token_type_ids
UpperCAmelCase = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids
UpperCAmelCase = tokenizer(lowercase_ , prefix_text=lowercase_ ).token_type_ids
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
@slow
def UpperCAmelCase__ ( self :List[Any] ) -> int:
UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
UpperCAmelCase = tokenizer.encode('あンいワ' )
UpperCAmelCase = tokenizer.encode('' , prefix_text='あンいワ' )
UpperCAmelCase = tokenizer.encode('いワ' , prefix_text='あン' )
self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) )
self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) )
self.assertNotEqual(lowercase_ , lowercase_ )
self.assertNotEqual(lowercase_ , lowercase_ )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[int]:
UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
UpperCAmelCase = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']]
UpperCAmelCase = tokenizer(lowercase_ , padding=lowercase_ )
UpperCAmelCase = tokenizer.batch_encode_plus(lowercase_ , padding=lowercase_ )
# fmt: off
UpperCAmelCase = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]]
UpperCAmelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
UpperCAmelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , lowercase_ )
self.assertListEqual(x_token.token_type_ids , lowercase_ )
self.assertListEqual(x_token.attention_mask , lowercase_ )
self.assertListEqual(x_token_a.input_ids , lowercase_ )
self.assertListEqual(x_token_a.token_type_ids , lowercase_ )
self.assertListEqual(x_token_a.attention_mask , lowercase_ )
def UpperCAmelCase__ ( self :List[str] ) -> Union[str, Any]:
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def UpperCAmelCase__ ( self :Dict ) -> str:
# tokenizer has no padding token
pass
| 78 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
_a = '''scheduler_config.json'''
class A_ ( snake_case__ ):
_lowercase : Optional[Any] = 1
_lowercase : Tuple = 2
_lowercase : Dict = 3
_lowercase : int = 4
_lowercase : Optional[Any] = 5
@dataclass
class A_ ( snake_case__ ):
_lowercase : jnp.ndarray
class A_ :
_lowercase : Optional[int] = SCHEDULER_CONFIG_NAME
_lowercase : Dict = ['dtype']
_lowercase : int = []
_lowercase : Union[str, Any] = True
@classmethod
def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple:
__lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config(
pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , )
__lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase )
if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ):
__lowerCAmelCase: Dict = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]:
self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self : str ) -> Dict:
return self._get_compatibles()
@classmethod
def UpperCAmelCase ( cls : Optional[int] ) -> Any:
__lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) )
__lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] )
__lowerCAmelCase: Dict = [
getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase )
]
return compatible_classes
def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray:
"""simple docstring"""
assert len(SCREAMING_SNAKE_CASE ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE )
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray:
"""simple docstring"""
def alpha_bar(SCREAMING_SNAKE_CASE : str ):
return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
__lowerCAmelCase: str = []
for i in range(SCREAMING_SNAKE_CASE ):
__lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps
__lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) )
return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )
@flax.struct.dataclass
class A_ :
_lowercase : jnp.ndarray
_lowercase : jnp.ndarray
_lowercase : jnp.ndarray
@classmethod
def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any:
__lowerCAmelCase: str = scheduler.config
if config.trained_betas is not None:
__lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
__lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__lowerCAmelCase: List[Any] = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' )
__lowerCAmelCase: Optional[Any] = 1.0 - betas
__lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 )
return cls(
alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , )
def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int:
"""simple docstring"""
__lowerCAmelCase: Optional[int] = state.alphas_cumprod
__lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5
__lowerCAmelCase: Any = sqrt_alpha_prod.flatten()
__lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape )
__lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5
__lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten()
__lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str:
"""simple docstring"""
__lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any:
"""simple docstring"""
__lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 322 | 0 |
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : int=3 , UpperCamelCase__ : int=4 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Union[str, Any]=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=99 , UpperCamelCase__ : Tuple=36 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Union[str, Any]=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : List[str]=512 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Optional[Any]=6 , UpperCamelCase__ : int=6 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[str]=1000 , ) -> int:
"""simple docstring"""
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = num_channels
__magic_name__ = image_size
__magic_name__ = patch_size
__magic_name__ = is_training
__magic_name__ = use_input_mask
__magic_name__ = use_token_type_ids
__magic_name__ = use_labels
__magic_name__ = vocab_size
__magic_name__ = hidden_size
__magic_name__ = num_hidden_layers
__magic_name__ = num_attention_heads
__magic_name__ = intermediate_size
__magic_name__ = hidden_act
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = max_position_embeddings
__magic_name__ = type_vocab_size
__magic_name__ = type_sequence_label_size
__magic_name__ = initializer_range
__magic_name__ = coordinate_size
__magic_name__ = shape_size
__magic_name__ = num_labels
__magic_name__ = num_choices
__magic_name__ = scope
__magic_name__ = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__magic_name__ = text_seq_length
__magic_name__ = (image_size // patch_size) ** 2 + 1
__magic_name__ = self.text_seq_length + self.image_seq_length
def _lowercase ( self : Any ) -> Any:
"""simple docstring"""
__magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__magic_name__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__magic_name__ = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__magic_name__ = bbox[i, j, 3]
__magic_name__ = bbox[i, j, 1]
__magic_name__ = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__magic_name__ = bbox[i, j, 2]
__magic_name__ = bbox[i, j, 0]
__magic_name__ = tmp_coordinate
__magic_name__ = tf.constant(UpperCamelCase__ )
__magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ = None
if self.use_input_mask:
__magic_name__ = random_attention_mask([self.batch_size, self.text_seq_length] )
__magic_name__ = None
if self.use_token_type_ids:
__magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__magic_name__ = None
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__magic_name__ = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def _lowercase ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple ) -> int:
"""simple docstring"""
__magic_name__ = TFLayoutLMvaModel(config=UpperCamelCase__ )
# text + image
__magic_name__ = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ )
__magic_name__ = model(
UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , training=UpperCamelCase__ , )
__magic_name__ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__magic_name__ = model({"""pixel_values""": pixel_values} , training=UpperCamelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ) -> int:
"""simple docstring"""
__magic_name__ = self.num_labels
__magic_name__ = TFLayoutLMvaForSequenceClassification(config=UpperCamelCase__ )
__magic_name__ = model(
UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase ( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> Any:
"""simple docstring"""
__magic_name__ = self.num_labels
__magic_name__ = TFLayoutLMvaForTokenClassification(config=UpperCamelCase__ )
__magic_name__ = model(
UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def _lowercase ( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ) -> Any:
"""simple docstring"""
__magic_name__ = 2
__magic_name__ = TFLayoutLMvaForQuestionAnswering(config=UpperCamelCase__ )
__magic_name__ = model(
UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , training=UpperCamelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowercase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__magic_name__ = self.prepare_config_and_inputs()
(__magic_name__) = config_and_inputs
__magic_name__ = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ):
'''simple docstring'''
a__ = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
a__ = (
{'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
a__ = False
a__ = False
a__ = False
def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
return True
def _lowercase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=False ) -> dict:
"""simple docstring"""
__magic_name__ = copy.deepcopy(UpperCamelCase__ )
if model_class in get_values(UpperCamelCase__ ):
__magic_name__ = {
k: tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(UpperCamelCase__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(UpperCamelCase__ ):
__magic_name__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCamelCase__ ):
__magic_name__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__magic_name__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCamelCase__ ):
__magic_name__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCamelCase__ ):
__magic_name__ = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__magic_name__ = TFLayoutLMvaModelTester(self )
__magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 )
def _lowercase ( self : Tuple ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowercase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(UpperCamelCase__ )
if getattr(UpperCamelCase__ , """hf_compute_loss""" , UpperCamelCase__ ):
# The number of elements in the loss should be the same as the number of elements in the label
__magic_name__ = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__magic_name__ = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCamelCase__ )[0]
]
__magic_name__ = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__magic_name__ = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__magic_name__ = prepared_for_class.pop("""input_ids""" )
__magic_name__ = model(UpperCamelCase__ , **UpperCamelCase__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__magic_name__ = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__magic_name__ = prepared_for_class.pop("""input_ids""" )
if "labels" in prepared_for_class:
__magic_name__ = prepared_for_class['labels'].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__magic_name__ = -100
__magic_name__ = tf.convert_to_tensor(UpperCamelCase__ )
__magic_name__ = model(UpperCamelCase__ , **UpperCamelCase__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__magic_name__ = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__magic_name__ = model(UpperCamelCase__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__magic_name__ = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ )
# Get keys that were added with the _prepare_for_class function
__magic_name__ = prepared_for_class.keys() - inputs_dict.keys()
__magic_name__ = inspect.signature(model.call ).parameters
__magic_name__ = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__magic_name__ = {0: 'input_ids'}
for label_key in label_keys:
__magic_name__ = signature_names.index(UpperCamelCase__ )
__magic_name__ = label_key
__magic_name__ = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__magic_name__ = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__magic_name__ = prepared_for_class[value]
__magic_name__ = tuple(UpperCamelCase__ )
# Send to model
__magic_name__ = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def _lowercase ( self : Dict ) -> Tuple:
"""simple docstring"""
(
__magic_name__
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : Dict ) -> int:
"""simple docstring"""
(
__magic_name__
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__magic_name__ = type
self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : str ) -> List[str]:
"""simple docstring"""
(
__magic_name__
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : int ) -> List[str]:
"""simple docstring"""
(
__magic_name__
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : Tuple ) -> str:
"""simple docstring"""
(
__magic_name__
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
@slow
def _lowercase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ = TFLayoutLMvaModel.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
def a__ ( ):
'''simple docstring'''
__magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowercase ( self : int ) -> Dict:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None
@slow
def _lowercase ( self : Any ) -> List[str]:
"""simple docstring"""
__magic_name__ = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" )
__magic_name__ = self.default_image_processor
__magic_name__ = prepare_img()
__magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ).pixel_values
__magic_name__ = tf.constant([[1, 2]] )
__magic_name__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__magic_name__ = model(input_ids=UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ )
# verify the logits
__magic_name__ = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ )
__magic_name__ = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
| 88 |
_a = {
'''A''': ['''B''', '''C''', '''E'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F''', '''G'''],
'''D''': ['''B'''],
'''E''': ['''A''', '''B''', '''D'''],
'''F''': ['''C'''],
'''G''': ['''C'''],
}
def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]:
"""simple docstring"""
__lowerCAmelCase: int = set()
# keep track of all the paths to be checked
__lowerCAmelCase: str = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
__lowerCAmelCase: str = queue.pop(0 )
# get the last node from the path
__lowerCAmelCase: Union[str, Any] = path[-1]
if node not in explored:
__lowerCAmelCase: Dict = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
__lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE )
new_path.append(SCREAMING_SNAKE_CASE )
queue.append(SCREAMING_SNAKE_CASE )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(SCREAMING_SNAKE_CASE )
# in case there's no path between the 2 nodes
return []
def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int:
"""simple docstring"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
__lowerCAmelCase: Optional[int] = [start]
__lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE )
# Keep tab on distances from `start` node.
__lowerCAmelCase: Optional[int] = {start: 0, target: -1}
while queue:
__lowerCAmelCase: Any = queue.pop(0 )
if node == target:
__lowerCAmelCase: Optional[int] = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(SCREAMING_SNAKE_CASE )
queue.append(SCREAMING_SNAKE_CASE )
__lowerCAmelCase: Union[str, Any] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
| 322 | 0 |
'''simple docstring'''
import baseaa
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> bytes:
return baseaa.baaencode(string.encode("""utf-8""" ) )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : bytes ) -> str:
return baseaa.baadecode(_UpperCAmelCase ).decode("""utf-8""" )
if __name__ == "__main__":
A__: int = '''Hello World!'''
A__: str = baseaa_encode(test)
print(encoded)
A__: Optional[Any] = baseaa_decode(encoded)
print(decoded)
| 276 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A_ ( snake_case__ ):
_lowercase : int = ['image_processor', 'tokenizer']
_lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor'
_lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast')
def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str:
__lowerCAmelCase: str = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , UpperCAmelCase , )
__lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' )
__lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding:
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
# first, apply the image processor
__lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
__lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowerCAmelCase: List[str] = features['words']
__lowerCAmelCase: List[Any] = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
# add pixel values
__lowerCAmelCase: Tuple = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowerCAmelCase: str = images
return encoded_inputs
def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]:
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__lowerCAmelCase: str = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' )
return images_with_overflow
def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]:
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]:
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self : Union[str, Any] ) -> str:
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def UpperCAmelCase ( self : str ) -> Union[str, Any]:
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , )
return self.image_processor
| 322 | 0 |
'''simple docstring'''
import cva
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , __lowercase : float , __lowercase : int ) -> Optional[Any]:
if k in (0.04, 0.06):
SCREAMING_SNAKE_CASE__ : Optional[Any] =k
SCREAMING_SNAKE_CASE__ : List[str] =window_size
else:
raise ValueError('''invalid k value''' )
def __str__( self : Union[str, Any] ) -> str:
return str(self.k )
def __magic_name__ ( self : Dict , __lowercase : str ) -> tuple[cva.Mat, list[list[int]]]:
SCREAMING_SNAKE_CASE__ : Optional[int] =cva.imread(__lowercase , 0 )
SCREAMING_SNAKE_CASE__ : Tuple =img.shape
SCREAMING_SNAKE_CASE__ : list[list[int]] =[]
SCREAMING_SNAKE_CASE__ : Optional[Any] =img.copy()
SCREAMING_SNAKE_CASE__ : Tuple =cva.cvtColor(__lowercase , cva.COLOR_GRAY2RGB )
SCREAMING_SNAKE_CASE__ : Optional[Any] =np.gradient(__lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] =dx**2
SCREAMING_SNAKE_CASE__ : Union[str, Any] =dy**2
SCREAMING_SNAKE_CASE__ : Dict =dx * dy
SCREAMING_SNAKE_CASE__ : Dict =0.04
SCREAMING_SNAKE_CASE__ : Optional[int] =self.window_size // 2
for y in range(__lowercase , h - offset ):
for x in range(__lowercase , w - offset ):
SCREAMING_SNAKE_CASE__ : str =ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
SCREAMING_SNAKE_CASE__ : List[Any] =iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
SCREAMING_SNAKE_CASE__ : str =ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
SCREAMING_SNAKE_CASE__ : Optional[int] =(wxx * wyy) - (wxy**2)
SCREAMING_SNAKE_CASE__ : Any =wxx + wyy
SCREAMING_SNAKE_CASE__ : Dict =det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 2_55 )
return color_img, corner_list
if __name__ == "__main__":
a_ = HarrisCorner(0.04, 3)
a_ , a_ = edge_detect.detect('path_to_image')
cva.imwrite('detect.png', color_img) | 152 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
_a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''')
def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str:
"""simple docstring"""
output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , )
else:
export(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , )
@torch.no_grad()
def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
__lowerCAmelCase: str = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
__lowerCAmelCase: Dict = 'cpu'
__lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE )
# VAE DECODER
__lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' )
__lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels
# forward only through the decoder part
__lowerCAmelCase: Any = vae_decoder.decode
onnx_export(
SCREAMING_SNAKE_CASE , model_args=(
torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=SCREAMING_SNAKE_CASE , )
del vae_decoder
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument(
'''--model_path''',
type=str,
required=True,
help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''',
)
parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--opset''',
default=1_4,
type=int,
help='''The version of the ONNX operator set to use.''',
)
parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''')
_a = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print('''SD: Done: ONNX''')
| 322 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
lowercase__ : Optional[int] = TextaTextGenerationPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
return generator, ["Something to write", "Something else"]
def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> int:
lowercase__ : Tuple = generator('''Something there''' )
self.assertEqual(__lowerCAmelCase , [{'''generated_text''': ANY(__lowerCAmelCase )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) )
lowercase__ : Any = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__lowerCAmelCase )
self.assertEqual(
__lowerCAmelCase , [
[{'''generated_text''': ANY(__lowerCAmelCase )}, {'''generated_text''': ANY(__lowerCAmelCase )}],
[{'''generated_text''': ANY(__lowerCAmelCase )}, {'''generated_text''': ANY(__lowerCAmelCase )}],
] , )
lowercase__ : Dict = generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__lowerCAmelCase )
self.assertEqual(
__lowerCAmelCase , [
[{'''generated_text''': ANY(__lowerCAmelCase )}, {'''generated_text''': ANY(__lowerCAmelCase )}],
[{'''generated_text''': ANY(__lowerCAmelCase )}, {'''generated_text''': ANY(__lowerCAmelCase )}],
] , )
with self.assertRaises(__lowerCAmelCase ):
generator(4 )
@require_torch
def _lowerCAmelCase( self ) -> Any:
lowercase__ : str = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' )
# do_sample=False necessary for reproducibility
lowercase__ : Any = generator('''Something there''' , do_sample=__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , [{'''generated_text''': ''''''}] )
lowercase__ : Any = 3
lowercase__ : List[str] = generator(
'''Something there''' , num_return_sequences=__lowerCAmelCase , num_beams=__lowerCAmelCase , )
lowercase__ : Optional[Any] = [
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': ''},
]
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
lowercase__ : str = generator('''This is a test''' , do_sample=__lowerCAmelCase , num_return_sequences=2 , return_tensors=__lowerCAmelCase )
self.assertEqual(
__lowerCAmelCase , [
{'''generated_token_ids''': ANY(torch.Tensor )},
{'''generated_token_ids''': ANY(torch.Tensor )},
] , )
lowercase__ : int = generator.model.config.eos_token_id
lowercase__ : str = '<pad>'
lowercase__ : Optional[Any] = generator(
['''This is a test''', '''This is a second test'''] , do_sample=__lowerCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__lowerCAmelCase , )
self.assertEqual(
__lowerCAmelCase , [
[
{'''generated_token_ids''': ANY(torch.Tensor )},
{'''generated_token_ids''': ANY(torch.Tensor )},
],
[
{'''generated_token_ids''': ANY(torch.Tensor )},
{'''generated_token_ids''': ANY(torch.Tensor )},
],
] , )
@require_tf
def _lowerCAmelCase( self ) -> Optional[int]:
lowercase__ : Union[str, Any] = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' )
# do_sample=False necessary for reproducibility
lowercase__ : Optional[Any] = generator('''Something there''' , do_sample=__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , [{'''generated_text''': ''''''}] )
| 198 |
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
"""simple docstring"""
def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
__lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 )
__lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 )
__lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE )
if mat[row][col]:
__lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] )
__lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE )
return sub_problem_sol
else:
return 0
__lowerCAmelCase: List[str] = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
"""simple docstring"""
def update_area_of_max_square_using_dp_array(
SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
__lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE )
__lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE )
__lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if mat[row][col]:
__lowerCAmelCase: int = 1 + min([right, diagonal, down] )
__lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE )
__lowerCAmelCase: Optional[int] = sub_problem_sol
return sub_problem_sol
else:
return 0
__lowerCAmelCase: int = [0]
__lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )]
update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE )
return largest_square_area[0]
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
"""simple docstring"""
__lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )]
__lowerCAmelCase: Optional[Any] = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1]
__lowerCAmelCase: str = dp_array[row + 1][col + 1]
__lowerCAmelCase: Optional[int] = dp_array[row + 1][col]
if mat[row][col] == 1:
__lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase: Dict = 0
return largest_square_area
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
"""simple docstring"""
__lowerCAmelCase: Tuple = [0] * (cols + 1)
__lowerCAmelCase: Optional[int] = [0] * (cols + 1)
__lowerCAmelCase: str = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__lowerCAmelCase: int = current_row[col + 1]
__lowerCAmelCase: Union[str, Any] = next_row[col + 1]
__lowerCAmelCase: Any = next_row[col]
if mat[row][col] == 1:
__lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase: Optional[Any] = 0
__lowerCAmelCase: int = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 322 | 0 |
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class _SCREAMING_SNAKE_CASE ( snake_case__ ):
def __lt__( self , lowercase ) -> Union[str, Any]:
return self[-1] < other[-1]
def __eq__( self , lowercase ) -> Union[str, Any]:
return self[-1] == other[-1]
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = []
# sort into stacks
for element in collection:
lowerCamelCase_ = Stack([element] )
lowerCamelCase_ = bisect_left(lowerCamelCase__ , lowerCamelCase__ )
if i != len(lowerCamelCase__ ):
stacks[i].append(lowerCamelCase__ )
else:
stacks.append(lowerCamelCase__ )
# use a heap-based merge to merge stack efficiently
lowerCamelCase_ = merge(*(reversed(lowerCamelCase__ ) for stack in stacks) )
return collection
if __name__ == "__main__":
__A =input('''Enter numbers separated by a comma:\n''').strip()
__A =[int(item) for item in user_input.split(''',''')]
print(patience_sort(unsorted))
| 19 |
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_a = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
_a = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase: Optional[int] = SavedModel()
__lowerCAmelCase: str = []
with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f:
__lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets']
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] )
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
saved_model.ParseFromString(f.read() )
__lowerCAmelCase: Optional[int] = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
__lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE )
__lowerCAmelCase: Optional[int] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(SCREAMING_SNAKE_CASE )
if strict and len(SCREAMING_SNAKE_CASE ) > 0:
raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(SCREAMING_SNAKE_CASE ) > 0:
print(f'''Found the following incompatible ops for the opset {opset}:''' )
print(*SCREAMING_SNAKE_CASE , sep='\n' )
else:
print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
_a = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 322 | 0 |
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
_lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__)
_lowerCAmelCase : Any = {"facebook/bart-base": BartForConditionalGeneration}
_lowerCAmelCase : List[str] = {"facebook/bart-base": BartTokenizer}
def lowerCAmelCase ( ):
"""simple docstring"""
UpperCAmelCase__ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" , type=_lowerCAmelCase , default=5 , help="The maximum total input sequence length after tokenization." , )
parser.add_argument(
"--num_beams" , type=_lowerCAmelCase , default=_lowerCAmelCase , help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) , )
parser.add_argument(
"--model_name_or_path" , type=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_lowerCAmelCase , )
parser.add_argument(
"--config_name" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="Pretrained config name or path if not the same as model_name" , )
parser.add_argument(
"--device" , type=_lowerCAmelCase , default="cpu" , help="Device where the model will be run" , )
parser.add_argument("--output_file_path" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="Where to store the final ONNX file." )
UpperCAmelCase__ = parser.parse_args()
return args
def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : List[Any]="cpu" ):
"""simple docstring"""
UpperCAmelCase__ = model_dict[model_name].from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase )
UpperCAmelCase__ = tokenizer_dict[model_name].from_pretrained(_lowerCAmelCase )
if model_name in ["facebook/bart-base"]:
UpperCAmelCase__ = 0
UpperCAmelCase__ = None
UpperCAmelCase__ = 0
return huggingface_model, tokenizer
def lowerCAmelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
model.eval()
UpperCAmelCase__ = None
UpperCAmelCase__ = torch.jit.script(BARTBeamSearchGenerator(_lowerCAmelCase ) )
with torch.no_grad():
UpperCAmelCase__ = 'My friends are cool but they eat too many carbs.'
UpperCAmelCase__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device )
UpperCAmelCase__ = model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=_lowerCAmelCase , max_length=_lowerCAmelCase , early_stopping=_lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_lowerCAmelCase , (
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _lowerCAmelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} , example_outputs=_lowerCAmelCase , )
logger.info("Model exported to {}".format(_lowerCAmelCase ) )
UpperCAmelCase__ = remove_dup_initializers(os.path.abspath(_lowerCAmelCase ) )
logger.info("Deduplicated and optimized model written to {}".format(_lowerCAmelCase ) )
UpperCAmelCase__ = onnxruntime.InferenceSession(_lowerCAmelCase )
UpperCAmelCase__ = ort_sess.run(
_lowerCAmelCase , {
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(_lowerCAmelCase ),
"max_length": np.array(_lowerCAmelCase ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def lowerCAmelCase ( ):
"""simple docstring"""
UpperCAmelCase__ = parse_args()
UpperCAmelCase__ = 5
UpperCAmelCase__ = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase__ = torch.device(args.device )
UpperCAmelCase__ = load_model_tokenizer(args.model_name_or_path , _lowerCAmelCase )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(_lowerCAmelCase )
if args.max_length:
UpperCAmelCase__ = args.max_length
if args.num_beams:
UpperCAmelCase__ = args.num_beams
if args.output_file_path:
UpperCAmelCase__ = args.output_file_path
else:
UpperCAmelCase__ = 'BART.onnx'
logger.info("Exporting model to ONNX" )
export_and_validate_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 169 |
import math
import qiskit
def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
):
raise TypeError('inputs must be integers.' )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError('inputs must be positive.' )
if (
(math.floor(SCREAMING_SNAKE_CASE ) != input_a)
or (math.floor(SCREAMING_SNAKE_CASE ) != input_a)
or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in)
):
raise ValueError('inputs must be exact integers.' )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError('inputs must be less or equal to 2.' )
# build registers
__lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' )
__lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' )
# list the entries
__lowerCAmelCase: Any = [input_a, input_a, carry_in]
__lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits
__lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' )
__lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 )
return job.result().get_counts(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
| 322 | 0 |
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 299 |
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A_ :
def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int:
__lowerCAmelCase: List[str] = parent
__lowerCAmelCase: List[str] = batch_size
__lowerCAmelCase: Optional[Any] = num_channels
__lowerCAmelCase: Tuple = image_size
__lowerCAmelCase: str = patch_size
__lowerCAmelCase: List[str] = is_training
__lowerCAmelCase: Union[str, Any] = use_input_mask
__lowerCAmelCase: Union[str, Any] = use_token_type_ids
__lowerCAmelCase: Tuple = use_labels
__lowerCAmelCase: Optional[int] = vocab_size
__lowerCAmelCase: Any = hidden_size
__lowerCAmelCase: Tuple = num_hidden_layers
__lowerCAmelCase: Optional[int] = num_attention_heads
__lowerCAmelCase: Dict = intermediate_size
__lowerCAmelCase: Union[str, Any] = hidden_act
__lowerCAmelCase: str = hidden_dropout_prob
__lowerCAmelCase: str = attention_probs_dropout_prob
__lowerCAmelCase: str = max_position_embeddings
__lowerCAmelCase: str = type_vocab_size
__lowerCAmelCase: Optional[Any] = type_sequence_label_size
__lowerCAmelCase: Union[str, Any] = initializer_range
__lowerCAmelCase: List[str] = coordinate_size
__lowerCAmelCase: Tuple = shape_size
__lowerCAmelCase: List[Any] = num_labels
__lowerCAmelCase: Any = num_choices
__lowerCAmelCase: List[str] = scope
__lowerCAmelCase: Dict = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__lowerCAmelCase: Optional[Any] = text_seq_length
__lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1
__lowerCAmelCase: int = self.text_seq_length + self.image_seq_length
def UpperCAmelCase ( self : Any ) -> Any:
__lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__lowerCAmelCase: str = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__lowerCAmelCase: Optional[Any] = bbox[i, j, 3]
__lowerCAmelCase: Tuple = bbox[i, j, 1]
__lowerCAmelCase: Dict = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__lowerCAmelCase: Any = bbox[i, j, 2]
__lowerCAmelCase: int = bbox[i, j, 0]
__lowerCAmelCase: int = tmp_coordinate
__lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase )
__lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCAmelCase: Union[str, Any] = None
if self.use_input_mask:
__lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] )
__lowerCAmelCase: int = None
if self.use_token_type_ids:
__lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__lowerCAmelCase: str = None
__lowerCAmelCase: Dict = None
if self.use_labels:
__lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__lowerCAmelCase: Dict = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int:
__lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase )
# text + image
__lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase )
__lowerCAmelCase: List[str] = model(
UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , )
__lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int:
__lowerCAmelCase: List[str] = self.num_labels
__lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase )
__lowerCAmelCase: int = model(
UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any:
__lowerCAmelCase: Union[str, Any] = self.num_labels
__lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase )
__lowerCAmelCase: Any = model(
UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any:
__lowerCAmelCase: str = 2
__lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase )
__lowerCAmelCase: int = model(
UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
__lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs()
((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs
__lowerCAmelCase: List[str] = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class A_ ( snake_case__ , snake_case__ , unittest.TestCase ):
_lowercase : List[Any] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
_lowercase : Tuple = (
{'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
_lowercase : Union[str, Any] = False
_lowercase : Dict = False
_lowercase : Tuple = False
def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]:
return True
def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict:
__lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase )
if model_class in get_values(UpperCAmelCase ):
__lowerCAmelCase: int = {
k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(UpperCAmelCase ):
__lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase ):
__lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase ):
__lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase ):
__lowerCAmelCase: str = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]:
__lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self )
__lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 )
def UpperCAmelCase ( self : Tuple ) -> Dict:
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : List[Any] ) -> Tuple:
__lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCAmelCase: List[Any] = model_class(UpperCAmelCase )
if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ):
# The number of elements in the loss should be the same as the number of elements in the label
__lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
__lowerCAmelCase: List[Any] = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0]
]
__lowerCAmelCase: Tuple = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
__lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' )
__lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
__lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' )
if "labels" in prepared_for_class:
__lowerCAmelCase: str = prepared_for_class['labels'].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__lowerCAmelCase: Tuple = -1_0_0
__lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase )
__lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
__lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
# Get keys that were added with the _prepare_for_class function
__lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys()
__lowerCAmelCase: Dict = inspect.signature(model.call ).parameters
__lowerCAmelCase: Dict = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__lowerCAmelCase: str = {0: 'input_ids'}
for label_key in label_keys:
__lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase )
__lowerCAmelCase: Tuple = label_key
__lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__lowerCAmelCase: List[Any] = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__lowerCAmelCase: Optional[Any] = prepared_for_class[value]
__lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase )
# Send to model
__lowerCAmelCase: Any = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def UpperCAmelCase ( self : Dict ) -> Tuple:
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
): str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self : Dict ) -> int:
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
): str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowerCAmelCase: Tuple = type
self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self : str ) -> List[str]:
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
): Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self : int ) -> List[str]:
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
): Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self : Tuple ) -> str:
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
): Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@slow
def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple:
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def _a ( ) -> Any:
"""simple docstring"""
__lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
class A_ ( unittest.TestCase ):
@cached_property
def UpperCAmelCase ( self : int ) -> Dict:
return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None
@slow
def UpperCAmelCase ( self : Any ) -> List[str]:
__lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' )
__lowerCAmelCase: Tuple = self.default_image_processor
__lowerCAmelCase: str = prepare_img()
__lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values
__lowerCAmelCase: Dict = tf.constant([[1, 2]] )
__lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase )
# verify the logits
__lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8)
self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase )
__lowerCAmelCase: str = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
| 322 | 0 |
'''simple docstring'''
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A =logging.get_logger(__name__)
A ='▁'
A ={'vocab_file': 'prophetnet.tokenizer'}
A ={
'vocab_file': {
'microsoft/xprophetnet-large-wiki100-cased': (
'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer'
),
}
}
A ={
'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False},
}
A ={
'microsoft/xprophetnet-large-wiki100-cased': 5_12,
}
def snake_case_ (_a : List[Any] ):
UpperCAmelCase = collections.OrderedDict()
with open(_a , '''r''' , encoding='''utf-8''' ) as reader:
UpperCAmelCase = reader.readlines()
for index, token in enumerate(_a ):
UpperCAmelCase = token.rstrip('''\n''' )
UpperCAmelCase = index
return vocab
class _a ( snake_case__ ):
__a : Dict = VOCAB_FILES_NAMES
__a : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Union[str, Any] = ['input_ids', 'attention_mask']
def __init__( self : List[str] , lowercase : str , lowercase : str="[SEP]" , lowercase : Tuple="[SEP]" , lowercase : Optional[int]="[SEP]" , lowercase : int="[UNK]" , lowercase : Optional[int]="[PAD]" , lowercase : int="[CLS]" , lowercase : int="[MASK]" , lowercase : Optional[Dict[str, Any]] = None , **lowercase : str , ):
'''simple docstring'''
UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'''
''' pip install sentencepiece''' )
raise
UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase ) )
UpperCAmelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
UpperCAmelCase = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4}
for i in range(10 ):
UpperCAmelCase = f"[unused{i}]"
UpperCAmelCase = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
UpperCAmelCase = 12
UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(lowercase )
def __getstate__( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.__dict__.copy()
UpperCAmelCase = None
return state
def __setstate__( self : int , lowercase : List[Any] ):
'''simple docstring'''
UpperCAmelCase = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'''
''' pip install sentencepiece''' )
raise
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase = {}
UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self : int , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase )
if token_ids_a is None:
return ([0] * len(lowercase )) + [1]
return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1]
def A ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None ):
'''simple docstring'''
UpperCAmelCase = [self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A ( self : Any ):
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A ( self : List[Any] , lowercase : str ):
'''simple docstring'''
return self.sp_model.encode(lowercase , out_type=lowercase )
def A ( self : int , lowercase : Union[str, Any] ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase = self.sp_model.PieceToId(lowercase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def A ( self : List[str] , lowercase : int ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def A ( self : Optional[Any] , lowercase : int ):
'''simple docstring'''
UpperCAmelCase = ''.join(lowercase ).replace(lowercase , ''' ''' ).strip()
return out_string
def A ( self : Optional[int] , lowercase : str , lowercase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowercase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase = os.path.join(
lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase , '''wb''' ) as fi:
UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(lowercase )
return (out_vocab_file,)
def A ( self : str , lowercase : List[int] , lowercase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
UpperCAmelCase = [self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 34 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class A_ ( unittest.TestCase ):
def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]:
__lowerCAmelCase: str = parent
__lowerCAmelCase: Dict = batch_size
__lowerCAmelCase: Optional[int] = seq_length
__lowerCAmelCase: Dict = is_training
__lowerCAmelCase: Optional[Any] = use_attention_mask
__lowerCAmelCase: List[Any] = use_token_type_ids
__lowerCAmelCase: Optional[int] = use_labels
__lowerCAmelCase: Optional[Any] = vocab_size
__lowerCAmelCase: Optional[Any] = hidden_size
__lowerCAmelCase: Tuple = num_hidden_layers
__lowerCAmelCase: List[str] = num_attention_heads
__lowerCAmelCase: int = intermediate_size
__lowerCAmelCase: Union[str, Any] = hidden_act
__lowerCAmelCase: List[Any] = hidden_dropout_prob
__lowerCAmelCase: List[str] = attention_probs_dropout_prob
__lowerCAmelCase: Optional[int] = max_position_embeddings
__lowerCAmelCase: Union[str, Any] = type_vocab_size
__lowerCAmelCase: int = type_sequence_label_size
__lowerCAmelCase: Union[str, Any] = initializer_range
__lowerCAmelCase: Any = num_choices
def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple:
__lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase: List[Any] = None
if self.use_attention_mask:
__lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase: Optional[Any] = None
if self.use_token_type_ids:
__lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCAmelCase: Optional[int] = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self : Dict ) -> Any:
__lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs
__lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class A_ ( snake_case__ , unittest.TestCase ):
_lowercase : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCAmelCase ( self : List[str] ) -> Optional[int]:
__lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self )
@slow
def UpperCAmelCase ( self : Tuple ) -> Dict:
for model_class_name in self.all_model_classes:
__lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' )
__lowerCAmelCase: Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
@require_flax
class A_ ( unittest.TestCase ):
@slow
def UpperCAmelCase ( self : Any ) -> Any:
__lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' )
__lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
__lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0]
__lowerCAmelCase: str = (1, 1_1, 7_6_8)
self.assertEqual(output.shape , UpperCAmelCase )
__lowerCAmelCase: List[str] = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
| 322 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
def a_ ( _lowerCAmelCase ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ) -> Optional[Any]:
__lowerCamelCase : Optional[Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'transformer.blocks.{i}.norm1.weight', F'vilt.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'transformer.blocks.{i}.norm1.bias', F'vilt.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(F'transformer.blocks.{i}.attn.proj.weight', F'vilt.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(F'transformer.blocks.{i}.attn.proj.bias', F'vilt.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'transformer.blocks.{i}.norm2.weight', F'vilt.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'transformer.blocks.{i}.norm2.bias', F'vilt.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(F'transformer.blocks.{i}.mlp.fc1.weight', F'vilt.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'transformer.blocks.{i}.mlp.fc1.bias', F'vilt.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.weight', F'vilt.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.bias', F'vilt.encoder.layer.{i}.output.dense.bias') )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> int:
for i in range(config.num_hidden_layers ):
__lowerCamelCase : str = 'vilt.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowerCamelCase : Tuple = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.weight' )
__lowerCamelCase : Optional[int] = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
__lowerCamelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
__lowerCamelCase : Optional[int] = in_proj_bias[: config.hidden_size]
__lowerCamelCase : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowerCamelCase : Tuple = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowerCamelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
__lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :]
def a_ ( _lowerCAmelCase ) -> Optional[int]:
__lowerCamelCase : Union[str, Any] = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase )
def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[str]:
__lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase )
__lowerCamelCase : Dict = val
@torch.no_grad()
def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Tuple:
__lowerCamelCase : Union[str, Any] = ViltConfig(image_size=384 ,patch_size=32 ,tie_word_embeddings=_lowerCAmelCase )
__lowerCamelCase : Any = False
__lowerCamelCase : int = False
__lowerCamelCase : Union[str, Any] = False
__lowerCamelCase : Union[str, Any] = False
if "vqa" in checkpoint_url:
__lowerCamelCase : int = True
__lowerCamelCase : Any = 3129
__lowerCamelCase : int = 'huggingface/label-files'
__lowerCamelCase : Tuple = 'vqa2-id2label.json'
__lowerCamelCase : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase ,_lowerCAmelCase ,repo_type='dataset' ) ,'r' ) )
__lowerCamelCase : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
__lowerCamelCase : str = idalabel
__lowerCamelCase : int = {v: k for k, v in idalabel.items()}
__lowerCamelCase : Optional[int] = ViltForQuestionAnswering(_lowerCAmelCase )
elif "nlvr" in checkpoint_url:
__lowerCamelCase : Dict = True
__lowerCamelCase : str = 2
__lowerCamelCase : Optional[Any] = {0: 'False', 1: 'True'}
__lowerCamelCase : int = {v: k for k, v in config.idalabel.items()}
__lowerCamelCase : Optional[int] = 3
__lowerCamelCase : List[str] = ViltForImagesAndTextClassification(_lowerCAmelCase )
elif "irtr" in checkpoint_url:
__lowerCamelCase : int = True
__lowerCamelCase : Optional[Any] = ViltForImageAndTextRetrieval(_lowerCAmelCase )
elif "mlm_itm" in checkpoint_url:
__lowerCamelCase : Dict = True
__lowerCamelCase : Optional[Any] = ViltForMaskedLM(_lowerCAmelCase )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
__lowerCamelCase : Tuple = torch.hub.load_state_dict_from_url(_lowerCAmelCase ,map_location='cpu' )['state_dict']
__lowerCamelCase : List[Any] = create_rename_keys(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
for src, dest in rename_keys:
rename_key(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
read_in_q_k_v(_lowerCAmelCase ,_lowerCAmelCase )
if mlm_model or irtr_model:
__lowerCamelCase : Any = ['itm_score.fc.weight', 'itm_score.fc.bias']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
__lowerCamelCase : Optional[Any] = model.load_state_dict(_lowerCAmelCase ,strict=_lowerCAmelCase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_lowerCAmelCase )
# Define processor
__lowerCamelCase : List[str] = ViltImageProcessor(size=384 )
__lowerCamelCase : List[str] = BertTokenizer.from_pretrained('bert-base-uncased' )
__lowerCamelCase : List[str] = ViltProcessor(_lowerCAmelCase ,_lowerCAmelCase )
# Forward pass on example inputs (image + text)
if nlvr_model:
__lowerCamelCase : Tuple = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' ,stream=_lowerCAmelCase ).raw )
__lowerCamelCase : List[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' ,stream=_lowerCAmelCase ).raw )
__lowerCamelCase : Union[str, Any] = (
'The left image contains twice the number of dogs as the right image, and at least two dogs in total are'
' standing.'
)
__lowerCamelCase : Tuple = processor(_lowerCAmelCase ,_lowerCAmelCase ,return_tensors='pt' )
__lowerCamelCase : List[Any] = processor(_lowerCAmelCase ,_lowerCAmelCase ,return_tensors='pt' )
__lowerCamelCase : str = model(
input_ids=encoding_a.input_ids ,pixel_values=encoding_a.pixel_values ,pixel_values_a=encoding_a.pixel_values ,)
else:
__lowerCamelCase : Dict = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' ,stream=_lowerCAmelCase ).raw )
if mlm_model:
__lowerCamelCase : Optional[int] = 'a bunch of [MASK] laying on a [MASK].'
else:
__lowerCamelCase : Optional[Any] = 'How many cats are there?'
__lowerCamelCase : Optional[Any] = processor(_lowerCAmelCase ,_lowerCAmelCase ,return_tensors='pt' )
__lowerCamelCase : Optional[Any] = model(**_lowerCAmelCase )
# Verify outputs
if mlm_model:
__lowerCamelCase : int = torch.Size([1, 11, 30522] )
__lowerCamelCase : int = torch.tensor([-12.5061, -12.5123, -12.5174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] ,_lowerCAmelCase ,atol=1E-4 )
# verify masked token prediction equals "cats"
__lowerCamelCase : Optional[Any] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
__lowerCamelCase : str = torch.Size([1, 3129] )
__lowerCamelCase : Dict = torch.tensor([-15.9495, -18.1472, -10.3041] )
assert torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] ,_lowerCAmelCase ,atol=1E-4 )
# verify vqa prediction equals "2"
__lowerCamelCase : Optional[Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
__lowerCamelCase : Dict = torch.Size([1, 2] )
__lowerCamelCase : Optional[Any] = torch.tensor([-2.8721, 2.1291] )
assert torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(F'Saving model and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_UpperCamelCase = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 208 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
_a = {
'''return_dict''': False,
'''output_hidden_states''': True,
'''output_attentions''': True,
'''torchscript''': True,
'''torch_dtype''': '''float16''',
'''use_bfloat16''': True,
'''tf_legacy_loss''': True,
'''pruned_heads''': {'''a''': 1},
'''tie_word_embeddings''': False,
'''is_decoder''': True,
'''cross_attention_hidden_size''': 1_2_8,
'''add_cross_attention''': True,
'''tie_encoder_decoder''': True,
'''max_length''': 5_0,
'''min_length''': 3,
'''do_sample''': True,
'''early_stopping''': True,
'''num_beams''': 3,
'''num_beam_groups''': 3,
'''diversity_penalty''': 0.5,
'''temperature''': 2.0,
'''top_k''': 1_0,
'''top_p''': 0.7,
'''typical_p''': 0.2,
'''repetition_penalty''': 0.8,
'''length_penalty''': 0.8,
'''no_repeat_ngram_size''': 5,
'''encoder_no_repeat_ngram_size''': 5,
'''bad_words_ids''': [1, 2, 3],
'''num_return_sequences''': 3,
'''chunk_size_feed_forward''': 5,
'''output_scores''': True,
'''return_dict_in_generate''': True,
'''forced_bos_token_id''': 2,
'''forced_eos_token_id''': 3,
'''remove_invalid_values''': True,
'''architectures''': ['''BertModel'''],
'''finetuning_task''': '''translation''',
'''id2label''': {0: '''label'''},
'''label2id''': {'''label''': '''0'''},
'''tokenizer_class''': '''BertTokenizerFast''',
'''prefix''': '''prefix''',
'''bos_token_id''': 6,
'''pad_token_id''': 7,
'''eos_token_id''': 8,
'''sep_token_id''': 9,
'''decoder_start_token_id''': 1_0,
'''exponential_decay_length_penalty''': (5, 1.01),
'''suppress_tokens''': [0, 1],
'''begin_suppress_tokens''': 2,
'''task_specific_params''': {'''translation''': '''some_params'''},
'''problem_type''': '''regression''',
}
@is_staging_test
class A_ ( unittest.TestCase ):
@classmethod
def UpperCAmelCase ( cls : Dict ) -> List[str]:
__lowerCAmelCase: str = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def UpperCAmelCase ( cls : str ) -> List[Any]:
try:
delete_repo(token=cls._token , repo_id='test-config' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-config-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-config' )
except HTTPError:
pass
def UpperCAmelCase ( self : int ) -> Optional[int]:
__lowerCAmelCase: Any = BertConfig(
vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 )
config.push_to_hub('test-config' , use_auth_token=self._token )
__lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='test-config' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
__lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase ( self : int ) -> Dict:
__lowerCAmelCase: int = BertConfig(
vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 )
config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token )
__lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-config-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
__lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]:
CustomConfig.register_for_auto_class()
__lowerCAmelCase: Any = CustomConfig(attribute=4_2 )
config.push_to_hub('test-dynamic-config' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} )
__lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' )
self.assertEqual(new_config.attribute , 4_2 )
class A_ ( unittest.TestCase ):
def UpperCAmelCase ( self : Union[str, Any] ) -> int:
__lowerCAmelCase: List[Any] = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
__lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int
__lowerCAmelCase: str = c.resid_pdrop + 1.0 # float
__lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool
__lowerCAmelCase: List[str] = c.summary_type + 'foo' # str
c.update_from_string(
F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' )
self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' )
self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' )
self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' )
self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' )
def UpperCAmelCase ( self : Optional[Any] ) -> Any:
__lowerCAmelCase: str = PretrainedConfig()
__lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] )
__lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )]
if len(UpperCAmelCase ) > 0:
raise ValueError(
'The following keys are set with the default values in'
' `test_configuration_common.config_common_kwargs` pick another value for them:'
F''' {', '.join(UpperCAmelCase )}.''' )
def UpperCAmelCase ( self : int ) -> Optional[Any]:
with self.assertRaises(UpperCAmelCase ):
# config is in subfolder, the following should not work without specifying the subfolder
__lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' )
__lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self : Tuple ) -> List[Any]:
# A mock response for an HTTP head request to emulate server down
__lowerCAmelCase: Union[str, Any] = mock.Mock()
__lowerCAmelCase: str = 5_0_0
__lowerCAmelCase: Optional[Any] = {}
__lowerCAmelCase: Optional[int] = HTTPError
__lowerCAmelCase: List[Any] = {}
# Download this model to make sure it's in the cache.
__lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head:
__lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCAmelCase ( self : Any ) -> Optional[Any]:
# This test is for deprecated behavior and can be removed in v5
__lowerCAmelCase: Tuple = BertConfig.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' )
def UpperCAmelCase ( self : Dict ) -> str:
__lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' )
__lowerCAmelCase: Optional[Any] = ['config.4.0.0.json']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(UpperCAmelCase )
__lowerCAmelCase: Tuple = 2
json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
__lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
__lowerCAmelCase: Dict = ['config.42.0.0.json']
__lowerCAmelCase: Optional[int] = 7_6_8
configuration.save_pretrained(UpperCAmelCase )
shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) )
__lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 7_6_8 )
def UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
# This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
__lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs'
import transformers as new_transformers
__lowerCAmelCase: List[Any] = 'v4.0.0'
__lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained(
UpperCAmelCase , return_unused_kwargs=UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(UpperCAmelCase , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
__lowerCAmelCase: List[Any] = 'v3.0.0'
__lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase )
self.assertEqual(old_configuration.hidden_size , 7_6_8 )
| 322 | 0 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
lowercase_ = """scheduler_config.json"""
class __UpperCamelCase ( snake_case__ ):
"""simple docstring"""
lowerCAmelCase_ = 1
lowerCAmelCase_ = 2
lowerCAmelCase_ = 3
lowerCAmelCase_ = 4
lowerCAmelCase_ = 5
@dataclass
class __UpperCamelCase ( snake_case__ ):
"""simple docstring"""
lowerCAmelCase_ = 42
class __UpperCamelCase :
"""simple docstring"""
lowerCAmelCase_ = SCHEDULER_CONFIG_NAME
lowerCAmelCase_ = ['dtype']
lowerCAmelCase_ = []
lowerCAmelCase_ = True
@classmethod
def UpperCAmelCase__ ( cls : Union[str, Any] , _A : Dict[str, Any] = None , _A : Optional[str] = None , _A : List[str]=False , **_A : Optional[int] , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = cls.load_config(
pretrained_model_name_or_path=_A , subfolder=_A , return_unused_kwargs=_A , **_A , )
__SCREAMING_SNAKE_CASE : Optional[Any] = cls.from_config(_A , return_unused_kwargs=_A , **_A )
if hasattr(_A , '''create_state''' ) and getattr(_A , '''has_state''' , _A ):
__SCREAMING_SNAKE_CASE : Dict = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def UpperCAmelCase__ ( self : Tuple , _A : Union[str, os.PathLike] , _A : bool = False , **_A : Any ):
"""simple docstring"""
self.save_config(save_directory=_A , push_to_hub=_A , **_A )
@property
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
return self._get_compatibles()
@classmethod
def UpperCAmelCase__ ( cls : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = list(set([cls.__name__] + cls._compatibles ) )
__SCREAMING_SNAKE_CASE : Dict = importlib.import_module(__name__.split('''.''' )[0] )
__SCREAMING_SNAKE_CASE : Dict = [
getattr(_A , _A ) for c in compatible_classes_str if hasattr(_A , _A )
]
return compatible_classes
def a__ ( snake_case , snake_case ):
"""simple docstring"""
assert len(snake_case ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(snake_case ) - x.ndim) ) , snake_case )
def a__ ( snake_case , snake_case=0.999 , snake_case=jnp.floataa ):
"""simple docstring"""
def alpha_bar(snake_case ):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2
__SCREAMING_SNAKE_CASE : str = []
for i in range(snake_case ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = i / num_diffusion_timesteps
__SCREAMING_SNAKE_CASE : List[str] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(snake_case ) / alpha_bar(snake_case ) , snake_case ) )
return jnp.array(snake_case , dtype=snake_case )
@flax.struct.dataclass
class __UpperCamelCase :
"""simple docstring"""
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
@classmethod
def UpperCAmelCase__ ( cls : str , _A : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = scheduler.config
if config.trained_betas is not None:
__SCREAMING_SNAKE_CASE : Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
__SCREAMING_SNAKE_CASE : Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__SCREAMING_SNAKE_CASE : List[Any] = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__SCREAMING_SNAKE_CASE : str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' )
__SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 - betas
__SCREAMING_SNAKE_CASE : Optional[Any] = jnp.cumprod(_A , axis=0 )
return cls(
alphas=_A , betas=_A , alphas_cumprod=_A , )
def a__ ( snake_case , snake_case , snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = state.alphas_cumprod
__SCREAMING_SNAKE_CASE : str = alphas_cumprod[timesteps] ** 0.5
__SCREAMING_SNAKE_CASE : Any = sqrt_alpha_prod.flatten()
__SCREAMING_SNAKE_CASE : Any = broadcast_to_shape_from_left(snake_case , original_samples.shape )
__SCREAMING_SNAKE_CASE : Any = (1 - alphas_cumprod[timesteps]) ** 0.5
__SCREAMING_SNAKE_CASE : str = sqrt_one_minus_alpha_prod.flatten()
__SCREAMING_SNAKE_CASE : str = broadcast_to_shape_from_left(snake_case , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def a__ ( snake_case , snake_case , snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = get_sqrt_alpha_prod(snake_case , snake_case , snake_case , snake_case )
__SCREAMING_SNAKE_CASE : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def a__ ( snake_case , snake_case , snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = get_sqrt_alpha_prod(snake_case , snake_case , snake_case , snake_case )
__SCREAMING_SNAKE_CASE : int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 303 |
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)]
def _a ( SCREAMING_SNAKE_CASE : int ) -> int:
"""simple docstring"""
__lowerCAmelCase: Optional[int] = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00]
number //= 10_00_00
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
_a = [None] * 1_0_0_0_0_0_0_0
_a = True
_a = False
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool:
"""simple docstring"""
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
__lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase: Tuple = number_chain
while number < 10_00_00_00:
__lowerCAmelCase: Dict = number_chain
number *= 10
return number_chain
def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int:
"""simple docstring"""
for i in range(1 , SCREAMING_SNAKE_CASE ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"{solution() = }")
| 322 | 0 |
"""simple docstring"""
import os
from pathlib import Path
def _lowerCAmelCase ( ):
from torch.utils.cpp_extension import load
UpperCAmelCase = Path(lowercase_ ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr'
UpperCAmelCase = [
root / filename
for filename in [
'vision.cpp',
os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ),
os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ),
]
]
load(
'MultiScaleDeformableAttention' , lowercase_ , with_cuda=lowercase_ , extra_include_paths=[str(lowercase_ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[
'-DCUDA_HAS_FP16=1',
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 78 |
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer'''
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 0:
return False
__lowerCAmelCase: str = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 322 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase : int = {
'configuration_jukebox': [
'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP',
'JukeboxConfig',
'JukeboxPriorConfig',
'JukeboxVQVAEConfig',
],
'tokenization_jukebox': ['JukeboxTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] = [
'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST',
'JukeboxModel',
'JukeboxPreTrainedModel',
'JukeboxVQVAE',
'JukeboxPrior',
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
__lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 88 |
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class A_ :
def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict:
__lowerCAmelCase: Optional[int] = parent
__lowerCAmelCase: Dict = batch_size
__lowerCAmelCase: Tuple = seq_length
__lowerCAmelCase: Tuple = is_training
__lowerCAmelCase: Optional[Any] = use_input_lengths
__lowerCAmelCase: List[str] = use_token_type_ids
__lowerCAmelCase: Dict = use_labels
__lowerCAmelCase: int = gelu_activation
__lowerCAmelCase: Optional[int] = sinusoidal_embeddings
__lowerCAmelCase: Tuple = causal
__lowerCAmelCase: Optional[Any] = asm
__lowerCAmelCase: int = n_langs
__lowerCAmelCase: Tuple = vocab_size
__lowerCAmelCase: List[Any] = n_special
__lowerCAmelCase: List[Any] = hidden_size
__lowerCAmelCase: Union[str, Any] = num_hidden_layers
__lowerCAmelCase: Dict = num_attention_heads
__lowerCAmelCase: int = hidden_dropout_prob
__lowerCAmelCase: List[str] = attention_probs_dropout_prob
__lowerCAmelCase: Dict = max_position_embeddings
__lowerCAmelCase: List[str] = type_sequence_label_size
__lowerCAmelCase: str = initializer_range
__lowerCAmelCase: List[str] = num_labels
__lowerCAmelCase: List[str] = num_choices
__lowerCAmelCase: Optional[int] = summary_type
__lowerCAmelCase: Any = use_proj
__lowerCAmelCase: Optional[Any] = scope
__lowerCAmelCase: Dict = bos_token_id
def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple:
__lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase: Any = None
if self.use_input_lengths:
__lowerCAmelCase: Optional[Any] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__lowerCAmelCase: str = None
if self.use_token_type_ids:
__lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__lowerCAmelCase: int = None
__lowerCAmelCase: Optional[int] = None
__lowerCAmelCase: Optional[int] = None
if self.use_labels:
__lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float()
__lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices )
__lowerCAmelCase: Dict = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCAmelCase ( self : Tuple ) -> List[Any]:
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]:
__lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase )
__lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase )
__lowerCAmelCase: List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int:
__lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]:
__lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__lowerCAmelCase: str = model(UpperCAmelCase )
__lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase )
__lowerCAmelCase: Optional[Any] = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple:
__lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__lowerCAmelCase: List[str] = model(UpperCAmelCase )
__lowerCAmelCase: Union[str, Any] = model(
UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , )
__lowerCAmelCase: Any = model(
UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , )
((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple()
__lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase )
((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]:
__lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__lowerCAmelCase: List[Any] = model(UpperCAmelCase )
__lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]:
__lowerCAmelCase: Union[str, Any] = self.num_labels
__lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]:
__lowerCAmelCase: List[Any] = self.num_choices
__lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCAmelCase: Any = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self : Tuple ) -> int:
__lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs()
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
): Union[str, Any] = config_and_inputs
__lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths}
return config, inputs_dict
@require_torch
class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ):
_lowercase : Any = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
_lowercase : Any = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
_lowercase : Optional[int] = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict:
__lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
__lowerCAmelCase: str = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase )
__lowerCAmelCase: Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase )
return inputs_dict
def UpperCAmelCase ( self : Union[str, Any] ) -> int:
__lowerCAmelCase: int = XLMModelTester(self )
__lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 )
def UpperCAmelCase ( self : List[str] ) -> List[Any]:
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Dict ) -> List[Any]:
__lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*UpperCAmelCase )
def UpperCAmelCase ( self : List[Any] ) -> int:
__lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase )
def UpperCAmelCase ( self : Tuple ) -> Tuple:
__lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase )
def UpperCAmelCase ( self : Optional[Any] ) -> Tuple:
__lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase )
def UpperCAmelCase ( self : Optional[Any] ) -> Any:
__lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase )
def UpperCAmelCase ( self : Tuple ) -> Tuple:
__lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase )
def UpperCAmelCase ( self : Any ) -> Any:
__lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase )
def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict:
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(
[isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) )
self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(UpperCAmelCase ):
# adds PAD dummy token
__lowerCAmelCase: int = min_length + idx + 1
__lowerCAmelCase: Union[str, Any] = min_length + idx + 1
__lowerCAmelCase: Any = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) )
def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]:
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(
[isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , )
self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(UpperCAmelCase ):
# adds PAD dummy token
__lowerCAmelCase: Any = min_length + idx + 1
__lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , )
pass
@slow
def UpperCAmelCase ( self : int ) -> Tuple:
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_torch
class A_ ( unittest.TestCase ):
@slow
def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
__lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' )
model.to(UpperCAmelCase )
__lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president
__lowerCAmelCase: Union[str, Any] = [
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
__lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
| 322 | 0 |
'''simple docstring'''
import os
def SCREAMING_SNAKE_CASE_ ( ) -> str:
with open(os.path.dirname(_UpperCAmelCase ) + """/grid.txt""" ) as f:
_a : int =[] # noqa: E741
for _ in range(20 ):
l.append([int(_UpperCAmelCase ) for x in f.readline().split()] )
_a : Union[str, Any] =0
# right
for i in range(20 ):
for j in range(17 ):
_a : Tuple =l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
_a : Dict =temp
# down
for i in range(17 ):
for j in range(20 ):
_a : str =l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
_a : Any =temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
_a : Union[str, Any] =l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
_a : str =temp
# diagonal 2
for i in range(17 ):
for j in range(3 ,20 ):
_a : Optional[Any] =l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
_a : Optional[int] =temp
return maximum
if __name__ == "__main__":
print(solution())
| 276 |
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowerCAmelCase: List[Any] = 0
__lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE )
for i in range(n - 1 ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _a ( SCREAMING_SNAKE_CASE : Any ) -> str:
"""simple docstring"""
if len(SCREAMING_SNAKE_CASE ) <= 1:
return arr, 0
__lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2
__lowerCAmelCase: str = arr[0:mid]
__lowerCAmelCase: int = arr[mid:]
__lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]:
"""simple docstring"""
__lowerCAmelCase: List[str] = []
__lowerCAmelCase: List[str] = 0
while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(SCREAMING_SNAKE_CASE ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(SCREAMING_SNAKE_CASE ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _a ( ) -> int:
"""simple docstring"""
__lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE )
assert num_inversions_bf == num_inversions_recursive == 8
print('number of inversions = ' , SCREAMING_SNAKE_CASE )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE )
assert num_inversions_bf == num_inversions_recursive == 0
print('number of inversions = ' , SCREAMING_SNAKE_CASE )
# an empty list should also have zero inversions
__lowerCAmelCase: int = []
__lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE )
assert num_inversions_bf == num_inversions_recursive == 0
print('number of inversions = ' , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 322 | 0 |
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = [randint(-10_00 , 10_00 ) for i in range(10 )]
SCREAMING_SNAKE_CASE : Tuple = randint(-50_00 , 50_00 )
return (arr, r)
__UpperCAmelCase = make_dataset()
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
for triplet in permutations(lowerCamelCase_ , 3 ):
if sum(lowerCamelCase_ ) == target:
return tuple(sorted(lowerCamelCase_ ) )
return (0, 0, 0)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
arr.sort()
SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ )
for i in range(n - 1 ):
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = """
from __main__ import dataset, triplet_sum1, triplet_sum2
"""
SCREAMING_SNAKE_CASE : Tuple = """
triplet_sum1(*dataset)
"""
SCREAMING_SNAKE_CASE : List[Any] = """
triplet_sum2(*dataset)
"""
SCREAMING_SNAKE_CASE : Tuple = repeat(setup=lowerCamelCase_ , stmt=lowerCamelCase_ , repeat=5 , number=1_00_00 )
SCREAMING_SNAKE_CASE : Dict = repeat(setup=lowerCamelCase_ , stmt=lowerCamelCase_ , repeat=5 , number=1_00_00 )
return (min(lowerCamelCase_ ), min(lowerCamelCase_ ))
if __name__ == "__main__":
from doctest import testmod
testmod()
__UpperCAmelCase = solution_times()
print(f'''The time for naive implementation is {times[0]}.''')
print(f'''The time for optimized implementation is {times[1]}.''')
| 323 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 3_84
SCREAMING_SNAKE_CASE : Union[str, Any] = 7
if "tiny" in model_name:
SCREAMING_SNAKE_CASE : List[str] = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2)
SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24)
elif "small" in model_name:
SCREAMING_SNAKE_CASE : Any = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24)
elif "base" in model_name:
SCREAMING_SNAKE_CASE : int = 1_28
SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32)
SCREAMING_SNAKE_CASE : Optional[Any] = 12
SCREAMING_SNAKE_CASE : str = 5_12
elif "large" in model_name:
SCREAMING_SNAKE_CASE : Tuple = 1_92
SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48)
SCREAMING_SNAKE_CASE : Tuple = 12
SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68
# set label information
SCREAMING_SNAKE_CASE : List[str] = 1_50
SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files"""
SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json"""
SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig(
embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
SCREAMING_SNAKE_CASE : List[str] = UperNetConfig(
backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , )
return config
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
# fmt: off
# stem
rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = val
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE : Dict = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE : Any = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :]
# fmt: on
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape
SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape
SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = x.shape[0]
SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = x.shape[0]
SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = {
"""upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""",
"""upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""",
"""upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""",
"""upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""",
}
SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name]
SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[
"""state_dict"""
]
for name, param in state_dict.items():
print(lowerCamelCase_ , param.shape )
SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ )
if "bn" in key:
SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" )
SCREAMING_SNAKE_CASE : Optional[Any] = val
# rename keys
SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ )
for src, dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
read_in_q_k_v(lowerCamelCase_ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ )
if "norm" in key:
SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# verify on image
SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" )
SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor()
SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = outputs.logits
print(logits.shape )
print("""First values of logits:""" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(lowerCamelCase_ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
__UpperCAmelCase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 323 | 1 |
'''simple docstring'''
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''align_text_model'''
def __init__( self : Tuple , lowerCamelCase_ : List[str]=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Union[str, Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : Optional[Any]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Union[str, Any]=5_12 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : List[str]=1e-12 , lowerCamelCase_ : List[str]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Optional[int]=True , **lowerCamelCase_ : Dict , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = vocab_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE : Any = num_hidden_layers
SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE : str = hidden_act
SCREAMING_SNAKE_CASE : Tuple = intermediate_size
SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Dict = max_position_embeddings
SCREAMING_SNAKE_CASE : Tuple = type_vocab_size
SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range
SCREAMING_SNAKE_CASE : str = layer_norm_eps
SCREAMING_SNAKE_CASE : Dict = position_embedding_type
SCREAMING_SNAKE_CASE : int = use_cache
SCREAMING_SNAKE_CASE : int = pad_token_id
@classmethod
def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ):
'''simple docstring'''
cls._set_token_in_kwargs(lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ )
# get the text config dict if we are loading from AlignConfig
if config_dict.get("""model_type""" ) == "align":
SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''align_vision_model'''
def __init__( self : int , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = num_channels
SCREAMING_SNAKE_CASE : Any = image_size
SCREAMING_SNAKE_CASE : List[str] = width_coefficient
SCREAMING_SNAKE_CASE : List[Any] = depth_coefficient
SCREAMING_SNAKE_CASE : List[Any] = depth_divisor
SCREAMING_SNAKE_CASE : str = kernel_sizes
SCREAMING_SNAKE_CASE : List[str] = in_channels
SCREAMING_SNAKE_CASE : Dict = out_channels
SCREAMING_SNAKE_CASE : Tuple = depthwise_padding
SCREAMING_SNAKE_CASE : int = strides
SCREAMING_SNAKE_CASE : Tuple = num_block_repeats
SCREAMING_SNAKE_CASE : Tuple = expand_ratios
SCREAMING_SNAKE_CASE : Any = squeeze_expansion_ratio
SCREAMING_SNAKE_CASE : int = hidden_act
SCREAMING_SNAKE_CASE : List[str] = hidden_dim
SCREAMING_SNAKE_CASE : Tuple = pooling_type
SCREAMING_SNAKE_CASE : Tuple = initializer_range
SCREAMING_SNAKE_CASE : int = batch_norm_eps
SCREAMING_SNAKE_CASE : str = batch_norm_momentum
SCREAMING_SNAKE_CASE : Optional[int] = drop_connect_rate
SCREAMING_SNAKE_CASE : Optional[int] = sum(lowerCamelCase_ ) * 4
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : str ):
'''simple docstring'''
cls._set_token_in_kwargs(lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get("""model_type""" ) == "align":
SCREAMING_SNAKE_CASE : int = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''align'''
SCREAMING_SNAKE_CASE__ = True
def __init__( self : Any , lowerCamelCase_ : Any=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Tuple=6_40 , lowerCamelCase_ : Tuple=1.0 , lowerCamelCase_ : List[str]=0.02 , **lowerCamelCase_ : Optional[Any] , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
if text_config is None:
SCREAMING_SNAKE_CASE : List[Any] = {}
logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" )
if vision_config is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" )
SCREAMING_SNAKE_CASE : int = AlignTextConfig(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = AlignVisionConfig(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = projection_dim
SCREAMING_SNAKE_CASE : Optional[Any] = temperature_init_value
SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , lowerCamelCase_ : AlignTextConfig , lowerCamelCase_ : AlignVisionConfig , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE : Tuple = self.text_config.to_dict()
SCREAMING_SNAKE_CASE : Any = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE : Any = self.__class__.model_type
return output
| 323 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class UpperCamelCase__ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Any = pad_token_id
SCREAMING_SNAKE_CASE : List[Any] = max_length
SCREAMING_SNAKE_CASE : Optional[int] = vocab
SCREAMING_SNAKE_CASE : List[Any] = merges
SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : GPTaTokenizer , *lowerCamelCase_ : str , **lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab()
return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
return cls(**lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.tf_tokenizer(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ )
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = pad_model_inputs(
lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 323 | 1 |
'''simple docstring'''
from __future__ import annotations
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if b == 0:
return (1, 0)
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : Optional[int] = extended_euclid(lowerCamelCase_ , a % b )
SCREAMING_SNAKE_CASE : str = a // b
return (y, x - k * y)
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : List[Any] = extended_euclid(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = na * na
SCREAMING_SNAKE_CASE : Union[str, Any] = ra * x * na + ra * y * na
return (n % m + m) % m
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : str = extended_euclid(lowerCamelCase_ , lowerCamelCase_ )
if b < 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = (b % n + n) % n
return b
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = invert_modulo(lowerCamelCase_ , lowerCamelCase_ ), invert_modulo(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = na * na
SCREAMING_SNAKE_CASE : List[Any] = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="""chinese_remainder_theorem""", verbose=True)
testmod(name="""chinese_remainder_theorem2""", verbose=True)
testmod(name="""invert_modulo""", verbose=True)
testmod(name="""extended_euclid""", verbose=True)
| 323 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths
SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train"""
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Union[str, Any] = streaming
SCREAMING_SNAKE_CASE : Optional[int] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
pass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : int = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Tuple = streaming
SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
pass
| 323 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = [
["""attention""", """attn"""],
["""encoder_attention""", """encoder_attn"""],
["""q_lin""", """q_proj"""],
["""k_lin""", """k_proj"""],
["""v_lin""", """v_proj"""],
["""out_lin""", """out_proj"""],
["""norm_embeddings""", """layernorm_embedding"""],
["""position_embeddings""", """embed_positions"""],
["""embeddings""", """embed_tokens"""],
["""ffn.lin""", """fc"""],
]
def __A ( lowerCamelCase_ ):
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(lowerCamelCase_ , lowerCamelCase_ )
if k.startswith("""encoder""" ):
SCREAMING_SNAKE_CASE : int = k.replace(""".attn""" , """.self_attn""" )
SCREAMING_SNAKE_CASE : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" )
SCREAMING_SNAKE_CASE : Optional[int] = k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
SCREAMING_SNAKE_CASE : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" )
SCREAMING_SNAKE_CASE : int = k.replace("""norm2""" , """encoder_attn_layer_norm""" )
SCREAMING_SNAKE_CASE : Any = k.replace("""norm3""" , """final_layer_norm""" )
return k
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
SCREAMING_SNAKE_CASE : int = sd.pop(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
SCREAMING_SNAKE_CASE : List[str] = v
__UpperCAmelCase = ["""START"""]
@torch.no_grad()
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = torch.load(lowerCamelCase_ , map_location="""cpu""" )
SCREAMING_SNAKE_CASE : Any = model["""model"""]
SCREAMING_SNAKE_CASE : Tuple = BlenderbotConfig.from_json_file(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = BlenderbotForConditionalGeneration(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = m.model.state_dict().keys()
SCREAMING_SNAKE_CASE : Any = []
SCREAMING_SNAKE_CASE : List[Any] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
SCREAMING_SNAKE_CASE : Optional[Any] = rename_state_dict_key(lowerCamelCase_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
SCREAMING_SNAKE_CASE : Tuple = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowerCamelCase_ )
m.model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ )
m.half()
m.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""")
parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""")
parser.add_argument(
"""--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use"""
)
__UpperCAmelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 323 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small"""
SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : str = """en_speaker_1"""
SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string"""
SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json"""
SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings"""
def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
SCREAMING_SNAKE_CASE : List[str] = 35
SCREAMING_SNAKE_CASE : List[Any] = 2
SCREAMING_SNAKE_CASE : int = 8
SCREAMING_SNAKE_CASE : Optional[int] = {
"""semantic_prompt""": np.ones(lowerCamelCase_ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string )
SCREAMING_SNAKE_CASE : Tuple = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 323 | 1 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def __A ( lowerCamelCase_ , lowerCamelCase_=False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''module.blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''module.blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''module.blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''module.blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''module.blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''module.blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''module.blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''module.blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''module.blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''module.blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
SCREAMING_SNAKE_CASE : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
SCREAMING_SNAKE_CASE : Tuple = """"""
else:
SCREAMING_SNAKE_CASE : Dict = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(f'''module.blocks.{i}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE : int = state_dict.pop(f'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE : Dict = in_proj_weight[
: config.hidden_size, :
]
SCREAMING_SNAKE_CASE : str = in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE : Any = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowerCamelCase_ , lowerCamelCase_ )
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(lowerCamelCase_ , lowerCamelCase_ )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = dct.pop(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = val
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = ViTMSNConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = 10_00
SCREAMING_SNAKE_CASE : Union[str, Any] = """datasets/huggingface/label-files"""
SCREAMING_SNAKE_CASE : Dict = """imagenet-1k-id2label.json"""
SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) , """r""" ) )
SCREAMING_SNAKE_CASE : Any = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Optional[int] = idalabel
SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
SCREAMING_SNAKE_CASE : Any = 3_84
SCREAMING_SNAKE_CASE : Union[str, Any] = 15_36
SCREAMING_SNAKE_CASE : Optional[int] = 6
elif "l16" in checkpoint_url:
SCREAMING_SNAKE_CASE : Optional[Any] = 10_24
SCREAMING_SNAKE_CASE : Any = 40_96
SCREAMING_SNAKE_CASE : Optional[Any] = 24
SCREAMING_SNAKE_CASE : List[str] = 16
SCREAMING_SNAKE_CASE : List[Any] = 0.1
elif "b4" in checkpoint_url:
SCREAMING_SNAKE_CASE : Optional[int] = 4
elif "l7" in checkpoint_url:
SCREAMING_SNAKE_CASE : Dict = 7
SCREAMING_SNAKE_CASE : Tuple = 10_24
SCREAMING_SNAKE_CASE : Optional[Any] = 40_96
SCREAMING_SNAKE_CASE : List[str] = 24
SCREAMING_SNAKE_CASE : Tuple = 16
SCREAMING_SNAKE_CASE : Optional[int] = 0.1
SCREAMING_SNAKE_CASE : Any = ViTMSNModel(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" )["""target_encoder"""]
SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor(size=config.image_size )
remove_projection_head(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = create_rename_keys(lowerCamelCase_ , base_model=lowerCamelCase_ )
for src, dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , base_model=lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
model.eval()
SCREAMING_SNAKE_CASE : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw )
SCREAMING_SNAKE_CASE : Union[str, Any] = ViTImageProcessor(
size=config.image_size , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
SCREAMING_SNAKE_CASE : List[str] = model(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCamelCase_ , atol=1E-4 )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
__UpperCAmelCase = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 323 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__UpperCAmelCase = logging.getLogger(__name__)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , lowerCamelCase_ )
# Set seed
set_seed(training_args.seed )
try:
SCREAMING_SNAKE_CASE : Dict = processors[data_args.task_name]()
SCREAMING_SNAKE_CASE : Optional[int] = processor.get_labels()
SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , )
# Get datasets
SCREAMING_SNAKE_CASE : Optional[Any] = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
SCREAMING_SNAKE_CASE : Dict = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(lowerCamelCase_ ) -> Dict:
SCREAMING_SNAKE_CASE : str = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(lowerCamelCase_ , p.label_ids )}
# Data collator
SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
SCREAMING_SNAKE_CASE : Any = Trainer(
model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate()
SCREAMING_SNAKE_CASE : str = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(lowerCamelCase_ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , lowerCamelCase_ , lowerCamelCase_ )
writer.write("""%s = %s\n""" % (key, value) )
results.update(lowerCamelCase_ )
return results
def __A ( lowerCamelCase_ ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 323 | 1 |
'''simple docstring'''
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = f'''{sampling_rate}'''
SCREAMING_SNAKE_CASE : Union[str, Any] = """1"""
SCREAMING_SNAKE_CASE : Optional[Any] = """f32le"""
SCREAMING_SNAKE_CASE : Union[str, Any] = [
"""ffmpeg""",
"""-i""",
"""pipe:0""",
"""-ac""",
ac,
"""-ar""",
ar,
"""-f""",
format_for_conversion,
"""-hide_banner""",
"""-loglevel""",
"""quiet""",
"""pipe:1""",
]
try:
with subprocess.Popen(lowerCamelCase_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
SCREAMING_SNAKE_CASE : List[Any] = ffmpeg_process.communicate(lowerCamelCase_ )
except FileNotFoundError as error:
raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error
SCREAMING_SNAKE_CASE : str = output_stream[0]
SCREAMING_SNAKE_CASE : int = np.frombuffer(lowerCamelCase_ , np.floataa )
if audio.shape[0] == 0:
raise ValueError("""Malformed soundfile""" )
return audio
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = "f32le" , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = f'''{sampling_rate}'''
SCREAMING_SNAKE_CASE : Optional[int] = """1"""
if format_for_conversion == "s16le":
SCREAMING_SNAKE_CASE : Tuple = 2
elif format_for_conversion == "f32le":
SCREAMING_SNAKE_CASE : Union[str, Any] = 4
else:
raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
SCREAMING_SNAKE_CASE : int = platform.system()
if system == "Linux":
SCREAMING_SNAKE_CASE : List[str] = """alsa"""
SCREAMING_SNAKE_CASE : int = """default"""
elif system == "Darwin":
SCREAMING_SNAKE_CASE : Union[str, Any] = """avfoundation"""
SCREAMING_SNAKE_CASE : str = """:0"""
elif system == "Windows":
SCREAMING_SNAKE_CASE : Optional[int] = """dshow"""
SCREAMING_SNAKE_CASE : int = """default"""
SCREAMING_SNAKE_CASE : List[Any] = [
"""ffmpeg""",
"""-f""",
format_,
"""-i""",
input_,
"""-ac""",
ac,
"""-ar""",
ar,
"""-f""",
format_for_conversion,
"""-fflags""",
"""nobuffer""",
"""-hide_banner""",
"""-loglevel""",
"""quiet""",
"""pipe:1""",
]
SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
SCREAMING_SNAKE_CASE : Any = _ffmpeg_stream(lowerCamelCase_ , lowerCamelCase_ )
for item in iterator:
yield item
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = "f32le" , ):
"""simple docstring"""
if stream_chunk_s is not None:
SCREAMING_SNAKE_CASE : Union[str, Any] = stream_chunk_s
else:
SCREAMING_SNAKE_CASE : List[Any] = chunk_length_s
SCREAMING_SNAKE_CASE : int = ffmpeg_microphone(lowerCamelCase_ , lowerCamelCase_ , format_for_conversion=lowerCamelCase_ )
if format_for_conversion == "s16le":
SCREAMING_SNAKE_CASE : Optional[Any] = np.intaa
SCREAMING_SNAKE_CASE : Dict = 2
elif format_for_conversion == "f32le":
SCREAMING_SNAKE_CASE : Optional[Any] = np.floataa
SCREAMING_SNAKE_CASE : str = 4
else:
raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
if stride_length_s is None:
SCREAMING_SNAKE_CASE : str = chunk_length_s / 6
SCREAMING_SNAKE_CASE : Union[str, Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(lowerCamelCase_ , (int, float) ):
SCREAMING_SNAKE_CASE : Tuple = [stride_length_s, stride_length_s]
SCREAMING_SNAKE_CASE : Optional[int] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
SCREAMING_SNAKE_CASE : Tuple = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
SCREAMING_SNAKE_CASE : Any = datetime.datetime.now()
SCREAMING_SNAKE_CASE : Optional[int] = datetime.timedelta(seconds=lowerCamelCase_ )
for item in chunk_bytes_iter(lowerCamelCase_ , lowerCamelCase_ , stride=(stride_left, stride_right) , stream=lowerCamelCase_ ):
# Put everything back in numpy scale
SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(item["""raw"""] , dtype=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = (
item["""stride"""][0] // size_of_sample,
item["""stride"""][1] // size_of_sample,
)
SCREAMING_SNAKE_CASE : Tuple = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = B""""""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for raw in iterator:
acc += raw
if stream and len(lowerCamelCase_ ) < chunk_len:
SCREAMING_SNAKE_CASE : Dict = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(lowerCamelCase_ ) >= chunk_len:
# We are flushing the accumulator
SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right)
SCREAMING_SNAKE_CASE : List[Any] = {"""raw""": acc[:chunk_len], """stride""": stride}
if stream:
SCREAMING_SNAKE_CASE : Optional[Any] = False
yield item
SCREAMING_SNAKE_CASE : Optional[int] = stride_left
SCREAMING_SNAKE_CASE : Tuple = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(lowerCamelCase_ ) > stride_left:
SCREAMING_SNAKE_CASE : Union[str, Any] = {"""raw""": acc, """stride""": (_stride_left, 0)}
if stream:
SCREAMING_SNAKE_CASE : Tuple = False
yield item
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = 2**24 # 16Mo
try:
with subprocess.Popen(lowerCamelCase_ , stdout=subprocess.PIPE , bufsize=lowerCamelCase_ ) as ffmpeg_process:
while True:
SCREAMING_SNAKE_CASE : Optional[int] = ffmpeg_process.stdout.read(lowerCamelCase_ )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
| 323 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block
SCREAMING_SNAKE_CASE : int = torch.nn.Convad(
lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] )
# down
SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0]
for i, down_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Any = output_channel
SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block(
lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
self.down_blocks.append(lowerCamelCase_ )
# mid
SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# out
SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU()
SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels
SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Tuple = False
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = x
SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[Any] ):
def custom_forward(*lowerCamelCase_ : List[str] ):
return module(*lowerCamelCase_ )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ )
else:
# down
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ )
# post-process
SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : int = layers_per_block
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad(
lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] )
SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None
# mid
SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# up
SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = output_channel
SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i]
SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : List[Any] = get_up_block(
lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , )
self.up_blocks.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = output_channel
# out
if norm_type == "spatial":
SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : Dict = nn.SiLU()
SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Dict = False
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = z
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[str] ):
def custom_forward(*lowerCamelCase_ : str ):
return module(*lowerCamelCase_ )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ )
# post-process
if latent_embeds is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Tuple = n_e
SCREAMING_SNAKE_CASE : int = vq_embed_dim
SCREAMING_SNAKE_CASE : Tuple = beta
SCREAMING_SNAKE_CASE : Union[str, Any] = legacy
SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
SCREAMING_SNAKE_CASE : Optional[Any] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0]
SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed
SCREAMING_SNAKE_CASE : Any = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
SCREAMING_SNAKE_CASE : Optional[int] = n_e
SCREAMING_SNAKE_CASE : Any = sane_index_shape
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long()
SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 )
SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1
if self.unknown_index == "random":
SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
SCREAMING_SNAKE_CASE : Any = self.unknown_index
return new.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
if self.re_embed > self.used.shape[0]: # extra token
SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero
SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ )
return back.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous()
SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 )
SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape )
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : List[str] = None
# compute loss for embedding
if not self.legacy:
SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach()
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
if self.remap is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ )
if shape is not None:
SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ )
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = parameters
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 )
SCREAMING_SNAKE_CASE : Dict = deterministic
SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar )
SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar )
if self.deterministic:
SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = randn_tensor(
self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype )
SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample
return x
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
return self.mean
| 323 | 1 |
'''simple docstring'''
from collections import defaultdict
from math import ceil, sqrt
def __A ( lowerCamelCase_ = 1_00_00_00 , lowerCamelCase_ = 10 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : defaultdict = defaultdict(lowerCamelCase_ )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
SCREAMING_SNAKE_CASE : Dict = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
SCREAMING_SNAKE_CASE : Optional[int] = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowerCamelCase_ , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 323 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL
@property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 4
SCREAMING_SNAKE_CASE : str = 3
SCREAMING_SNAKE_CASE : List[Any] = (32, 32)
SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input
return init_dict, inputs_dict
| 323 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
__UpperCAmelCase = logging.getLogger(__name__)
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
SCREAMING_SNAKE_CASE__ = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''The input training data file (a text file).'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
if self.train_file is not None:
SCREAMING_SNAKE_CASE : str = self.train_file.split(""".""" )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
SCREAMING_SNAKE_CASE : str = self.validation_file.split(""".""" )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
def __call__( self : str , lowerCamelCase_ : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = """label""" if """label""" in features[0].keys() else """labels"""
SCREAMING_SNAKE_CASE : Tuple = [feature.pop(lowerCamelCase_ ) for feature in features]
SCREAMING_SNAKE_CASE : Tuple = len(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = len(features[0]["""input_ids"""] )
SCREAMING_SNAKE_CASE : Tuple = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCamelCase_ )] for feature in features
]
SCREAMING_SNAKE_CASE : int = list(chain(*lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : str = self.tokenizer.pad(
lowerCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , )
# Un-flatten
SCREAMING_SNAKE_CASE : Optional[int] = {k: v.view(lowerCamelCase_ , lowerCamelCase_ , -1 ) for k, v in batch.items()}
# Add back labels
SCREAMING_SNAKE_CASE : str = torch.tensor(lowerCamelCase_ , dtype=torch.intaa )
return batch
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_swag""" , lowerCamelCase_ , lowerCamelCase_ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
SCREAMING_SNAKE_CASE : Optional[Any] = training_args.get_process_log_level()
logger.setLevel(lowerCamelCase_ )
datasets.utils.logging.set_verbosity(lowerCamelCase_ )
transformers.utils.logging.set_verbosity(lowerCamelCase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE : str = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE : List[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
SCREAMING_SNAKE_CASE : Tuple = {}
if data_args.train_file is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = data_args.train_file
if data_args.validation_file is not None:
SCREAMING_SNAKE_CASE : Any = data_args.validation_file
SCREAMING_SNAKE_CASE : Optional[Any] = data_args.train_file.split(""".""" )[-1]
SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset(
lowerCamelCase_ , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
SCREAMING_SNAKE_CASE : Optional[int] = load_dataset(
"""swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
SCREAMING_SNAKE_CASE : Union[str, Any] = [f'''ending{i}''' for i in range(4 )]
SCREAMING_SNAKE_CASE : Dict = """sent1"""
SCREAMING_SNAKE_CASE : List[Any] = """sent2"""
if data_args.max_seq_length is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.model_max_length
if max_seq_length > 10_24:
logger.warning(
"""The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"""
""" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"""
""" override this default with `--block_size xxx`.""" )
SCREAMING_SNAKE_CASE : Any = 10_24
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'''
f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' )
SCREAMING_SNAKE_CASE : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Dict = [[context] * 4 for context in examples[context_name]]
SCREAMING_SNAKE_CASE : List[Any] = examples[question_header_name]
SCREAMING_SNAKE_CASE : List[str] = [
[f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase_ )
]
# Flatten out
SCREAMING_SNAKE_CASE : Tuple = list(chain(*lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : int = list(chain(*lowerCamelCase_ ) )
# Tokenize
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(
lowerCamelCase_ , lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase_ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
SCREAMING_SNAKE_CASE : Optional[int] = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE : List[str] = min(len(lowerCamelCase_ ) , data_args.max_train_samples )
SCREAMING_SNAKE_CASE : List[str] = train_dataset.select(range(lowerCamelCase_ ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE : Optional[int] = train_dataset.map(
lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
SCREAMING_SNAKE_CASE : Any = min(len(lowerCamelCase_ ) , data_args.max_eval_samples )
SCREAMING_SNAKE_CASE : List[Any] = eval_dataset.select(range(lowerCamelCase_ ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE : List[str] = eval_dataset.map(
lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
SCREAMING_SNAKE_CASE : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = eval_predictions
SCREAMING_SNAKE_CASE : Any = np.argmax(lowerCamelCase_ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
SCREAMING_SNAKE_CASE : Tuple = Trainer(
model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE : int = None
if training_args.resume_from_checkpoint is not None:
SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
SCREAMING_SNAKE_CASE : List[str] = last_checkpoint
SCREAMING_SNAKE_CASE : Any = trainer.train(resume_from_checkpoint=lowerCamelCase_ )
trainer.save_model() # Saves the tokenizer too for easy upload
SCREAMING_SNAKE_CASE : Dict = train_result.metrics
SCREAMING_SNAKE_CASE : int = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase_ )
)
SCREAMING_SNAKE_CASE : str = min(lowerCamelCase_ , len(lowerCamelCase_ ) )
trainer.log_metrics("""train""" , lowerCamelCase_ )
trainer.save_metrics("""train""" , lowerCamelCase_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE : Optional[int] = trainer.evaluate()
SCREAMING_SNAKE_CASE : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = min(lowerCamelCase_ , len(lowerCamelCase_ ) )
trainer.log_metrics("""eval""" , lowerCamelCase_ )
trainer.save_metrics("""eval""" , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """multiple-choice""",
"""dataset_tags""": """swag""",
"""dataset_args""": """regular""",
"""dataset""": """SWAG""",
"""language""": """en""",
}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCamelCase_ )
else:
trainer.create_model_card(**lowerCamelCase_ )
def __A ( lowerCamelCase_ ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 323 |
'''simple docstring'''
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
pass
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ )
import datasets
SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
SCREAMING_SNAKE_CASE : Any = depth_estimator(
[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
] )
self.assertEqual(
[
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
] , lowerCamelCase_ , )
@require_tf
@unittest.skip("""Depth estimation is not implemented in TF""" )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large"""
SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 )
@require_torch
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
| 323 | 1 |
'''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = 3
SCREAMING_SNAKE_CASE : Any = 2_50
SCREAMING_SNAKE_CASE : Dict = ids_tensor((batch_size, length) , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones((batch_size, length) , device=lowerCamelCase_ , dtype=torch.float ) / length
return input_ids, scores
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_tensors(5 )
SCREAMING_SNAKE_CASE : Union[str, Any] = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self._get_tensors(9 )
self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = self._get_tensors(10 )
self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = MaxLengthCriteria(max_length=10 )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self._get_tensors(5 )
self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self._get_tensors(9 )
self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_tensors(10 )
self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self._get_tensors(5 )
self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self._get_tensors(9 )
self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self._get_tensors(10 )
self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Dict = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self._get_tensors(5 )
SCREAMING_SNAKE_CASE : Union[str, Any] = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[int] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(lowerCamelCase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
SCREAMING_SNAKE_CASE : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(lowerCamelCase_ ) , 1 )
| 323 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
SCREAMING_SNAKE_CASE : Optional[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : Any = num_channels
SCREAMING_SNAKE_CASE : str = image_size
SCREAMING_SNAKE_CASE : Dict = min_resolution
SCREAMING_SNAKE_CASE : List[str] = max_resolution
SCREAMING_SNAKE_CASE : str = do_resize
SCREAMING_SNAKE_CASE : Optional[Any] = size
SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize
SCREAMING_SNAKE_CASE : List[Any] = image_mean
SCREAMING_SNAKE_CASE : str = image_std
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self )
@property
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 323 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__UpperCAmelCase = {
"""configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"""LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LongT5EncoderModel""",
"""LongT5ForConditionalGeneration""",
"""LongT5Model""",
"""LongT5PreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"""FlaxLongT5ForConditionalGeneration""",
"""FlaxLongT5Model""",
"""FlaxLongT5PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 323 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
__UpperCAmelCase = {
"""config""": [
"""EXTERNAL_DATA_FORMAT_SIZE_LIMIT""",
"""OnnxConfig""",
"""OnnxConfigWithPast""",
"""OnnxSeq2SeqConfigWithPast""",
"""PatchingSpec""",
],
"""convert""": ["""export""", """validate_model_outputs"""],
"""features""": ["""FeaturesManager"""],
"""utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 323 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE : List[str] = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE : Optional[Any] = output.images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
SCREAMING_SNAKE_CASE : List[Any] = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE : Optional[Any] = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE : Tuple = output.images
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE : Any = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
sd_pipe.set_scheduler("""sample_dpmpp_2m""" )
SCREAMING_SNAKE_CASE : Optional[int] = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Any = output.images
SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
SCREAMING_SNAKE_CASE : Dict = np.array(
[0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 323 |
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 323 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase = {
"""configuration_autoformer""": [
"""AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AutoformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"""AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AutoformerForPrediction""",
"""AutoformerModel""",
"""AutoformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 323 |
'''simple docstring'''
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number | (1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number & ~(1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number ^ (1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return ((number >> position) & 1) == 1
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 | 1 |
'''simple docstring'''
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
__UpperCAmelCase = """bart"""
__UpperCAmelCase = True
@st.cache(allow_output_mutation=lowerCamelCase_ )
def __A ( ):
"""simple docstring"""
if LOAD_DENSE_INDEX:
SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
SCREAMING_SNAKE_CASE : List[Any] = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
SCREAMING_SNAKE_CASE : Tuple = qar_model.eval()
else:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = (None, None)
if MODEL_TYPE == "bart":
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
SCREAMING_SNAKE_CASE : List[str] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
SCREAMING_SNAKE_CASE : Tuple = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
SCREAMING_SNAKE_CASE : str = sas_model.eval()
else:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = make_qa_sas_model(
model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=lowerCamelCase_ )
def __A ( ):
"""simple docstring"""
if LOAD_DENSE_INDEX:
SCREAMING_SNAKE_CASE : int = faiss.StandardGpuResources()
SCREAMING_SNAKE_CASE : str = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""]
SCREAMING_SNAKE_CASE : Tuple = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 1_28) , )
SCREAMING_SNAKE_CASE : Union[str, Any] = faiss.IndexFlatIP(1_28 )
SCREAMING_SNAKE_CASE : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ )
wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU
else:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = (None, None)
SCREAMING_SNAKE_CASE : List[Any] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=lowerCamelCase_ )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" )
SCREAMING_SNAKE_CASE : Optional[Any] = elia["""train_eli5"""]
SCREAMING_SNAKE_CASE : Any = np.memmap(
"""eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 1_28) )
SCREAMING_SNAKE_CASE : List[Any] = faiss.IndexFlatIP(1_28 )
eli5_train_q_index.add(lowerCamelCase_ )
return (elia_train, eli5_train_q_index)
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = load_indexes()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = load_models()
__UpperCAmelCase , __UpperCAmelCase = load_train_data()
def __A ( lowerCamelCase_ , lowerCamelCase_=10 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = [elia_train[int(lowerCamelCase_ )] for i in I[0]]
return nn_examples
def __A ( lowerCamelCase_ , lowerCamelCase_="wiki40b" , lowerCamelCase_="dense" , lowerCamelCase_=10 ):
"""simple docstring"""
if source == "none":
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = query_qa_dense_index(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = query_es_index(
lowerCamelCase_ , lowerCamelCase_ , index_name="""english_wiki40b_snippets_100w""" , n_results=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : str = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
SCREAMING_SNAKE_CASE : List[Any] = """question: {} context: {}""".format(lowerCamelCase_ , lowerCamelCase_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda lowerCamelCase_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None),
} )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_=2_56 , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=0.95 , lowerCamelCase_=0.8 ):
"""simple docstring"""
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = qa_sas_generate(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=10_24 , device="""cuda:0""" , )[0]
return (answer, support_list)
st.title("""Long Form Question Answering with ELI5""")
# Start sidebar
__UpperCAmelCase = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"""
__UpperCAmelCase = """
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class=\"img-container\"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
""" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
__UpperCAmelCase = """
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
"""
st.sidebar.markdown(description, unsafe_allow_html=True)
__UpperCAmelCase = [
"""Answer the question""",
"""View the retrieved document only""",
"""View the most similar ELI5 question and answer""",
"""Show me everything, please!""",
]
__UpperCAmelCase = st.sidebar.checkbox("""Demo options""")
if demo_options:
__UpperCAmelCase = st.sidebar.selectbox(
"""""",
action_list,
index=3,
)
__UpperCAmelCase = action_list.index(action_st)
__UpperCAmelCase = st.sidebar.selectbox(
"""""",
["""Show full text of passages""", """Show passage section titles"""],
index=0,
)
__UpperCAmelCase = show_type == """Show full text of passages"""
else:
__UpperCAmelCase = 3
__UpperCAmelCase = True
__UpperCAmelCase = st.sidebar.checkbox("""Retrieval options""")
if retrieval_options:
__UpperCAmelCase = """
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
"""
st.sidebar.markdown(retriever_info)
__UpperCAmelCase = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""])
__UpperCAmelCase = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""])
else:
__UpperCAmelCase = """wiki40b"""
__UpperCAmelCase = """dense"""
__UpperCAmelCase = """beam"""
__UpperCAmelCase = 2
__UpperCAmelCase = 64
__UpperCAmelCase = 256
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = st.sidebar.checkbox("""Generation options""")
if generate_options:
__UpperCAmelCase = """
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder's output probabilities.
"""
st.sidebar.markdown(generate_info)
__UpperCAmelCase = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""])
__UpperCAmelCase = st.sidebar.slider(
"""Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
__UpperCAmelCase = st.sidebar.slider(
"""Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
__UpperCAmelCase = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
__UpperCAmelCase = st.sidebar.slider(
"""Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
__UpperCAmelCase = st.sidebar.slider(
"""Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
__UpperCAmelCase = None
# start main text
__UpperCAmelCase = [
"""<MY QUESTION>""",
"""How do people make chocolate?""",
"""Why do we get a fever when we are sick?""",
"""How can different animals perceive different colors?""",
"""What is natural language processing?""",
"""What's the best way to treat a sunburn?""",
"""What exactly are vitamins ?""",
"""How does nuclear energy provide electricity?""",
"""What's the difference between viruses and bacteria?""",
"""Why are flutes classified as woodwinds when most of them are made out of metal ?""",
"""Why do people like drinking coffee even though it tastes so bad?""",
"""What happens when wine ages? How does it make the wine taste better?""",
"""If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""",
"""How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""",
"""How does New Zealand have so many large bird predators?""",
]
__UpperCAmelCase = st.selectbox(
"""What would you like to ask? ---- select <MY QUESTION> to enter a new query""",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
__UpperCAmelCase = st.text_input("""Enter your question here:""", """""")
else:
__UpperCAmelCase = question_s
if st.button("""Show me!"""):
if action in [0, 1, 3]:
if index_type == "mixed":
__UpperCAmelCase , __UpperCAmelCase = make_support(question, source=wiki_source, method="""dense""", n_results=10)
__UpperCAmelCase , __UpperCAmelCase = make_support(question, source=wiki_source, method="""sparse""", n_results=10)
__UpperCAmelCase = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
__UpperCAmelCase = support_list[:10]
__UpperCAmelCase = """<P> """ + """ <P> """.join([res[-1] for res in support_list])
else:
__UpperCAmelCase , __UpperCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
__UpperCAmelCase , __UpperCAmelCase = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == """sampled"""),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("""### The model generated answer is:""")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""")
for i, res in enumerate(support_list):
__UpperCAmelCase = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_"""))
__UpperCAmelCase = res[1].strip()
if sec_titles == "":
__UpperCAmelCase = """[{}]({})""".format(res[0], wiki_url)
else:
__UpperCAmelCase = sec_titles.split(""" & """)
__UpperCAmelCase = """ & """.join(
["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list]
)
st.markdown(
"""{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"""> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True
)
if action in [2, 3]:
__UpperCAmelCase = find_nearest_training(question)
__UpperCAmelCase = nn_train_list[0]
st.markdown(
"""--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""])
)
__UpperCAmelCase = [
"""{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""]))
for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""]))
if i == 0 or sc > 2
]
st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st)))
__UpperCAmelCase = """
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
"""
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 323 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[int] = batch_size
SCREAMING_SNAKE_CASE : Any = seq_length
SCREAMING_SNAKE_CASE : List[str] = is_training
SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask
SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids
SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE : str = vocab_size
SCREAMING_SNAKE_CASE : str = hidden_size
SCREAMING_SNAKE_CASE : List[Any] = rotary_dim
SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Tuple = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = vocab_size - 1
SCREAMING_SNAKE_CASE : str = vocab_size - 1
SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : List[str] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs
SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = 20
SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
SCREAMING_SNAKE_CASE : Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
SCREAMING_SNAKE_CASE : str = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 20
SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
SCREAMING_SNAKE_CASE : Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
SCREAMING_SNAKE_CASE : Dict = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
@tooslow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id
SCREAMING_SNAKE_CASE : str = jax.jit(model.generate )
SCREAMING_SNAKE_CASE : str = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
@is_pt_flax_cross_test
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape
SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Union[str, Any] = 1
SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = fx_state
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple()
SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape
SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : Tuple = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple()
SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 323 | 1 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __A ( lowerCamelCase_ ):
"""simple docstring"""
print("""Loading config file...""" )
def flatten_yaml_as_dict(lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_="." ):
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for k, v in d.items():
SCREAMING_SNAKE_CASE : List[str] = parent_key + sep + k if parent_key else k
if isinstance(lowerCamelCase_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(lowerCamelCase_ , lowerCamelCase_ , sep=lowerCamelCase_ ).items() )
else:
items.append((new_key, v) )
return dict(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = argparse.Namespace()
with open(lowerCamelCase_ , """r""" ) as yaml_file:
try:
SCREAMING_SNAKE_CASE : Dict = yaml.load(lowerCamelCase_ , Loader=yaml.FullLoader )
SCREAMING_SNAKE_CASE : str = flatten_yaml_as_dict(lowerCamelCase_ )
for k, v in flat_cfg.items():
setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(lowerCamelCase_ , str(lowerCamelCase_ ) ) )
return config
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = MobileViTVaConfig()
SCREAMING_SNAKE_CASE : List[str] = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
SCREAMING_SNAKE_CASE : Dict = 10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
SCREAMING_SNAKE_CASE : Any = 3_84
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = 2_56
SCREAMING_SNAKE_CASE : Union[str, Any] = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
SCREAMING_SNAKE_CASE : Union[str, Any] = 2_10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
SCREAMING_SNAKE_CASE : Dict = 3_84
else:
SCREAMING_SNAKE_CASE : Any = 2_56
SCREAMING_SNAKE_CASE : Dict = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
SCREAMING_SNAKE_CASE : Optional[int] = 1_51
SCREAMING_SNAKE_CASE : int = 5_12
SCREAMING_SNAKE_CASE : Union[str, Any] = """ade20k-id2label.json"""
SCREAMING_SNAKE_CASE : Dict = True
elif task_name.startswith("""voc_""" ):
SCREAMING_SNAKE_CASE : str = 21
SCREAMING_SNAKE_CASE : int = 5_12
SCREAMING_SNAKE_CASE : List[str] = """pascal-voc-id2label.json"""
SCREAMING_SNAKE_CASE : Any = True
# orig_config
SCREAMING_SNAKE_CASE : Union[str, Any] = load_orig_config_file(lowerCamelCase_ )
assert getattr(lowerCamelCase_ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model"
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(lowerCamelCase_ , """model.classification.mitv2.width_multiplier""" , 1.0 )
assert (
getattr(lowerCamelCase_ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCamelCase_ , """model.classification.activation.name""" , """swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCamelCase_ , """model.segmentation.output_stride""" , 16 )
if "_deeplabv3" in task_name:
SCREAMING_SNAKE_CASE : Optional[Any] = getattr(lowerCamelCase_ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] )
SCREAMING_SNAKE_CASE : str = getattr(lowerCamelCase_ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 )
SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowerCamelCase_ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 )
# id2label
SCREAMING_SNAKE_CASE : str = """huggingface/label-files"""
SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE : Tuple = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Tuple = idalabel
SCREAMING_SNAKE_CASE : Any = {v: k for k, v in idalabel.items()}
return config
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = dct.pop(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = val
def __A ( lowerCamelCase_ , lowerCamelCase_=False ):
"""simple docstring"""
if base_model:
SCREAMING_SNAKE_CASE : int = """"""
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = """mobilevitv2."""
SCREAMING_SNAKE_CASE : List[Any] = []
for k in state_dict.keys():
if k[:8] == "encoder.":
SCREAMING_SNAKE_CASE : str = k[8:]
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = k
if ".block." in k:
SCREAMING_SNAKE_CASE : List[Any] = k_new.replace(""".block.""" , """.""" )
if ".conv." in k:
SCREAMING_SNAKE_CASE : Any = k_new.replace(""".conv.""" , """.convolution.""" )
if ".norm." in k:
SCREAMING_SNAKE_CASE : str = k_new.replace(""".norm.""" , """.normalization.""" )
if "conv_1." in k:
SCREAMING_SNAKE_CASE : Any = k_new.replace("""conv_1.""" , f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
SCREAMING_SNAKE_CASE : List[Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
SCREAMING_SNAKE_CASE : Tuple = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" )
if ".red_1x1." in k:
SCREAMING_SNAKE_CASE : Tuple = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
SCREAMING_SNAKE_CASE : str = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
SCREAMING_SNAKE_CASE : Optional[int] = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
SCREAMING_SNAKE_CASE : int = [0, 1]
elif i == 4:
SCREAMING_SNAKE_CASE : Tuple = [0, 1, 2, 3]
elif i == 5:
SCREAMING_SNAKE_CASE : Optional[int] = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
SCREAMING_SNAKE_CASE : Any = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
SCREAMING_SNAKE_CASE : Tuple = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
SCREAMING_SNAKE_CASE : Optional[int] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" )
if "pre_norm_attn.1." in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" )
if "pre_norm_ffn.0." in k:
SCREAMING_SNAKE_CASE : List[str] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" )
if "pre_norm_ffn.1." in k:
SCREAMING_SNAKE_CASE : Optional[int] = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
SCREAMING_SNAKE_CASE : str = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" )
if "classifier.1." in k:
SCREAMING_SNAKE_CASE : Union[str, Any] = k_new.replace("""classifier.1.""" , """classifier.""" )
if "seg_head." in k:
SCREAMING_SNAKE_CASE : Optional[int] = k_new.replace("""seg_head.""" , """segmentation_head.""" )
if ".aspp_layer." in k:
SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in k:
SCREAMING_SNAKE_CASE : Union[str, Any] = k_new.replace(""".aspp_pool.""" , """.""" )
rename_keys.append((k, k_new) )
return rename_keys
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(lowerCamelCase_ )
for k in keys_to_ignore:
state_dict.pop(lowerCamelCase_ , lowerCamelCase_ )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw )
return im
@torch.no_grad()
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = get_mobilevitva_config(lowerCamelCase_ , lowerCamelCase_ )
# load original state_dict
SCREAMING_SNAKE_CASE : Any = torch.load(lowerCamelCase_ , map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
SCREAMING_SNAKE_CASE : int = MobileViTVaForSemanticSegmentation(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : List[Any] = False
else:
SCREAMING_SNAKE_CASE : int = MobileViTVaForImageClassification(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : Union[str, Any] = False
# remove and rename some keys of load the original model
SCREAMING_SNAKE_CASE : List[str] = checkpoint
remove_unused_keys(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = create_rename_keys(lowerCamelCase_ , base_model=lowerCamelCase_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# load modified state_dict
model.load_state_dict(lowerCamelCase_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
SCREAMING_SNAKE_CASE : Any = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCamelCase_ )
# verify classification model
if task_name.startswith("""imagenet""" ):
SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits
SCREAMING_SNAKE_CASE : Dict = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] )
assert torch.allclose(logits[0, :3] , lowerCamelCase_ , atol=1E-4 )
Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""",
default="""imagenet1k_256""",
type=str,
help=(
"""Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """
"""
Classification (ImageNet-1k)
- MobileViTV2 (256x256) : imagenet1k_256
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
imagenet21k_to_1k_256
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
ImageNet-1k 384x384) : imagenet21k_to_1k_384
Segmentation
- ADE20K Dataset : ade20k_deeplabv3
- Pascal VOC 2012 Dataset: voc_deeplabv3
"""
),
choices=[
"""imagenet1k_256""",
"""imagenet1k_384""",
"""imagenet21k_to_1k_256""",
"""imagenet21k_to_1k_384""",
"""ade20k_deeplabv3""",
"""voc_deeplabv3""",
],
)
parser.add_argument(
"""--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file)."""
)
parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""")
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
__UpperCAmelCase = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 323 |
'''simple docstring'''
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias''']
@register_to_config
def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'''
f''' `n_embd`: {n_embd} are not equal.''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim
SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim
SCREAMING_SNAKE_CASE : Tuple = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
SCREAMING_SNAKE_CASE : str = (
nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
SCREAMING_SNAKE_CASE : Any = GPTaConfig(
vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 )
SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ):
'''simple docstring'''
return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ )
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
return self.encode_prefix(lowerCamelCase_ )
@torch.no_grad()
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 )
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : Tuple = []
for feature in features:
SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature
# Only support beam search for now
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam(
input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = eos_token_id
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : List[Any] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool )
if input_embeds is not None:
SCREAMING_SNAKE_CASE : Dict = input_embeds
else:
SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ )
for i in range(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = outputs.logits
SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log()
if scores is None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
SCREAMING_SNAKE_CASE : List[Any] = next_tokens
else:
SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] )
SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 )
else:
SCREAMING_SNAKE_CASE : Tuple = -float(np.inf )
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None]
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1]
SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source]
SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1]
SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 )
SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source]
SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source]
SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths
SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source]
SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 )
SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze()
if is_stopped.all():
break
SCREAMING_SNAKE_CASE : int = scores / seq_lengths
SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ )
# tokens tensors are already padded to max_seq_length
SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order]
SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 323 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : Dict ):
'''simple docstring'''
warnings.warn(
"""The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use BeitImageProcessor instead.""" , lowerCamelCase_ , )
super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
| 323 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git_vision_model'''
def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE : int = num_attention_heads
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Optional[Any] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : List[str] = initializer_range
SCREAMING_SNAKE_CASE : str = attention_dropout
SCREAMING_SNAKE_CASE : Any = layer_norm_eps
SCREAMING_SNAKE_CASE : List[str] = hidden_act
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ):
'''simple docstring'''
cls._set_token_in_kwargs(lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git'''
def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
if vision_config is None:
SCREAMING_SNAKE_CASE : Any = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = vocab_size
SCREAMING_SNAKE_CASE : Tuple = hidden_size
SCREAMING_SNAKE_CASE : int = num_hidden_layers
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : str = hidden_act
SCREAMING_SNAKE_CASE : Dict = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type
SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings
SCREAMING_SNAKE_CASE : int = num_image_with_embedding
SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id
SCREAMING_SNAKE_CASE : str = eos_token_id
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE : Any = self.__class__.model_type
return output
| 323 | 1 |
'''simple docstring'''
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"""pipelines_utils""",
"""0.22.0""",
"""Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""",
standard_warn=False,
stacklevel=3,
)
| 323 |
'''simple docstring'''
from manim import *
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 )
SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Tuple = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : List[Any] = Text("""CPU""" , font_size=24 )
SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[Any] = Text("""GPU""" , font_size=24 )
SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
gpu.move_to([-1, -1, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = Text("""Model""" , font_size=24 )
SCREAMING_SNAKE_CASE : List[str] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
model.move_to([3, -1.0, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = []
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for i, rect in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = fill.copy().set_fill(lowerCamelCase_ , opacity=0.8 )
target.move_to(lowerCamelCase_ )
model_arr.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(lowerCamelCase_ )
self.add(*lowerCamelCase_ , *lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Dict = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=24 )
SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
disk.move_to([-4, -1.25, 0] )
self.add(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE : Optional[Any] = MarkupText(
f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = MarkupText(
f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = MarkupText(
f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 )
input.set_fill(lowerCamelCase_ , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , lowerCamelCase_ , buff=0.5 )
self.play(Write(lowerCamelCase_ ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=lowerCamelCase_ , buff=0.02 )
self.play(MoveToTarget(lowerCamelCase_ ) )
self.play(FadeOut(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : int = Arrow(start=lowerCamelCase_ , end=lowerCamelCase_ , color=lowerCamelCase_ , buff=0.5 )
a.next_to(model_arr[0].get_left() , lowerCamelCase_ , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
SCREAMING_SNAKE_CASE : Optional[int] = MarkupText(
f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ , run_time=3 ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02}
self.play(
Write(lowerCamelCase_ ) , Circumscribe(model_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
SCREAMING_SNAKE_CASE : Optional[int] = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase_ , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
SCREAMING_SNAKE_CASE : Any = AnimationGroup(
FadeOut(lowerCamelCase_ , run_time=0.5 ) , MoveToTarget(lowerCamelCase_ , run_time=0.5 ) , FadeIn(lowerCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 )
self.play(lowerCamelCase_ )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
SCREAMING_SNAKE_CASE : Optional[Any] = 0.7
self.play(
Circumscribe(model_arr[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = a_c
SCREAMING_SNAKE_CASE : Optional[Any] = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(lowerCamelCase_ ) , FadeOut(lowerCamelCase_ , run_time=0.5 ) , )
SCREAMING_SNAKE_CASE : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ , run_time=3 ) , MoveToTarget(lowerCamelCase_ ) )
self.wait()
| 323 | 1 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,)
SCREAMING_SNAKE_CASE__ = 10
def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = {
"""num_train_timesteps""": 2_01,
"""sigma_min""": 0.002,
"""sigma_max""": 80.0,
}
config.update(**lowerCamelCase_ )
return config
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 10
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ )
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0]
SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1]
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample
SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = 1
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = scheduler.timesteps
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(lowerCamelCase_ ):
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 192.7_614 ) < 1e-2
assert abs(result_mean.item() - 0.2_510 ) < 1e-3
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0]
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Dict = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 347.6_357 ) < 1e-2
assert abs(result_mean.item() - 0.4_527 ) < 1e-3
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0]
with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0]
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ )
with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
| 323 |
'''simple docstring'''
from __future__ import annotations
__UpperCAmelCase = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = graph
# mapping node to its parent in resulting breadth first tree
SCREAMING_SNAKE_CASE : dict[str, str | None] = {}
SCREAMING_SNAKE_CASE : List[str] = source_vertex
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex}
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue
while queue:
SCREAMING_SNAKE_CASE : str = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = vertex
queue.append(lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ )
if target_vertex_parent is None:
SCREAMING_SNAKE_CASE : Tuple = (
f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}'''
)
raise ValueError(lowerCamelCase_ )
return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}'''
if __name__ == "__main__":
__UpperCAmelCase = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 323 | 1 |
'''simple docstring'''
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
__UpperCAmelCase = get_tests_dir("""fixtures/dummy-config.json""")
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = 0
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained("""bert-base-uncased""" )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = AutoConfig.for_model("""roberta""" )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
SCREAMING_SNAKE_CASE : Tuple = os.path.join(lowerCamelCase_ , """fake-roberta""" )
os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ )
with open(os.path.join(lowerCamelCase_ , """config.json""" ) , """w""" ) as f:
f.write(json.dumps({} ) )
SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ )
self.assertEqual(type(lowerCamelCase_ ) , lowerCamelCase_ )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
try:
AutoConfig.register("""custom""" , lowerCamelCase_ )
# Wrong model type will raise an error
with self.assertRaises(lowerCamelCase_ ):
AutoConfig.register("""model""" , lowerCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase_ ):
AutoConfig.register("""bert""" , lowerCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
SCREAMING_SNAKE_CASE : List[Any] = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained("""bert-base""" )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase_ , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ):
SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
with self.assertRaises(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(config.__class__.__name__ , """NewModelConfig""" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ )
self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''new-model'''
try:
AutoConfig.register("""new-model""" , lowerCamelCase_ )
# If remote code is not set, the default is to use local
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" )
self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" )
# If remote code is disabled, we load the local one.
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" )
# If remote is enabled, we load from the Hub
SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(config.__class__.__name__ , """NewModelConfig""" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
| 323 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__UpperCAmelCase = 0
__UpperCAmelCase = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__UpperCAmelCase = tuple[int, int]
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Node | None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = pos_x
SCREAMING_SNAKE_CASE : Any = pos_y
SCREAMING_SNAKE_CASE : Optional[int] = (pos_y, pos_x)
SCREAMING_SNAKE_CASE : Tuple = goal_x
SCREAMING_SNAKE_CASE : List[str] = goal_y
SCREAMING_SNAKE_CASE : Optional[Any] = g_cost
SCREAMING_SNAKE_CASE : Tuple = parent
SCREAMING_SNAKE_CASE : int = self.calculate_heuristic()
SCREAMING_SNAKE_CASE : Tuple = self.g_cost + self.h_cost
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.pos_x - self.goal_x
SCREAMING_SNAKE_CASE : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowerCamelCase_ ) + abs(lowerCamelCase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : Optional[Any] , lowerCamelCase_ : Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = [self.start]
SCREAMING_SNAKE_CASE : list[Node] = []
SCREAMING_SNAKE_CASE : str = False
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
SCREAMING_SNAKE_CASE : Optional[Any] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowerCamelCase_ )
self.closed_nodes.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = self.get_successors(lowerCamelCase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowerCamelCase_ )
else:
# retrieve the best current path
SCREAMING_SNAKE_CASE : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowerCamelCase_ )
else:
self.open_nodes.append(lowerCamelCase_ )
return [self.start.pos]
def lowerCamelCase_ ( self : int , lowerCamelCase_ : Node ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = []
for action in delta:
SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1]
SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase_ , ) )
return successors
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = node
SCREAMING_SNAKE_CASE : List[str] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
SCREAMING_SNAKE_CASE : Optional[Any] = current_node.parent
path.reverse()
return path
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = AStar(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = AStar(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = False
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
SCREAMING_SNAKE_CASE : List[str] = self.fwd_astar.open_nodes.pop(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowerCamelCase_ , lowerCamelCase_ )
self.fwd_astar.closed_nodes.append(lowerCamelCase_ )
self.bwd_astar.closed_nodes.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = current_bwd_node
SCREAMING_SNAKE_CASE : Any = current_fwd_node
SCREAMING_SNAKE_CASE : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowerCamelCase_ )
else:
# retrieve the best current path
SCREAMING_SNAKE_CASE : int = astar.open_nodes.pop(
astar.open_nodes.index(lowerCamelCase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowerCamelCase_ )
else:
astar.open_nodes.append(lowerCamelCase_ )
return [self.fwd_astar.start.pos]
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Node , lowerCamelCase_ : Node ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_astar.retrace_path(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.bwd_astar.retrace_path(lowerCamelCase_ )
bwd_path.pop()
bwd_path.reverse()
SCREAMING_SNAKE_CASE : str = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__UpperCAmelCase = (0, 0)
__UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__UpperCAmelCase = time.time()
__UpperCAmelCase = AStar(init, goal)
__UpperCAmelCase = a_star.search()
__UpperCAmelCase = time.time() - start_time
print(f'''AStar execution time = {end_time:f} seconds''')
__UpperCAmelCase = time.time()
__UpperCAmelCase = BidirectionalAStar(init, goal)
__UpperCAmelCase = time.time() - bd_start_time
print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 323 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
__UpperCAmelCase = 250004
__UpperCAmelCase = 250020
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MBartTokenizer
SCREAMING_SNAKE_CASE__ = MBartTokenizerFast
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE : List[str] = MBartTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = MBartTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCamelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ )
self.assertListEqual(
lowerCamelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase_ )
self.assertListEqual(
lowerCamelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
SCREAMING_SNAKE_CASE : List[str] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : Any = tokenizer_r.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
SCREAMING_SNAKE_CASE : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.from_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCamelCase_ )
# Save tokenizer rust, legacy_format=True
SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = tokenizer_p.save_pretrained(lowerCamelCase_ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.from_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) )
shutil.rmtree(lowerCamelCase_ )
# Save tokenizer rust, legacy_format=False
SCREAMING_SNAKE_CASE : str = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : Any = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.from_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) )
shutil.rmtree(lowerCamelCase_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''facebook/mbart-large-en-ro'''
SCREAMING_SNAKE_CASE__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
SCREAMING_SNAKE_CASE__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
SCREAMING_SNAKE_CASE__ = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE]
@classmethod
def lowerCamelCase_ ( cls : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : MBartTokenizer = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
SCREAMING_SNAKE_CASE : Optional[Any] = 1
return cls
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids )
SCREAMING_SNAKE_CASE : List[Any] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = 10
SCREAMING_SNAKE_CASE : int = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCamelCase_ )
self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : Any = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = MBartTokenizer.from_pretrained(lowerCamelCase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ )
@require_torch
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE : Optional[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
SCREAMING_SNAKE_CASE : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(
text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE : str = targets["""input_ids"""]
SCREAMING_SNAKE_CASE : Optional[Any] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(lowerCamelCase_ ) , {
# A, test, EOS, en_XX
"""input_ids""": [[62, 30_34, 2, 25_00_04]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 25_00_01,
} , )
| 323 |
'''simple docstring'''
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''efficientnet'''
def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : int = width_coefficient
SCREAMING_SNAKE_CASE : List[str] = depth_coefficient
SCREAMING_SNAKE_CASE : Optional[Any] = depth_divisor
SCREAMING_SNAKE_CASE : List[str] = kernel_sizes
SCREAMING_SNAKE_CASE : Dict = in_channels
SCREAMING_SNAKE_CASE : List[str] = out_channels
SCREAMING_SNAKE_CASE : Any = depthwise_padding
SCREAMING_SNAKE_CASE : Dict = strides
SCREAMING_SNAKE_CASE : Optional[Any] = num_block_repeats
SCREAMING_SNAKE_CASE : Any = expand_ratios
SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio
SCREAMING_SNAKE_CASE : List[str] = hidden_act
SCREAMING_SNAKE_CASE : Dict = hidden_dim
SCREAMING_SNAKE_CASE : List[str] = pooling_type
SCREAMING_SNAKE_CASE : List[Any] = initializer_range
SCREAMING_SNAKE_CASE : Any = batch_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum
SCREAMING_SNAKE_CASE : Dict = dropout_rate
SCREAMING_SNAKE_CASE : int = drop_connect_rate
SCREAMING_SNAKE_CASE : Optional[Any] = sum(lowerCamelCase_ ) * 4
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' )
@property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return 1e-5
| 323 | 1 |
'''simple docstring'''
# flake8: noqa
# Lint as: python3
__UpperCAmelCase = [
"""VerificationMode""",
"""Version""",
"""disable_progress_bar""",
"""enable_progress_bar""",
"""is_progress_bar_enabled""",
"""experimental""",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 323 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
__UpperCAmelCase = logging.get_logger(__name__)
@add_end_docstrings(lowercase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = {}
SCREAMING_SNAKE_CASE : List[Any] = {}
if prompt is not None:
SCREAMING_SNAKE_CASE : List[Any] = prompt
if generate_kwargs is not None:
SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ):
'''simple docstring'''
return super().__call__(lowerCamelCase_ , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ )
if prompt is not None:
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type
if model_type == "git":
SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids
SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework )
model_inputs.update(lowerCamelCase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
SCREAMING_SNAKE_CASE : Optional[Any] = None
return model_inputs
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ):
'''simple docstring'''
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
SCREAMING_SNAKE_CASE : List[str] = None
if generate_kwargs is None:
SCREAMING_SNAKE_CASE : int = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name )
SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ )
return model_outputs
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for output_ids in model_outputs:
SCREAMING_SNAKE_CASE : List[Any] = {
"""generated_text""": self.tokenizer.decode(
lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , )
}
records.append(lowerCamelCase_ )
return records
| 323 | 1 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__UpperCAmelCase = """pt"""
elif is_tf_available():
__UpperCAmelCase = """tf"""
else:
__UpperCAmelCase = """jax"""
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = PerceiverTokenizer
SCREAMING_SNAKE_CASE__ = False
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : str = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" )
def lowerCamelCase_ ( self : Optional[int] , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int=False , lowerCamelCase_ : Tuple=20 , lowerCamelCase_ : List[Any]=5 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = []
for i in range(len(lowerCamelCase_ ) ):
try:
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
SCREAMING_SNAKE_CASE : Optional[int] = list(filter(lambda lowerCamelCase_ : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase_ ) , lowerCamelCase_ ) )
if max_length is not None and len(lowerCamelCase_ ) > max_length:
SCREAMING_SNAKE_CASE : Tuple = toks[:max_length]
if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0:
while len(lowerCamelCase_ ) < min_length:
SCREAMING_SNAKE_CASE : Dict = toks + toks
# toks_str = [t[1] for t in toks]
SCREAMING_SNAKE_CASE : Optional[Any] = [t[0] for t in toks]
# Ensure consistency
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ )
if " " not in output_txt and len(lowerCamelCase_ ) > 1:
SCREAMING_SNAKE_CASE : Union[str, Any] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase_ )
+ """ """
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase_ )
)
if with_prefix_space:
SCREAMING_SNAKE_CASE : Optional[int] = """ """ + output_txt
SCREAMING_SNAKE_CASE : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
return output_txt, output_ids
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.perceiver_tokenizer
SCREAMING_SNAKE_CASE : List[Any] = """Unicode €."""
SCREAMING_SNAKE_CASE : Any = tokenizer(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5]
self.assertEqual(encoded["""input_ids"""] , lowerCamelCase_ )
# decoding
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode(lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , """[CLS]Unicode €.[SEP]""" )
SCREAMING_SNAKE_CASE : Tuple = tokenizer("""e è é ê ë""" )
SCREAMING_SNAKE_CASE : Optional[Any] = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5]
self.assertEqual(encoded["""input_ids"""] , lowerCamelCase_ )
# decoding
SCREAMING_SNAKE_CASE : str = tokenizer.decode(lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , """[CLS]e è é ê ë[SEP]""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.perceiver_tokenizer
SCREAMING_SNAKE_CASE : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
SCREAMING_SNAKE_CASE : Optional[int] = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0]
# fmt: on
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
if FRAMEWORK != "jax":
SCREAMING_SNAKE_CASE : Union[str, Any] = list(batch.input_ids.numpy()[0] )
else:
SCREAMING_SNAKE_CASE : str = list(batch.input_ids.tolist()[0] )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.perceiver_tokenizer
SCREAMING_SNAKE_CASE : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
SCREAMING_SNAKE_CASE : str = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""" , lowerCamelCase_ )
self.assertIn("""attention_mask""" , lowerCamelCase_ )
self.assertNotIn("""decoder_input_ids""" , lowerCamelCase_ )
self.assertNotIn("""decoder_attention_mask""" , lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.perceiver_tokenizer
SCREAMING_SNAKE_CASE : List[str] = [
"""Summary of the text.""",
"""Another summary.""",
]
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(
text_target=lowerCamelCase_ , max_length=32 , padding="""max_length""" , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
SCREAMING_SNAKE_CASE : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : Optional[Any] = """ He is very happy, UNwant\u00E9d,running"""
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
tokenizer.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.__class__.from_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
shutil.rmtree(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE : str = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : Optional[int] = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
SCREAMING_SNAKE_CASE : Dict = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
tokenizer.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.__class__.from_pretrained(lowerCamelCase_ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowerCamelCase_ )
with open(os.path.join(lowerCamelCase_ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
SCREAMING_SNAKE_CASE : int = json.load(lowerCamelCase_ )
with open(os.path.join(lowerCamelCase_ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
SCREAMING_SNAKE_CASE : Tuple = json.load(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(1_25 )]
SCREAMING_SNAKE_CASE : Optional[int] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
SCREAMING_SNAKE_CASE : List[Any] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(lowerCamelCase_ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(lowerCamelCase_ , lowerCamelCase_ )
with open(os.path.join(lowerCamelCase_ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(lowerCamelCase_ , lowerCamelCase_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
SCREAMING_SNAKE_CASE : int = tokenizer_class.from_pretrained(
lowerCamelCase_ , )
self.assertIn(
"""an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
SCREAMING_SNAKE_CASE : Any = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=lowerCamelCase_ )]
SCREAMING_SNAKE_CASE : str = tokenizer_class.from_pretrained(
lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , )
self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_78] ) , """�""" )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers(fast=lowerCamelCase_ , do_lower_case=lowerCamelCase_ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
SCREAMING_SNAKE_CASE : Any = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""]
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_string(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
| 323 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,)
SCREAMING_SNAKE_CASE__ = 10
def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = {
"""num_train_timesteps""": 2_01,
"""sigma_min""": 0.002,
"""sigma_max""": 80.0,
}
config.update(**lowerCamelCase_ )
return config
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 10
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ )
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0]
SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1]
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample
SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = 1
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = scheduler.timesteps
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(lowerCamelCase_ ):
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 192.7_614 ) < 1e-2
assert abs(result_mean.item() - 0.2_510 ) < 1e-3
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0]
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Dict = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 347.6_357 ) < 1e-2
assert abs(result_mean.item() - 0.4_527 ) < 1e-3
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0]
with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0]
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ )
with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
| 323 | 1 |
'''simple docstring'''
from __future__ import annotations
import bisect
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = -1 ):
"""simple docstring"""
if hi < 0:
SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ )
while lo < hi:
SCREAMING_SNAKE_CASE : int = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
SCREAMING_SNAKE_CASE : str = mid + 1
else:
SCREAMING_SNAKE_CASE : List[str] = mid
return lo
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = -1 ):
"""simple docstring"""
if hi < 0:
SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ )
while lo < hi:
SCREAMING_SNAKE_CASE : str = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1
else:
SCREAMING_SNAKE_CASE : str = mid
return lo
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = -1 ):
"""simple docstring"""
sorted_collection.insert(bisect_left(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = -1 ):
"""simple docstring"""
sorted_collection.insert(bisect_right(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ )
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = 0
SCREAMING_SNAKE_CASE : str = len(lowerCamelCase_ ) - 1
while left <= right:
SCREAMING_SNAKE_CASE : str = left + (right - left) // 2
SCREAMING_SNAKE_CASE : str = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
SCREAMING_SNAKE_CASE : str = midpoint - 1
else:
SCREAMING_SNAKE_CASE : Optional[int] = midpoint + 1
return None
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = bisect.bisect_left(lowerCamelCase_ , lowerCamelCase_ )
if index != len(lowerCamelCase_ ) and sorted_collection[index] == item:
return index
return None
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if right < left:
return None
SCREAMING_SNAKE_CASE : List[str] = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , midpoint - 1 )
else:
return binary_search_by_recursion(lowerCamelCase_ , lowerCamelCase_ , midpoint + 1 , lowerCamelCase_ )
if __name__ == "__main__":
__UpperCAmelCase = input("""Enter numbers separated by comma:\n""").strip()
__UpperCAmelCase = sorted(int(item) for item in user_input.split(""","""))
__UpperCAmelCase = int(input("""Enter a single number to be found in the list:\n"""))
__UpperCAmelCase = binary_search(collection, target)
if result is None:
print(f'''{target} was not found in {collection}.''')
else:
print(f'''{target} was found at position {result} in {collection}.''')
| 323 |
'''simple docstring'''
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ):
'''simple docstring'''
super().__init__(
lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE : Optional[int] = Text(
cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : List[str] = None
self.builder.download_and_prepare(
download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE : int = self.builder.as_dataset(
split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory )
return dataset
| 323 | 1 |
'''simple docstring'''
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 323 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 3_84
SCREAMING_SNAKE_CASE : Union[str, Any] = 7
if "tiny" in model_name:
SCREAMING_SNAKE_CASE : List[str] = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2)
SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24)
elif "small" in model_name:
SCREAMING_SNAKE_CASE : Any = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24)
elif "base" in model_name:
SCREAMING_SNAKE_CASE : int = 1_28
SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32)
SCREAMING_SNAKE_CASE : Optional[Any] = 12
SCREAMING_SNAKE_CASE : str = 5_12
elif "large" in model_name:
SCREAMING_SNAKE_CASE : Tuple = 1_92
SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48)
SCREAMING_SNAKE_CASE : Tuple = 12
SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68
# set label information
SCREAMING_SNAKE_CASE : List[str] = 1_50
SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files"""
SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json"""
SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig(
embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
SCREAMING_SNAKE_CASE : List[str] = UperNetConfig(
backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , )
return config
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
# fmt: off
# stem
rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = val
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE : Dict = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE : Any = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :]
# fmt: on
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape
SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape
SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = x.shape[0]
SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = x.shape[0]
SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = {
"""upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""",
"""upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""",
"""upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""",
"""upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""",
}
SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name]
SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[
"""state_dict"""
]
for name, param in state_dict.items():
print(lowerCamelCase_ , param.shape )
SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ )
if "bn" in key:
SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" )
SCREAMING_SNAKE_CASE : Optional[Any] = val
# rename keys
SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ )
for src, dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
read_in_q_k_v(lowerCamelCase_ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ )
if "norm" in key:
SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# verify on image
SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" )
SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor()
SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = outputs.logits
print(logits.shape )
print("""First values of logits:""" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(lowerCamelCase_ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
__UpperCAmelCase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 323 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def __A ( lowerCamelCase_ ):
"""simple docstring"""
return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = ArgumentParser(
"""HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = parser.add_subparsers(help="""datasets-cli command helpers""" )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(lowerCamelCase_ )
EnvironmentCommand.register_subcommand(lowerCamelCase_ )
TestCommand.register_subcommand(lowerCamelCase_ )
RunBeamCommand.register_subcommand(lowerCamelCase_ )
DummyDataCommand.register_subcommand(lowerCamelCase_ )
# Parse args
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = parser.parse_known_args()
if not hasattr(lowerCamelCase_ , """func""" ):
parser.print_help()
exit(1 )
SCREAMING_SNAKE_CASE : Optional[int] = parse_unknown_args(lowerCamelCase_ )
# Run
SCREAMING_SNAKE_CASE : List[str] = args.func(lowerCamelCase_ , **lowerCamelCase_ )
service.run()
if __name__ == "__main__":
main()
| 323 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class UpperCamelCase__ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Any = pad_token_id
SCREAMING_SNAKE_CASE : List[Any] = max_length
SCREAMING_SNAKE_CASE : Optional[int] = vocab
SCREAMING_SNAKE_CASE : List[Any] = merges
SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : GPTaTokenizer , *lowerCamelCase_ : str , **lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab()
return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
return cls(**lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.tf_tokenizer(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ )
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = pad_model_inputs(
lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 323 | 1 |
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = int(number**0.5 )
return number == sq * sq
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
SCREAMING_SNAKE_CASE : int = x_den * y_den * z_den
SCREAMING_SNAKE_CASE : int = gcd(lowerCamelCase_ , lowerCamelCase_ )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( lowerCamelCase_ = 35 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : set = set()
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : Fraction = Fraction(0 )
SCREAMING_SNAKE_CASE : tuple[int, int]
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
SCREAMING_SNAKE_CASE : str = x_num * y_den + x_den * y_num
SCREAMING_SNAKE_CASE : Optional[int] = x_den * y_den
SCREAMING_SNAKE_CASE : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
SCREAMING_SNAKE_CASE : Any = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=2
SCREAMING_SNAKE_CASE : Union[str, Any] = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
SCREAMING_SNAKE_CASE : Optional[int] = x_den * x_den * y_den * y_den
if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Union[str, Any] = int(sqrt(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : str = int(sqrt(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
SCREAMING_SNAKE_CASE : Any = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=-1
SCREAMING_SNAKE_CASE : Tuple = x_num * y_num
SCREAMING_SNAKE_CASE : Union[str, Any] = x_den * y_num + x_num * y_den
SCREAMING_SNAKE_CASE : Dict = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
SCREAMING_SNAKE_CASE : Optional[int] = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=2
SCREAMING_SNAKE_CASE : Any = x_num * x_num * y_num * y_num
SCREAMING_SNAKE_CASE : Optional[Any] = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Dict = int(sqrt(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[Any] = int(sqrt(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : str = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
SCREAMING_SNAKE_CASE : List[str] = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
for num, den in unique_s:
total += Fraction(lowerCamelCase_ , lowerCamelCase_ )
return total.denominator + total.numerator
if __name__ == "__main__":
print(f'''{solution() = }''')
| 323 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths
SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train"""
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Union[str, Any] = streaming
SCREAMING_SNAKE_CASE : Optional[int] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
pass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : int = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Tuple = streaming
SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
pass
| 323 | 1 |
'''simple docstring'''
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__UpperCAmelCase = 16
__UpperCAmelCase = 32
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained("""bert-base-cased""" )
SCREAMING_SNAKE_CASE : List[str] = DatasetDict(
{
"""train""": dataset["""train"""].select(lowerCamelCase_ ),
"""validation""": dataset["""train"""].select(lowerCamelCase_ ),
"""test""": dataset["""validation"""],
} )
def tokenize_function(lowerCamelCase_ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE : int = datasets.map(
lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowerCamelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE : int = 16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE : str = 8
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
return tokenizer.pad(
lowerCamelCase_ , padding="""longest""" , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors="""pt""" , )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE : Any = DataLoader(
tokenized_datasets["""train"""] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = DataLoader(
tokenized_datasets["""test"""] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
return train_dataloader, eval_dataloader, test_dataloader
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = []
# Download the dataset
SCREAMING_SNAKE_CASE : Optional[int] = load_dataset("""glue""" , """mrpc""" )
# Create our splits
SCREAMING_SNAKE_CASE : List[str] = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
SCREAMING_SNAKE_CASE : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE : List[str] = config["""lr"""]
SCREAMING_SNAKE_CASE : Optional[int] = int(config["""num_epochs"""] )
SCREAMING_SNAKE_CASE : Dict = int(config["""seed"""] )
SCREAMING_SNAKE_CASE : List[Any] = int(config["""batch_size"""] )
SCREAMING_SNAKE_CASE : Dict = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
SCREAMING_SNAKE_CASE : Union[str, Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
SCREAMING_SNAKE_CASE : Dict = batch_size // MAX_GPU_BATCH_SIZE
SCREAMING_SNAKE_CASE : int = MAX_GPU_BATCH_SIZE
set_seed(lowerCamelCase_ )
# New Code #
# Create our folds:
SCREAMING_SNAKE_CASE : int = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] )
SCREAMING_SNAKE_CASE : int = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = get_fold_dataloaders(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE : List[str] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE : List[str] = AdamW(params=model.parameters() , lr=lowerCamelCase_ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE : List[str] = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Now we train the model
for epoch in range(lowerCamelCase_ ):
model.train()
for step, batch in enumerate(lowerCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE : str = model(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.loss
SCREAMING_SNAKE_CASE : List[str] = loss / gradient_accumulation_steps
accelerator.backward(lowerCamelCase_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE : int = model(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=lowerCamelCase_ , references=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : List[str] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCamelCase_ )
# New Code #
# We also run predictions on the test set at the very end
SCREAMING_SNAKE_CASE : List[str] = []
for step, batch in enumerate(lowerCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(lowerCamelCase_ , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
SCREAMING_SNAKE_CASE : int = torch.cat(lowerCamelCase_ , dim=0 )
SCREAMING_SNAKE_CASE : Optional[int] = torch.stack(lowerCamelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
SCREAMING_SNAKE_CASE : List[Any] = metric.compute(predictions=lowerCamelCase_ , references=lowerCamelCase_ )
accelerator.print("""Average test metrics from all folds:""" , lowerCamelCase_ )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
# New Code #
parser.add_argument("""--num_folds""" , type=lowerCamelCase_ , default=3 , help="""The number of splits to perform across the dataset""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 323 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small"""
SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : str = """en_speaker_1"""
SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string"""
SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json"""
SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings"""
def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
SCREAMING_SNAKE_CASE : List[str] = 35
SCREAMING_SNAKE_CASE : List[Any] = 2
SCREAMING_SNAKE_CASE : int = 8
SCREAMING_SNAKE_CASE : Optional[int] = {
"""semantic_prompt""": np.ones(lowerCamelCase_ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string )
SCREAMING_SNAKE_CASE : Tuple = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 323 | 1 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__UpperCAmelCase = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def __A ( lowerCamelCase_ , lowerCamelCase_=None ):
"""simple docstring"""
require_version(deps[pkg] , lowerCamelCase_ )
| 323 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__UpperCAmelCase = logging.getLogger(__name__)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , lowerCamelCase_ )
# Set seed
set_seed(training_args.seed )
try:
SCREAMING_SNAKE_CASE : Dict = processors[data_args.task_name]()
SCREAMING_SNAKE_CASE : Optional[int] = processor.get_labels()
SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , )
# Get datasets
SCREAMING_SNAKE_CASE : Optional[Any] = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
SCREAMING_SNAKE_CASE : Dict = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(lowerCamelCase_ ) -> Dict:
SCREAMING_SNAKE_CASE : str = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(lowerCamelCase_ , p.label_ids )}
# Data collator
SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
SCREAMING_SNAKE_CASE : Any = Trainer(
model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate()
SCREAMING_SNAKE_CASE : str = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(lowerCamelCase_ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , lowerCamelCase_ , lowerCamelCase_ )
writer.write("""%s = %s\n""" % (key, value) )
results.update(lowerCamelCase_ )
return results
def __A ( lowerCamelCase_ ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 323 | 1 |
'''simple docstring'''
from copy import deepcopy
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCamelCase_ : list[int] | None = None , lowerCamelCase_ : int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
SCREAMING_SNAKE_CASE : Dict = size
SCREAMING_SNAKE_CASE : Any = [0] * size
elif arr is not None:
self.init(lowerCamelCase_ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : list[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowerCamelCase_ )
for i in range(1 , self.size ):
SCREAMING_SNAKE_CASE : Union[str, Any] = self.next_(lowerCamelCase_ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
SCREAMING_SNAKE_CASE : List[str] = self.next_(lowerCamelCase_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase_ ( lowerCamelCase_ : int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase_ ( lowerCamelCase_ : int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
SCREAMING_SNAKE_CASE : List[str] = self.next_(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : int ):
'''simple docstring'''
self.add(lowerCamelCase_ , value - self.get(lowerCamelCase_ ) )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : int ):
'''simple docstring'''
if right == 0:
return 0
SCREAMING_SNAKE_CASE : Optional[Any] = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
SCREAMING_SNAKE_CASE : int = self.prev(lowerCamelCase_ )
return result
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : int ):
'''simple docstring'''
return self.prefix(lowerCamelCase_ ) - self.prefix(lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : int ):
'''simple docstring'''
return self.query(lowerCamelCase_ , index + 1 )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
SCREAMING_SNAKE_CASE : Tuple = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
SCREAMING_SNAKE_CASE : Dict = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block
SCREAMING_SNAKE_CASE : int = torch.nn.Convad(
lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] )
# down
SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0]
for i, down_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Any = output_channel
SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block(
lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
self.down_blocks.append(lowerCamelCase_ )
# mid
SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# out
SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU()
SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels
SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Tuple = False
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = x
SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[Any] ):
def custom_forward(*lowerCamelCase_ : List[str] ):
return module(*lowerCamelCase_ )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ )
else:
# down
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ )
# post-process
SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : int = layers_per_block
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad(
lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] )
SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None
# mid
SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# up
SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = output_channel
SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i]
SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : List[Any] = get_up_block(
lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , )
self.up_blocks.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = output_channel
# out
if norm_type == "spatial":
SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : Dict = nn.SiLU()
SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Dict = False
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = z
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[str] ):
def custom_forward(*lowerCamelCase_ : str ):
return module(*lowerCamelCase_ )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ )
# post-process
if latent_embeds is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Tuple = n_e
SCREAMING_SNAKE_CASE : int = vq_embed_dim
SCREAMING_SNAKE_CASE : Tuple = beta
SCREAMING_SNAKE_CASE : Union[str, Any] = legacy
SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
SCREAMING_SNAKE_CASE : Optional[Any] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0]
SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed
SCREAMING_SNAKE_CASE : Any = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
SCREAMING_SNAKE_CASE : Optional[int] = n_e
SCREAMING_SNAKE_CASE : Any = sane_index_shape
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long()
SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 )
SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1
if self.unknown_index == "random":
SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
SCREAMING_SNAKE_CASE : Any = self.unknown_index
return new.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
if self.re_embed > self.used.shape[0]: # extra token
SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero
SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ )
return back.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous()
SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 )
SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape )
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : List[str] = None
# compute loss for embedding
if not self.legacy:
SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach()
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
if self.remap is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ )
if shape is not None:
SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ )
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = parameters
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 )
SCREAMING_SNAKE_CASE : Dict = deterministic
SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar )
SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar )
if self.deterministic:
SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = randn_tensor(
self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype )
SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample
return x
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
return self.mean
| 323 | 1 |
'''simple docstring'''
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return round(float(moles / volume ) * nfactor )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return round(float((moles * 0.0_821 * temperature) / (volume) ) )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return round(float((moles * 0.0_821 * temperature) / (pressure) ) )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return round(float((pressure * volume) / (0.0_821 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL
@property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 4
SCREAMING_SNAKE_CASE : str = 3
SCREAMING_SNAKE_CASE : List[Any] = (32, 32)
SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input
return init_dict, inputs_dict
| 323 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : Any = BlipImageProcessor()
SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
SCREAMING_SNAKE_CASE : Optional[int] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
SCREAMING_SNAKE_CASE : Optional[int] = InstructBlipProcessor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase_ ( self : Any , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).tokenizer
def lowerCamelCase_ ( self : Optional[int] , **lowerCamelCase_ : Dict ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).image_processor
def lowerCamelCase_ ( self : Optional[Any] , **lowerCamelCase_ : int ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).qformer_tokenizer
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE : Optional[int] = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 )
SCREAMING_SNAKE_CASE : str = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowerCamelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowerCamelCase_ )
self.assertIsInstance(processor.qformer_tokenizer , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.get_image_processor()
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_qformer_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = InstructBlipProcessor(
tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""np""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=lowerCamelCase_ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_qformer_tokenizer()
SCREAMING_SNAKE_CASE : Any = InstructBlipProcessor(
tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = """lower newer"""
SCREAMING_SNAKE_CASE : Dict = processor(text=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = tokenizer(lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = qformer_tokenizer(lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.get_image_processor()
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_qformer_tokenizer()
SCREAMING_SNAKE_CASE : Optional[Any] = InstructBlipProcessor(
tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = """lower newer"""
SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE : Dict = processor(text=lowerCamelCase_ , images=lowerCamelCase_ )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase_ ):
processor()
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE : int = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Tuple = self.get_qformer_tokenizer()
SCREAMING_SNAKE_CASE : Optional[int] = InstructBlipProcessor(
tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE : Optional[int] = processor.batch_decode(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.get_image_processor()
SCREAMING_SNAKE_CASE : Any = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Dict = self.get_qformer_tokenizer()
SCREAMING_SNAKE_CASE : str = InstructBlipProcessor(
tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = """lower newer"""
SCREAMING_SNAKE_CASE : str = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE : List[Any] = processor(text=lowerCamelCase_ , images=lowerCamelCase_ )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
| 323 |
'''simple docstring'''
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
pass
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ )
import datasets
SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
SCREAMING_SNAKE_CASE : Any = depth_estimator(
[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
] )
self.assertEqual(
[
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
] , lowerCamelCase_ , )
@require_tf
@unittest.skip("""Depth estimation is not implemented in TF""" )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large"""
SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 )
@require_torch
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
| 323 | 1 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (PNDMScheduler,)
SCREAMING_SNAKE_CASE__ = (('''num_inference_steps''', 50),)
def lowerCamelCase_ ( self : str , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**lowerCamelCase_ )
return config
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any]=0 , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE : int = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample
SCREAMING_SNAKE_CASE : Optional[Any] = 0.1 * sample
SCREAMING_SNAKE_CASE : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = scheduler_class(**lowerCamelCase_ )
scheduler.set_timesteps(lowerCamelCase_ )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class.from_pretrained(lowerCamelCase_ )
new_scheduler.set_timesteps(lowerCamelCase_ )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE : int = dummy_past_residuals[:]
SCREAMING_SNAKE_CASE : Tuple = scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Tuple = new_scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : List[str] = new_scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Tuple=0 , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample
SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample
SCREAMING_SNAKE_CASE : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCamelCase_ )
scheduler.set_timesteps(lowerCamelCase_ )
# copy over dummy past residuals (must be after setting timesteps)
SCREAMING_SNAKE_CASE : str = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = scheduler_class.from_pretrained(lowerCamelCase_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCamelCase_ )
# copy over dummy past residual (must be after setting timesteps)
SCREAMING_SNAKE_CASE : str = dummy_past_residuals[:]
SCREAMING_SNAKE_CASE : str = scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : List[str] = new_scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
SCREAMING_SNAKE_CASE : List[Any] = scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Optional[Any] = new_scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def lowerCamelCase_ ( self : Dict , **lowerCamelCase_ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : str = self.get_scheduler_config(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = 10
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase_ )
for i, t in enumerate(scheduler.prk_timesteps ):
SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step_plms(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
return sample
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ )
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample
SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(lowerCamelCase_ , """set_timesteps""" ):
scheduler.set_timesteps(lowerCamelCase_ )
elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , """set_timesteps""" ):
SCREAMING_SNAKE_CASE : str = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
SCREAMING_SNAKE_CASE : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[:]
SCREAMING_SNAKE_CASE : List[str] = scheduler.step_prk(lowerCamelCase_ , 0 , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(lowerCamelCase_ , 1 , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
SCREAMING_SNAKE_CASE : Dict = scheduler.step_plms(lowerCamelCase_ , 0 , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step_plms(lowerCamelCase_ , 1 , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config(steps_offset=1 )
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCamelCase_ )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCamelCase_ , beta_end=lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 27
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample
SCREAMING_SNAKE_CASE : Tuple = 0.1 * sample
SCREAMING_SNAKE_CASE : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ )
scheduler.set_timesteps(lowerCamelCase_ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
with self.assertRaises(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowerCamelCase_ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.full_loop()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 198.1_318 ) < 1e-2
assert abs(result_mean.item() - 0.2_580 ) < 1e-3
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.full_loop(prediction_type="""v_prediction""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 67.3_986 ) < 1e-2
assert abs(result_mean.item() - 0.0_878 ) < 1e-3
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.full_loop(set_alpha_to_one=lowerCamelCase_ , beta_start=0.01 )
SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 230.0_399 ) < 1e-2
assert abs(result_mean.item() - 0.2_995 ) < 1e-3
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.full_loop(set_alpha_to_one=lowerCamelCase_ , beta_start=0.01 )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 186.9_482 ) < 1e-2
assert abs(result_mean.item() - 0.2_434 ) < 1e-3
| 323 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
SCREAMING_SNAKE_CASE : Optional[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : Any = num_channels
SCREAMING_SNAKE_CASE : str = image_size
SCREAMING_SNAKE_CASE : Dict = min_resolution
SCREAMING_SNAKE_CASE : List[str] = max_resolution
SCREAMING_SNAKE_CASE : str = do_resize
SCREAMING_SNAKE_CASE : Optional[Any] = size
SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize
SCREAMING_SNAKE_CASE : List[Any] = image_mean
SCREAMING_SNAKE_CASE : str = image_std
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self )
@property
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 323 | 1 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__UpperCAmelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="""relu"""))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation="""relu"""))
classifier.add(layers.Dense(units=1, activation="""sigmoid"""))
# Compiling the CNN
classifier.compile(
optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__UpperCAmelCase = train_datagen.flow_from_directory(
"""dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
__UpperCAmelCase = test_datagen.flow_from_directory(
"""dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("""cnn.h5""")
# Part 3 - Making new predictions
__UpperCAmelCase = tf.keras.preprocessing.image.load_img(
"""dataset/single_prediction/image.png""", target_size=(64, 64)
)
__UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image)
__UpperCAmelCase = np.expand_dims(test_image, axis=0)
__UpperCAmelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__UpperCAmelCase = """Normal"""
if result[0][0] == 1:
__UpperCAmelCase = """Abnormality detected"""
| 323 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
__UpperCAmelCase = {
"""config""": [
"""EXTERNAL_DATA_FORMAT_SIZE_LIMIT""",
"""OnnxConfig""",
"""OnnxConfigWithPast""",
"""OnnxSeq2SeqConfigWithPast""",
"""PatchingSpec""",
],
"""convert""": ["""export""", """validate_model_outputs"""],
"""features""": ["""FeaturesManager"""],
"""utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 323 | 1 |
'''simple docstring'''
# Imports
import numpy as np
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : List[Any] , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : int=None ):
'''simple docstring'''
self.set_matricies(red=lowerCamelCase_ , green=lowerCamelCase_ , blue=lowerCamelCase_ , red_edge=lowerCamelCase_ , nir=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : List[Any]=None ):
'''simple docstring'''
if red is not None:
SCREAMING_SNAKE_CASE : List[Any] = red
if green is not None:
SCREAMING_SNAKE_CASE : Tuple = green
if blue is not None:
SCREAMING_SNAKE_CASE : Optional[int] = blue
if red_edge is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = red_edge
if nir is not None:
SCREAMING_SNAKE_CASE : List[Any] = nir
return True
def lowerCamelCase_ ( self : int , lowerCamelCase_ : int="" , lowerCamelCase_ : str=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=None ):
'''simple docstring'''
self.set_matricies(red=lowerCamelCase_ , green=lowerCamelCase_ , blue=lowerCamelCase_ , red_edge=lowerCamelCase_ , nir=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return self.nir * (self.red / (self.green**2))
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return (self.nir - self.red) / (self.nir + self.red)
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return (self.nir - self.blue) / (self.nir + self.blue)
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return (self.redEdge - self.red) / (self.redEdge + self.red)
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return (self.nir - self.green) / (self.nir + self.green)
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Any=0.08 , lowerCamelCase_ : Optional[int]=1.22 , lowerCamelCase_ : List[str]=0.03 ):
'''simple docstring'''
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return (self.nir / self.green) - 1
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
return (self.nir / self.redEdge) - 1
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return (self.red - self.blue) / self.red
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return self.nir - self.green
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red)
def lowerCamelCase_ ( self : int , lowerCamelCase_ : Optional[Any]=0.16 ):
'''simple docstring'''
return (self.nir - self.green) / (self.nir + self.green + y)
def lowerCamelCase_ ( self : str , lowerCamelCase_ : int=0.5 ):
'''simple docstring'''
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=None ):
'''simple docstring'''
return (self.nir - b) / (a * self.red)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return (self.red + self.green + self.blue) / 30.5
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
return self.nir / self.red
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
return (self.rvi() - 1) / (self.rvi() + 1)
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return self.green / (self.nir + self.red + self.green)
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
return self.nir / (self.nir + self.red + self.green)
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return self.red / (self.nir + self.red + self.green)
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return (self.green - self.red) / (self.green + self.red)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return (self.red - self.green) / (self.red + self.green)
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
SCREAMING_SNAKE_CASE : Optional[int] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return self.nir / self.red
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return (self.ndvi() + 0.5) ** (1 / 2)
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 323 |
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 323 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Any=13 , lowerCamelCase_ : Any=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : str=[10, 20, 30, 40] , lowerCamelCase_ : List[Any]=[2, 2, 3, 2] , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Tuple=37 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : Optional[Any]=10 , lowerCamelCase_ : Dict=0.02 , lowerCamelCase_ : Any=["stage2", "stage3", "stage4"] , lowerCamelCase_ : List[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = parent
SCREAMING_SNAKE_CASE : List[Any] = batch_size
SCREAMING_SNAKE_CASE : Dict = image_size
SCREAMING_SNAKE_CASE : List[str] = num_channels
SCREAMING_SNAKE_CASE : Optional[Any] = num_stages
SCREAMING_SNAKE_CASE : str = hidden_sizes
SCREAMING_SNAKE_CASE : List[str] = depths
SCREAMING_SNAKE_CASE : Union[str, Any] = is_training
SCREAMING_SNAKE_CASE : Tuple = use_labels
SCREAMING_SNAKE_CASE : List[str] = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = hidden_act
SCREAMING_SNAKE_CASE : List[str] = num_labels
SCREAMING_SNAKE_CASE : Any = initializer_range
SCREAMING_SNAKE_CASE : Union[str, Any] = out_features
SCREAMING_SNAKE_CASE : str = out_indices
SCREAMING_SNAKE_CASE : str = scope
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Any = None
if self.use_labels:
SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE : List[Any] = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = ConvNextVaModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase_ ( self : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = ConvNextVaForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
SCREAMING_SNAKE_CASE : str = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = ConvNextVaBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : int = ConvNextVaBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs
SCREAMING_SNAKE_CASE : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = config_and_inputs
SCREAMING_SNAKE_CASE : List[str] = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ = (
{'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ConvNextVaModelTester(self )
SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_with_labels()
SCREAMING_SNAKE_CASE : int = True
if model_class.__name__ in [
*get_values(lowerCamelCase_ ),
*get_values(lowerCamelCase_ ),
]:
continue
SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.train()
SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = model(**lowerCamelCase_ ).loss
loss.backward()
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_with_labels()
SCREAMING_SNAKE_CASE : Any = False
SCREAMING_SNAKE_CASE : List[str] = True
if (
model_class.__name__
in [*get_values(lowerCamelCase_ ), *get_values(lowerCamelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.gradient_checkpointing_enable()
model.train()
SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = model(**lowerCamelCase_ ).loss
loss.backward()
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = model_class(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ):
SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : int = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Tuple = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Optional[int] = ConvNextVaModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = self.default_image_processor
SCREAMING_SNAKE_CASE : Optional[int] = prepare_img()
SCREAMING_SNAKE_CASE : Union[str, Any] = preprocessor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = model(**lowerCamelCase_ )
# verify the logits
SCREAMING_SNAKE_CASE : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
| 323 |
'''simple docstring'''
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number | (1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number & ~(1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number ^ (1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return ((number >> position) & 1) == 1
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 | 1 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
__UpperCAmelCase = logging.get_logger(__name__)
@add_end_docstrings(lowercase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = {}
SCREAMING_SNAKE_CASE : List[Any] = {}
if prompt is not None:
SCREAMING_SNAKE_CASE : List[Any] = prompt
if generate_kwargs is not None:
SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ):
'''simple docstring'''
return super().__call__(lowerCamelCase_ , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ )
if prompt is not None:
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type
if model_type == "git":
SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids
SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework )
model_inputs.update(lowerCamelCase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
SCREAMING_SNAKE_CASE : Optional[Any] = None
return model_inputs
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ):
'''simple docstring'''
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
SCREAMING_SNAKE_CASE : List[str] = None
if generate_kwargs is None:
SCREAMING_SNAKE_CASE : int = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name )
SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ )
return model_outputs
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for output_ids in model_outputs:
SCREAMING_SNAKE_CASE : List[Any] = {
"""generated_text""": self.tokenizer.decode(
lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , )
}
records.append(lowerCamelCase_ )
return records
| 323 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[int] = batch_size
SCREAMING_SNAKE_CASE : Any = seq_length
SCREAMING_SNAKE_CASE : List[str] = is_training
SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask
SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids
SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE : str = vocab_size
SCREAMING_SNAKE_CASE : str = hidden_size
SCREAMING_SNAKE_CASE : List[Any] = rotary_dim
SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Tuple = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = vocab_size - 1
SCREAMING_SNAKE_CASE : str = vocab_size - 1
SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : List[str] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs
SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = 20
SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
SCREAMING_SNAKE_CASE : Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
SCREAMING_SNAKE_CASE : str = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 20
SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
SCREAMING_SNAKE_CASE : Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
SCREAMING_SNAKE_CASE : Dict = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
@tooslow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id
SCREAMING_SNAKE_CASE : str = jax.jit(model.generate )
SCREAMING_SNAKE_CASE : str = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
@is_pt_flax_cross_test
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape
SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Union[str, Any] = 1
SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = fx_state
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple()
SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape
SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : Tuple = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple()
SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 323 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
__UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
__UpperCAmelCase = """
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")
>>> repo = \"openai/shap-e-img2img\"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"
>>> image = load_image(image_url).convert(\"RGB\")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")
```
"""
@dataclass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : List[str] , lowerCamelCase_ : PriorTransformer , lowerCamelCase_ : CLIPVisionModel , lowerCamelCase_ : CLIPImageProcessor , lowerCamelCase_ : HeunDiscreteScheduler , lowerCamelCase_ : ShapERenderer , ):
'''simple docstring'''
super().__init__()
self.register_modules(
prior=lowerCamelCase_ , image_encoder=lowerCamelCase_ , image_processor=lowerCamelCase_ , scheduler=lowerCamelCase_ , renderer=lowerCamelCase_ , )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
if latents is None:
SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ )
else:
if latents.shape != shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
SCREAMING_SNAKE_CASE : Tuple = latents.to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = latents * scheduler.init_noise_sigma
return latents
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Any=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
SCREAMING_SNAKE_CASE : int = torch.device(f'''cuda:{gpu_id}''' )
SCREAMING_SNAKE_CASE : str = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowerCamelCase_ , lowerCamelCase_ )
@property
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(lowerCamelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] , ):
'''simple docstring'''
if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(image[0] , torch.Tensor ):
SCREAMING_SNAKE_CASE : Dict = torch.cat(lowerCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCamelCase_ , axis=0 )
if not isinstance(lowerCamelCase_ , torch.Tensor ):
SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 )
SCREAMING_SNAKE_CASE : List[str] = image.to(dtype=self.image_encoder.dtype , device=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.image_encoder(lowerCamelCase_ )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE : List[str] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
SCREAMING_SNAKE_CASE : List[str] = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 )
if do_classifier_free_guidance:
SCREAMING_SNAKE_CASE : Dict = torch.zeros_like(lowerCamelCase_ )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
SCREAMING_SNAKE_CASE : str = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(lowerCamelCase_ )
def __call__( self : Any , lowerCamelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowerCamelCase_ : int = 1 , lowerCamelCase_ : int = 25 , lowerCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : float = 4.0 , lowerCamelCase_ : int = 64 , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , ):
'''simple docstring'''
if isinstance(lowerCamelCase_ , PIL.Image.Image ):
SCREAMING_SNAKE_CASE : int = 1
elif isinstance(lowerCamelCase_ , torch.Tensor ):
SCREAMING_SNAKE_CASE : Dict = image.shape[0]
elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
SCREAMING_SNAKE_CASE : int = len(lowerCamelCase_ )
else:
raise ValueError(
f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCamelCase_ )}''' )
SCREAMING_SNAKE_CASE : List[str] = self._execution_device
SCREAMING_SNAKE_CASE : List[str] = batch_size * num_images_per_prompt
SCREAMING_SNAKE_CASE : Union[str, Any] = guidance_scale > 1.0
SCREAMING_SNAKE_CASE : List[Any] = self._encode_image(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# prior
self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.timesteps
SCREAMING_SNAKE_CASE : List[str] = self.prior.config.num_embeddings
SCREAMING_SNAKE_CASE : str = self.prior.config.embedding_dim
SCREAMING_SNAKE_CASE : str = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
SCREAMING_SNAKE_CASE : int = latents.reshape(latents.shape[0] , lowerCamelCase_ , lowerCamelCase_ )
for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ):
# expand the latents if we are doing classifier free guidance
SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
SCREAMING_SNAKE_CASE : str = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.prior(
lowerCamelCase_ , timestep=lowerCamelCase_ , proj_embedding=lowerCamelCase_ , ).predicted_image_embedding
# remove the variance
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = noise_pred.chunk(2 )
SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(
lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = []
for i, latent in enumerate(lowerCamelCase_ ):
print()
SCREAMING_SNAKE_CASE : List[str] = self.renderer.decode(
latent[None, :] , lowerCamelCase_ , size=lowerCamelCase_ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , )
images.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = torch.stack(lowerCamelCase_ )
if output_type not in ["np", "pil"]:
raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' )
SCREAMING_SNAKE_CASE : str = images.cpu().numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE : Optional[int] = [self.numpy_to_pil(lowerCamelCase_ ) for image in images]
# Offload last model to CPU
if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=lowerCamelCase_ )
| 323 |
'''simple docstring'''
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias''']
@register_to_config
def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'''
f''' `n_embd`: {n_embd} are not equal.''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim
SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim
SCREAMING_SNAKE_CASE : Tuple = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
SCREAMING_SNAKE_CASE : str = (
nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
SCREAMING_SNAKE_CASE : Any = GPTaConfig(
vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 )
SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ):
'''simple docstring'''
return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ )
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
return self.encode_prefix(lowerCamelCase_ )
@torch.no_grad()
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 )
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : Tuple = []
for feature in features:
SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature
# Only support beam search for now
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam(
input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = eos_token_id
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : List[Any] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool )
if input_embeds is not None:
SCREAMING_SNAKE_CASE : Dict = input_embeds
else:
SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ )
for i in range(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = outputs.logits
SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log()
if scores is None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
SCREAMING_SNAKE_CASE : List[Any] = next_tokens
else:
SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] )
SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 )
else:
SCREAMING_SNAKE_CASE : Tuple = -float(np.inf )
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None]
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1]
SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source]
SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1]
SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 )
SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source]
SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source]
SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths
SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source]
SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 )
SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze()
if is_stopped.all():
break
SCREAMING_SNAKE_CASE : int = scores / seq_lengths
SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ )
# tokens tensors are already padded to max_seq_length
SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order]
SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 323 | 1 |
'''simple docstring'''
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__UpperCAmelCase = """."""
if __name__ == "__main__":
__UpperCAmelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""")
__UpperCAmelCase = []
__UpperCAmelCase = []
with open(doctest_file_path) as fp:
for line in fp:
__UpperCAmelCase = line.strip()
__UpperCAmelCase = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__UpperCAmelCase = """\n""".join(non_existent_paths)
raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''')
if all_paths != sorted(all_paths):
raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
| 323 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git_vision_model'''
def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE : int = num_attention_heads
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Optional[Any] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : List[str] = initializer_range
SCREAMING_SNAKE_CASE : str = attention_dropout
SCREAMING_SNAKE_CASE : Any = layer_norm_eps
SCREAMING_SNAKE_CASE : List[str] = hidden_act
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ):
'''simple docstring'''
cls._set_token_in_kwargs(lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git'''
def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
if vision_config is None:
SCREAMING_SNAKE_CASE : Any = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = vocab_size
SCREAMING_SNAKE_CASE : Tuple = hidden_size
SCREAMING_SNAKE_CASE : int = num_hidden_layers
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : str = hidden_act
SCREAMING_SNAKE_CASE : Dict = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type
SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings
SCREAMING_SNAKE_CASE : int = num_image_with_embedding
SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id
SCREAMING_SNAKE_CASE : str = eos_token_id
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE : Any = self.__class__.model_type
return output
| 323 | 1 |
'''simple docstring'''
import os
from distutils.util import strtobool
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
for e in env_keys:
SCREAMING_SNAKE_CASE : Tuple = int(os.environ.get(lowerCamelCase_ , -1 ) )
if val >= 0:
return val
return default
def __A ( lowerCamelCase_ , lowerCamelCase_=False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = os.environ.get(lowerCamelCase_ , str(lowerCamelCase_ ) )
return strtobool(lowerCamelCase_ ) == 1 # As its name indicates `strtobool` actually returns an int...
def __A ( lowerCamelCase_ , lowerCamelCase_="no" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = os.environ.get(lowerCamelCase_ , str(lowerCamelCase_ ) )
return value
| 323 |
'''simple docstring'''
from manim import *
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 )
SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Tuple = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : List[Any] = Text("""CPU""" , font_size=24 )
SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[Any] = Text("""GPU""" , font_size=24 )
SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
gpu.move_to([-1, -1, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = Text("""Model""" , font_size=24 )
SCREAMING_SNAKE_CASE : List[str] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
model.move_to([3, -1.0, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = []
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for i, rect in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = fill.copy().set_fill(lowerCamelCase_ , opacity=0.8 )
target.move_to(lowerCamelCase_ )
model_arr.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(lowerCamelCase_ )
self.add(*lowerCamelCase_ , *lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Dict = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=24 )
SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
disk.move_to([-4, -1.25, 0] )
self.add(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE : Optional[Any] = MarkupText(
f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = MarkupText(
f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = MarkupText(
f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 )
input.set_fill(lowerCamelCase_ , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , lowerCamelCase_ , buff=0.5 )
self.play(Write(lowerCamelCase_ ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=lowerCamelCase_ , buff=0.02 )
self.play(MoveToTarget(lowerCamelCase_ ) )
self.play(FadeOut(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : int = Arrow(start=lowerCamelCase_ , end=lowerCamelCase_ , color=lowerCamelCase_ , buff=0.5 )
a.next_to(model_arr[0].get_left() , lowerCamelCase_ , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
SCREAMING_SNAKE_CASE : Optional[int] = MarkupText(
f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ , run_time=3 ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02}
self.play(
Write(lowerCamelCase_ ) , Circumscribe(model_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
SCREAMING_SNAKE_CASE : Optional[int] = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase_ , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
SCREAMING_SNAKE_CASE : Any = AnimationGroup(
FadeOut(lowerCamelCase_ , run_time=0.5 ) , MoveToTarget(lowerCamelCase_ , run_time=0.5 ) , FadeIn(lowerCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 )
self.play(lowerCamelCase_ )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
SCREAMING_SNAKE_CASE : Optional[Any] = 0.7
self.play(
Circumscribe(model_arr[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = a_c
SCREAMING_SNAKE_CASE : Optional[Any] = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(lowerCamelCase_ ) , FadeOut(lowerCamelCase_ , run_time=0.5 ) , )
SCREAMING_SNAKE_CASE : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ , run_time=3 ) , MoveToTarget(lowerCamelCase_ ) )
self.wait()
| 323 | 1 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = Dict[str, Any]
__UpperCAmelCase = List[Prediction]
@add_end_docstrings(lowercase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Dict ):
'''simple docstring'''
super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
if self.framework == "tf":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def lowerCamelCase_ ( self : Union[str, Any] , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = {}
if "threshold" in kwargs:
SCREAMING_SNAKE_CASE : Tuple = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : Optional[Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : int ):
'''simple docstring'''
return super().__call__(*lowerCamelCase_ , **lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = load_image(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = torch.IntTensor([[image.height, image.width]] )
SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
SCREAMING_SNAKE_CASE : Dict = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE : List[Any] = target_size
return inputs
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = model_inputs.pop("""target_size""" )
SCREAMING_SNAKE_CASE : Tuple = self.model(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
SCREAMING_SNAKE_CASE : str = model_inputs["""bbox"""]
return model_outputs
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any]=0.9 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = target_size[0].tolist()
def unnormalize(lowerCamelCase_ : str ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 10_00),
(height * bbox[1] / 10_00),
(width * bbox[2] / 10_00),
(height * bbox[3] / 10_00),
] ) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
SCREAMING_SNAKE_CASE : Optional[int] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
SCREAMING_SNAKE_CASE : Union[str, Any] = [unnormalize(lowerCamelCase_ ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
SCREAMING_SNAKE_CASE : Optional[int] = ["""score""", """label""", """box"""]
SCREAMING_SNAKE_CASE : List[Any] = [dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) for vals in zip(scores.tolist() , lowerCamelCase_ , lowerCamelCase_ ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor.post_process_object_detection(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = raw_annotations[0]
SCREAMING_SNAKE_CASE : Tuple = raw_annotation["""scores"""]
SCREAMING_SNAKE_CASE : Optional[int] = raw_annotation["""labels"""]
SCREAMING_SNAKE_CASE : Dict = raw_annotation["""boxes"""]
SCREAMING_SNAKE_CASE : List[Any] = scores.tolist()
SCREAMING_SNAKE_CASE : Any = [self.model.config.idalabel[label.item()] for label in labels]
SCREAMING_SNAKE_CASE : Tuple = [self._get_bounding_box(lowerCamelCase_ ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
SCREAMING_SNAKE_CASE : Union[str, Any] = ["""score""", """label""", """box"""]
SCREAMING_SNAKE_CASE : Union[str, Any] = [
dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = box.int().tolist()
SCREAMING_SNAKE_CASE : str = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 323 |
'''simple docstring'''
from __future__ import annotations
__UpperCAmelCase = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = graph
# mapping node to its parent in resulting breadth first tree
SCREAMING_SNAKE_CASE : dict[str, str | None] = {}
SCREAMING_SNAKE_CASE : List[str] = source_vertex
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex}
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue
while queue:
SCREAMING_SNAKE_CASE : str = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = vertex
queue.append(lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ )
if target_vertex_parent is None:
SCREAMING_SNAKE_CASE : Tuple = (
f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}'''
)
raise ValueError(lowerCamelCase_ )
return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}'''
if __name__ == "__main__":
__UpperCAmelCase = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 323 | 1 |
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def __A ( lowerCamelCase_ = "laptop" ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = f'''https://www.amazon.in/laptop/s?k={product}'''
SCREAMING_SNAKE_CASE : int = {
"""User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""",
"""Accept-Language""": """en-US, en;q=0.5""",
}
SCREAMING_SNAKE_CASE : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).text )
# Initialize a Pandas dataframe with the column titles
SCREAMING_SNAKE_CASE : Any = DataFrame(
columns=[
"""Product Title""",
"""Product Link""",
"""Current Price of the product""",
"""Product Rating""",
"""MRP of the product""",
"""Discount""",
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
"""div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ):
try:
SCREAMING_SNAKE_CASE : int = item.ha.text
SCREAMING_SNAKE_CASE : Tuple = """https://www.amazon.in/""" + item.ha.a["""href"""]
SCREAMING_SNAKE_CASE : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text
try:
SCREAMING_SNAKE_CASE : Any = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text
except AttributeError:
SCREAMING_SNAKE_CASE : str = """Not available"""
try:
SCREAMING_SNAKE_CASE : Any = (
"""₹"""
+ item.find(
"""span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1]
)
except AttributeError:
SCREAMING_SNAKE_CASE : Any = """"""
try:
SCREAMING_SNAKE_CASE : str = float(
(
(
float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
- float(product_price.strip("""₹""" ).replace(""",""" , """""" ) )
)
/ float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
)
* 1_00 )
except ValueError:
SCREAMING_SNAKE_CASE : Tuple = float("""nan""" )
except AttributeError:
pass
SCREAMING_SNAKE_CASE : int = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
SCREAMING_SNAKE_CASE : Optional[int] = """ """
SCREAMING_SNAKE_CASE : Tuple = """ """
data_frame.index += 1
return data_frame
if __name__ == "__main__":
__UpperCAmelCase = """headphones"""
get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
| 323 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__UpperCAmelCase = 0
__UpperCAmelCase = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__UpperCAmelCase = tuple[int, int]
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Node | None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = pos_x
SCREAMING_SNAKE_CASE : Any = pos_y
SCREAMING_SNAKE_CASE : Optional[int] = (pos_y, pos_x)
SCREAMING_SNAKE_CASE : Tuple = goal_x
SCREAMING_SNAKE_CASE : List[str] = goal_y
SCREAMING_SNAKE_CASE : Optional[Any] = g_cost
SCREAMING_SNAKE_CASE : Tuple = parent
SCREAMING_SNAKE_CASE : int = self.calculate_heuristic()
SCREAMING_SNAKE_CASE : Tuple = self.g_cost + self.h_cost
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.pos_x - self.goal_x
SCREAMING_SNAKE_CASE : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowerCamelCase_ ) + abs(lowerCamelCase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : Optional[Any] , lowerCamelCase_ : Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = [self.start]
SCREAMING_SNAKE_CASE : list[Node] = []
SCREAMING_SNAKE_CASE : str = False
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
SCREAMING_SNAKE_CASE : Optional[Any] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowerCamelCase_ )
self.closed_nodes.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = self.get_successors(lowerCamelCase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowerCamelCase_ )
else:
# retrieve the best current path
SCREAMING_SNAKE_CASE : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowerCamelCase_ )
else:
self.open_nodes.append(lowerCamelCase_ )
return [self.start.pos]
def lowerCamelCase_ ( self : int , lowerCamelCase_ : Node ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = []
for action in delta:
SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1]
SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase_ , ) )
return successors
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = node
SCREAMING_SNAKE_CASE : List[str] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
SCREAMING_SNAKE_CASE : Optional[Any] = current_node.parent
path.reverse()
return path
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = AStar(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = AStar(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = False
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
SCREAMING_SNAKE_CASE : List[str] = self.fwd_astar.open_nodes.pop(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowerCamelCase_ , lowerCamelCase_ )
self.fwd_astar.closed_nodes.append(lowerCamelCase_ )
self.bwd_astar.closed_nodes.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = current_bwd_node
SCREAMING_SNAKE_CASE : Any = current_fwd_node
SCREAMING_SNAKE_CASE : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowerCamelCase_ )
else:
# retrieve the best current path
SCREAMING_SNAKE_CASE : int = astar.open_nodes.pop(
astar.open_nodes.index(lowerCamelCase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowerCamelCase_ )
else:
astar.open_nodes.append(lowerCamelCase_ )
return [self.fwd_astar.start.pos]
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Node , lowerCamelCase_ : Node ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_astar.retrace_path(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.bwd_astar.retrace_path(lowerCamelCase_ )
bwd_path.pop()
bwd_path.reverse()
SCREAMING_SNAKE_CASE : str = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__UpperCAmelCase = (0, 0)
__UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__UpperCAmelCase = time.time()
__UpperCAmelCase = AStar(init, goal)
__UpperCAmelCase = a_star.search()
__UpperCAmelCase = time.time() - start_time
print(f'''AStar execution time = {end_time:f} seconds''')
__UpperCAmelCase = time.time()
__UpperCAmelCase = BidirectionalAStar(init, goal)
__UpperCAmelCase = time.time() - bd_start_time
print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 323 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline
SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
SCREAMING_SNAKE_CASE__ = frozenset([] )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 32
SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size
# image encoding components
SCREAMING_SNAKE_CASE : Any = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=lowerCamelCase_ , projection_dim=lowerCamelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[Any] = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase_ , layers_per_block=1 , upcast_attention=lowerCamelCase_ , use_linear_projection=lowerCamelCase_ , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler(
beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = AutoencoderKL()
SCREAMING_SNAKE_CASE : List[str] = {
# image encoding components
"""feature_extractor""": feature_extractor,
"""image_encoder""": image_encoder.eval(),
# image noising components
"""image_normalizer""": image_normalizer.eval(),
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder.eval(),
"""unet""": unet.eval(),
"""scheduler""": scheduler,
"""vae""": vae.eval(),
}
return components
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str=0 , lowerCamelCase_ : List[Any]=True ):
'''simple docstring'''
if str(lowerCamelCase_ ).startswith("""mps""" ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ )
if pil_image:
SCREAMING_SNAKE_CASE : Tuple = input_image * 0.5 + 0.5
SCREAMING_SNAKE_CASE : Dict = input_image.clamp(0 , 1 )
SCREAMING_SNAKE_CASE : str = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
SCREAMING_SNAKE_CASE : Any = DiffusionPipeline.numpy_to_pil(lowerCamelCase_ )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : Any = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = self.get_dummy_inputs(lowerCamelCase_ )
inputs.update({"""image_embeds""": None} )
SCREAMING_SNAKE_CASE : str = sd_pipe(**lowerCamelCase_ ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = torch_device in ["""cpu""", """mps"""]
self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase_ )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase_ )
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
SCREAMING_SNAKE_CASE : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
SCREAMING_SNAKE_CASE : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(lowerCamelCase_ , """anime turle""" , generator=lowerCamelCase_ , output_type="""np""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
SCREAMING_SNAKE_CASE : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa )
pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
SCREAMING_SNAKE_CASE : int = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe(lowerCamelCase_ , """anime turle""" , generator=lowerCamelCase_ , output_type="""np""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
SCREAMING_SNAKE_CASE : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
SCREAMING_SNAKE_CASE : Tuple = pipe(
lowerCamelCase_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , )
SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 323 |
'''simple docstring'''
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''efficientnet'''
def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : int = width_coefficient
SCREAMING_SNAKE_CASE : List[str] = depth_coefficient
SCREAMING_SNAKE_CASE : Optional[Any] = depth_divisor
SCREAMING_SNAKE_CASE : List[str] = kernel_sizes
SCREAMING_SNAKE_CASE : Dict = in_channels
SCREAMING_SNAKE_CASE : List[str] = out_channels
SCREAMING_SNAKE_CASE : Any = depthwise_padding
SCREAMING_SNAKE_CASE : Dict = strides
SCREAMING_SNAKE_CASE : Optional[Any] = num_block_repeats
SCREAMING_SNAKE_CASE : Any = expand_ratios
SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio
SCREAMING_SNAKE_CASE : List[str] = hidden_act
SCREAMING_SNAKE_CASE : Dict = hidden_dim
SCREAMING_SNAKE_CASE : List[str] = pooling_type
SCREAMING_SNAKE_CASE : List[Any] = initializer_range
SCREAMING_SNAKE_CASE : Any = batch_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum
SCREAMING_SNAKE_CASE : Dict = dropout_rate
SCREAMING_SNAKE_CASE : int = drop_connect_rate
SCREAMING_SNAKE_CASE : Optional[Any] = sum(lowerCamelCase_ ) * 4
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' )
@property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return 1e-5
| 323 | 1 |
'''simple docstring'''
import math
def __A ( lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = 0 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = end or len(lowerCamelCase_ )
for i in range(lowerCamelCase_ , lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Optional[Any] = i
SCREAMING_SNAKE_CASE : Any = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
SCREAMING_SNAKE_CASE : List[str] = array[temp_index - 1]
temp_index -= 1
SCREAMING_SNAKE_CASE : str = temp_index_value
return array
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): # Max Heap
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = index
SCREAMING_SNAKE_CASE : Any = 2 * index + 1 # Left Node
SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
SCREAMING_SNAKE_CASE : Union[str, Any] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
SCREAMING_SNAKE_CASE : Union[str, Any] = right_index
if largest != index:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = array[largest], array[index]
heapify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = len(lowerCamelCase_ )
for i in range(n // 2 , -1 , -1 ):
heapify(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
for i in range(n - 1 , 0 , -1 ):
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = array[0], array[i]
heapify(lowerCamelCase_ , 0 , lowerCamelCase_ )
return array
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = low
SCREAMING_SNAKE_CASE : List[str] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = array[j], array[i]
i += 1
def __A ( lowerCamelCase_ ):
"""simple docstring"""
if len(lowerCamelCase_ ) == 0:
return array
SCREAMING_SNAKE_CASE : Dict = 2 * math.ceil(math.loga(len(lowerCamelCase_ ) ) )
SCREAMING_SNAKE_CASE : Optional[int] = 16
return intro_sort(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowerCamelCase_ )
max_depth -= 1
SCREAMING_SNAKE_CASE : Optional[Any] = median_of_a(lowerCamelCase_ , lowerCamelCase_ , start + ((end - start) // 2) + 1 , end - 1 )
SCREAMING_SNAKE_CASE : List[Any] = partition(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
intro_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = p
return insertion_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = input("""Enter numbers separated by a comma : """).strip()
__UpperCAmelCase = [float(item) for item in user_input.split(""",""")]
print(sort(unsorted))
| 323 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
__UpperCAmelCase = logging.get_logger(__name__)
@add_end_docstrings(lowercase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = {}
SCREAMING_SNAKE_CASE : List[Any] = {}
if prompt is not None:
SCREAMING_SNAKE_CASE : List[Any] = prompt
if generate_kwargs is not None:
SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ):
'''simple docstring'''
return super().__call__(lowerCamelCase_ , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ )
if prompt is not None:
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type
if model_type == "git":
SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids
SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework )
model_inputs.update(lowerCamelCase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
SCREAMING_SNAKE_CASE : Optional[Any] = None
return model_inputs
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ):
'''simple docstring'''
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
SCREAMING_SNAKE_CASE : List[str] = None
if generate_kwargs is None:
SCREAMING_SNAKE_CASE : int = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name )
SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ )
return model_outputs
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for output_ids in model_outputs:
SCREAMING_SNAKE_CASE : List[Any] = {
"""generated_text""": self.tokenizer.decode(
lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , )
}
records.append(lowerCamelCase_ )
return records
| 323 | 1 |
'''simple docstring'''
from collections import defaultdict
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = first_str.lower().strip()
SCREAMING_SNAKE_CASE : Any = second_str.lower().strip()
# Remove whitespace
SCREAMING_SNAKE_CASE : Tuple = first_str.replace(""" """ , """""" )
SCREAMING_SNAKE_CASE : Optional[int] = second_str.replace(""" """ , """""" )
# Strings of different lengths are not anagrams
if len(lowerCamelCase_ ) != len(lowerCamelCase_ ):
return False
# Default values for count should be 0
SCREAMING_SNAKE_CASE : defaultdict[str, int] = defaultdict(lowerCamelCase_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(lowerCamelCase_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
__UpperCAmelCase = input("""Enter the first string """).strip()
__UpperCAmelCase = input("""Enter the second string """).strip()
__UpperCAmelCase = check_anagrams(input_a, input_b)
print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 323 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,)
SCREAMING_SNAKE_CASE__ = 10
def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = {
"""num_train_timesteps""": 2_01,
"""sigma_min""": 0.002,
"""sigma_max""": 80.0,
}
config.update(**lowerCamelCase_ )
return config
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 10
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ )
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0]
SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1]
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample
SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = 1
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = scheduler.timesteps
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(lowerCamelCase_ ):
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 192.7_614 ) < 1e-2
assert abs(result_mean.item() - 0.2_510 ) < 1e-3
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0]
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Dict = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 347.6_357 ) < 1e-2
assert abs(result_mean.item() - 0.4_527 ) < 1e-3
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0]
with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0]
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ )
with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
| 323 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block
SCREAMING_SNAKE_CASE : int = torch.nn.Convad(
lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] )
# down
SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0]
for i, down_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Any = output_channel
SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block(
lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
self.down_blocks.append(lowerCamelCase_ )
# mid
SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# out
SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU()
SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels
SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Tuple = False
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = x
SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[Any] ):
def custom_forward(*lowerCamelCase_ : List[str] ):
return module(*lowerCamelCase_ )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ )
else:
# down
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ )
# post-process
SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : int = layers_per_block
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad(
lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] )
SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None
# mid
SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# up
SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = output_channel
SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i]
SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : List[Any] = get_up_block(
lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , )
self.up_blocks.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = output_channel
# out
if norm_type == "spatial":
SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : Dict = nn.SiLU()
SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Dict = False
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = z
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[str] ):
def custom_forward(*lowerCamelCase_ : str ):
return module(*lowerCamelCase_ )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ )
# post-process
if latent_embeds is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Tuple = n_e
SCREAMING_SNAKE_CASE : int = vq_embed_dim
SCREAMING_SNAKE_CASE : Tuple = beta
SCREAMING_SNAKE_CASE : Union[str, Any] = legacy
SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
SCREAMING_SNAKE_CASE : Optional[Any] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0]
SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed
SCREAMING_SNAKE_CASE : Any = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
SCREAMING_SNAKE_CASE : Optional[int] = n_e
SCREAMING_SNAKE_CASE : Any = sane_index_shape
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long()
SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 )
SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1
if self.unknown_index == "random":
SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
SCREAMING_SNAKE_CASE : Any = self.unknown_index
return new.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
if self.re_embed > self.used.shape[0]: # extra token
SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero
SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ )
return back.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous()
SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 )
SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape )
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : List[str] = None
# compute loss for embedding
if not self.legacy:
SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach()
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
if self.remap is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ )
if shape is not None:
SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ )
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = parameters
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 )
SCREAMING_SNAKE_CASE : Dict = deterministic
SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar )
SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar )
if self.deterministic:
SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = randn_tensor(
self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype )
SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample
return x
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
return self.mean
| 323 |
'''simple docstring'''
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ):
'''simple docstring'''
super().__init__(
lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE : Optional[int] = Text(
cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : List[str] = None
self.builder.download_and_prepare(
download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE : int = self.builder.as_dataset(
split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory )
return dataset
| 323 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def __A ( lowerCamelCase_ ):
"""simple docstring"""
if num <= 0:
SCREAMING_SNAKE_CASE : Optional[int] = f'''{num}: Invalid input, please enter a positive integer.'''
raise ValueError(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = [True] * (num + 1)
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Union[str, Any] = 2
SCREAMING_SNAKE_CASE : Optional[Any] = int(math.sqrt(lowerCamelCase_ ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(lowerCamelCase_ )
# Set multiples of start be False
for i in range(start * start , num + 1 , lowerCamelCase_ ):
if sieve[i] is True:
SCREAMING_SNAKE_CASE : int = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(lowerCamelCase_ )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
| 323 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 3_84
SCREAMING_SNAKE_CASE : Union[str, Any] = 7
if "tiny" in model_name:
SCREAMING_SNAKE_CASE : List[str] = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2)
SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24)
elif "small" in model_name:
SCREAMING_SNAKE_CASE : Any = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24)
elif "base" in model_name:
SCREAMING_SNAKE_CASE : int = 1_28
SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32)
SCREAMING_SNAKE_CASE : Optional[Any] = 12
SCREAMING_SNAKE_CASE : str = 5_12
elif "large" in model_name:
SCREAMING_SNAKE_CASE : Tuple = 1_92
SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48)
SCREAMING_SNAKE_CASE : Tuple = 12
SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68
# set label information
SCREAMING_SNAKE_CASE : List[str] = 1_50
SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files"""
SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json"""
SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig(
embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
SCREAMING_SNAKE_CASE : List[str] = UperNetConfig(
backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , )
return config
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
# fmt: off
# stem
rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = val
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE : Dict = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE : Any = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :]
# fmt: on
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape
SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape
SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = x.shape[0]
SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = x.shape[0]
SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = {
"""upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""",
"""upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""",
"""upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""",
"""upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""",
}
SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name]
SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[
"""state_dict"""
]
for name, param in state_dict.items():
print(lowerCamelCase_ , param.shape )
SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ )
if "bn" in key:
SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" )
SCREAMING_SNAKE_CASE : Optional[Any] = val
# rename keys
SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ )
for src, dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
read_in_q_k_v(lowerCamelCase_ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ )
if "norm" in key:
SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# verify on image
SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" )
SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor()
SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = outputs.logits
print(logits.shape )
print("""First values of logits:""" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(lowerCamelCase_ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
__UpperCAmelCase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 323 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = num_of_nodes
SCREAMING_SNAKE_CASE : list[list[int]] = []
SCREAMING_SNAKE_CASE : dict[int, int] = {}
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ):
'''simple docstring'''
self.m_edges.append([u_node, v_node, weight] )
def lowerCamelCase_ ( self : int , lowerCamelCase_ : int ):
'''simple docstring'''
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : int ):
'''simple docstring'''
if self.m_component[u_node] != u_node:
for k in self.m_component:
SCREAMING_SNAKE_CASE : str = self.find_component(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : list[int] , lowerCamelCase_ : int , lowerCamelCase_ : int ):
'''simple docstring'''
if component_size[u_node] <= component_size[v_node]:
SCREAMING_SNAKE_CASE : Any = v_node
component_size[v_node] += component_size[u_node]
self.set_component(lowerCamelCase_ )
elif component_size[u_node] >= component_size[v_node]:
SCREAMING_SNAKE_CASE : str = self.find_component(lowerCamelCase_ )
component_size[u_node] += component_size[v_node]
self.set_component(lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = []
SCREAMING_SNAKE_CASE : Any = 0
SCREAMING_SNAKE_CASE : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
SCREAMING_SNAKE_CASE : str = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = edge
SCREAMING_SNAKE_CASE : Any = self.m_component[u]
SCREAMING_SNAKE_CASE : Optional[Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
SCREAMING_SNAKE_CASE : Optional[Any] = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = edge
SCREAMING_SNAKE_CASE : Optional[Any] = self.m_component[u]
SCREAMING_SNAKE_CASE : Dict = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' )
num_of_components -= 1
SCREAMING_SNAKE_CASE : List[Any] = [-1] * self.m_num_of_nodes
print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' )
def __A ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class UpperCamelCase__ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Any = pad_token_id
SCREAMING_SNAKE_CASE : List[Any] = max_length
SCREAMING_SNAKE_CASE : Optional[int] = vocab
SCREAMING_SNAKE_CASE : List[Any] = merges
SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : GPTaTokenizer , *lowerCamelCase_ : str , **lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab()
return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
return cls(**lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.tf_tokenizer(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ )
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = pad_model_inputs(
lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 323 | 1 |
'''simple docstring'''
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = logging.get_logger()
# the current default level is logging.WARNING
SCREAMING_SNAKE_CASE : Optional[int] = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(lowerCamelCase_ )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = logging.get_verbosity()
SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger("""transformers.models.bart.tokenization_bart""" )
SCREAMING_SNAKE_CASE : str = """Testing 1, 2, 3"""
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(lowerCamelCase_ ) as cl:
logger.warning(lowerCamelCase_ )
self.assertEqual(cl.out , msg + """\n""" )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(lowerCamelCase_ ) as cl:
logger.warning(lowerCamelCase_ )
self.assertEqual(cl.out , """""" )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(lowerCamelCase_ ) as cl:
logger.warning(lowerCamelCase_ )
self.assertEqual(cl.out , msg + """\n""" )
# restore to the original level
logging.set_verbosity(lowerCamelCase_ )
@mockenv(TRANSFORMERS_VERBOSITY="""error""" )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
SCREAMING_SNAKE_CASE : int = logging.get_logger("""transformers.models.bart.tokenization_bart""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.getenv("""TRANSFORMERS_VERBOSITY""" , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = logging.log_levels[env_level_str]
SCREAMING_SNAKE_CASE : Dict = logging.get_verbosity()
self.assertEqual(
lowerCamelCase_ , lowerCamelCase_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , )
# restore to the original level
SCREAMING_SNAKE_CASE : int = """"""
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY="""super-error""" )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
transformers.utils.logging._reset_library_root_logger()
SCREAMING_SNAKE_CASE : List[Any] = logging.logging.getLogger()
with CaptureLogger(lowerCamelCase_ ) as cl:
# this action activates the env var
logging.get_logger("""transformers.models.bart.tokenization_bart""" )
self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out )
# no need to restore as nothing was changed
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
transformers.utils.logging._reset_library_root_logger()
SCREAMING_SNAKE_CASE : str = logging.get_logger("""transformers.models.bart.tokenization_bart""" )
SCREAMING_SNAKE_CASE : Dict = """Testing 1, 2, 3"""
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ):
# nothing should be logged as env var disables this method
with CaptureLogger(lowerCamelCase_ ) as cl:
logger.warning_advice(lowerCamelCase_ )
self.assertEqual(cl.out , """""" )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(lowerCamelCase_ ) as cl:
logger.warning_advice(lowerCamelCase_ )
self.assertEqual(cl.out , msg + """\n""" )
def __A ( ):
"""simple docstring"""
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 323 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths
SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train"""
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Union[str, Any] = streaming
SCREAMING_SNAKE_CASE : Optional[int] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
pass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : int = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Tuple = streaming
SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
pass
| 323 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
SCREAMING_SNAKE_CASE__ = field(default=2 , metadata={'''help''': '''Batch size for training.'''} )
SCREAMING_SNAKE_CASE__ = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} )
SCREAMING_SNAKE_CASE__ = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} )
SCREAMING_SNAKE_CASE__ = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} )
SCREAMING_SNAKE_CASE__ = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} )
SCREAMING_SNAKE_CASE__ = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
SCREAMING_SNAKE_CASE__ = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} )
SCREAMING_SNAKE_CASE__ = field(default=1 , metadata={'''help''': '''Training seed.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} )
SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''If True the data is pretokenized.'''} )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
SCREAMING_SNAKE_CASE__ = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
SCREAMING_SNAKE_CASE__ = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} )
SCREAMING_SNAKE_CASE__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} )
SCREAMING_SNAKE_CASE__ = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} )
SCREAMING_SNAKE_CASE__ = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} )
SCREAMING_SNAKE_CASE__ = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} )
SCREAMING_SNAKE_CASE__ = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} )
SCREAMING_SNAKE_CASE__ = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} )
SCREAMING_SNAKE_CASE__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} )
SCREAMING_SNAKE_CASE__ = field(
default=-1 , metadata={
'''help''': (
'''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'''
''' number corresponds to which GPU device id to run on.'''
)
} , )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={
'''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'''
} , )
SCREAMING_SNAKE_CASE__ = field(
default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} )
SCREAMING_SNAKE_CASE__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} )
SCREAMING_SNAKE_CASE__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
SCREAMING_SNAKE_CASE__ = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} )
SCREAMING_SNAKE_CASE__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} )
SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} )
SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} )
SCREAMING_SNAKE_CASE__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} )
SCREAMING_SNAKE_CASE__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} )
SCREAMING_SNAKE_CASE__ = field(default=lowercase_ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
| 323 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small"""
SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : str = """en_speaker_1"""
SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string"""
SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json"""
SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings"""
def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
SCREAMING_SNAKE_CASE : List[str] = 35
SCREAMING_SNAKE_CASE : List[Any] = 2
SCREAMING_SNAKE_CASE : int = 8
SCREAMING_SNAKE_CASE : Optional[int] = {
"""semantic_prompt""": np.ones(lowerCamelCase_ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string )
SCREAMING_SNAKE_CASE : Tuple = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 323 | 1 |
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
__UpperCAmelCase = random.Random()
def __A ( lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None ):
"""simple docstring"""
if rng is None:
SCREAMING_SNAKE_CASE : int = global_rng
SCREAMING_SNAKE_CASE : List[str] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple=7 , lowerCamelCase_ : str=4_00 , lowerCamelCase_ : Optional[int]=20_00 , lowerCamelCase_ : Union[str, Any]=24 , lowerCamelCase_ : str=24 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[int]=1_60_00 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[str]=True , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : List[Any] = batch_size
SCREAMING_SNAKE_CASE : Tuple = min_seq_length
SCREAMING_SNAKE_CASE : Any = max_seq_length
SCREAMING_SNAKE_CASE : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE : Optional[int] = feature_size
SCREAMING_SNAKE_CASE : int = num_mel_bins
SCREAMING_SNAKE_CASE : List[Any] = padding_value
SCREAMING_SNAKE_CASE : str = sampling_rate
SCREAMING_SNAKE_CASE : int = return_attention_mask
SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Tuple=False ):
'''simple docstring'''
def _flatten(lowerCamelCase_ : List[Any] ):
return list(itertools.chain(*lowerCamelCase_ ) )
if equal_length:
SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE : Tuple = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE : int = [np.asarray(lowerCamelCase_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = SpeechaTextFeatureExtractor if is_speech_available() else None
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = SpeechaTextFeatureExtractionTester(self )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
self.assertTrue(np.all(np.mean(lowerCamelCase_ , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ , axis=0 ) - 1 ) < 1e-3 ) )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
SCREAMING_SNAKE_CASE : str = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE : List[str] = feature_extractor(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
SCREAMING_SNAKE_CASE : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) )
# Test batched
SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCamelCase_ , return_tensors="""np""" ).input_features
SCREAMING_SNAKE_CASE : int = feature_extractor(lowerCamelCase_ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE : List[str] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
SCREAMING_SNAKE_CASE : Any = np.asarray(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(lowerCamelCase_ , return_tensors="""np""" ).input_features
SCREAMING_SNAKE_CASE : Any = feature_extractor(lowerCamelCase_ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
SCREAMING_SNAKE_CASE : str = ["""longest""", """max_length""", """do_not_pad"""]
SCREAMING_SNAKE_CASE : Any = [None, 16, None]
for max_length, padding in zip(lowerCamelCase_ , lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Dict = feature_extractor(
lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = inputs.input_features
SCREAMING_SNAKE_CASE : Union[str, Any] = inputs.attention_mask
SCREAMING_SNAKE_CASE : List[str] = [np.sum(lowerCamelCase_ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
SCREAMING_SNAKE_CASE : Tuple = ["""longest""", """max_length""", """do_not_pad"""]
SCREAMING_SNAKE_CASE : Tuple = [None, 16, None]
for max_length, padding in zip(lowerCamelCase_ , lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(
lowerCamelCase_ , max_length=lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors="""np""" , return_attention_mask=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = inputs.input_features
SCREAMING_SNAKE_CASE : int = inputs.attention_mask
SCREAMING_SNAKE_CASE : Union[str, Any] = [np.sum(lowerCamelCase_ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
SCREAMING_SNAKE_CASE : int = feature_extractor(
lowerCamelCase_ , padding="""max_length""" , max_length=4 , truncation=lowerCamelCase_ , return_tensors="""np""" , return_attention_mask=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : List[Any] = inputs.input_features
SCREAMING_SNAKE_CASE : int = inputs.attention_mask
SCREAMING_SNAKE_CASE : Tuple = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : Dict = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
SCREAMING_SNAKE_CASE : Any = feature_extractor(
lowerCamelCase_ , padding="""longest""" , max_length=4 , truncation=lowerCamelCase_ , return_tensors="""np""" , return_attention_mask=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : List[Any] = inputs.input_features
SCREAMING_SNAKE_CASE : Any = inputs.attention_mask
SCREAMING_SNAKE_CASE : Optional[Any] = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
SCREAMING_SNAKE_CASE : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
SCREAMING_SNAKE_CASE : Tuple = feature_extractor(
lowerCamelCase_ , padding="""longest""" , max_length=16 , truncation=lowerCamelCase_ , return_tensors="""np""" , return_attention_mask=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Optional[Any] = inputs.input_features
SCREAMING_SNAKE_CASE : List[Any] = inputs.attention_mask
SCREAMING_SNAKE_CASE : int = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
import torch
SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : Optional[Any] = np.random.rand(1_00 , 32 ).astype(np.floataa )
SCREAMING_SNAKE_CASE : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE : Tuple = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
SCREAMING_SNAKE_CASE : List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str ):
'''simple docstring'''
from datasets import load_dataset
SCREAMING_SNAKE_CASE : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE : Union[str, Any] = ds.sort("""id""" ).select(range(lowerCamelCase_ ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([
-1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241,
-1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128,
-1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625,
] )
# fmt: on
SCREAMING_SNAKE_CASE : List[str] = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE : List[str] = feature_extractor(lowerCamelCase_ , return_tensors="""pt""" ).input_features
self.assertEquals(input_features.shape , (1, 5_84, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , lowerCamelCase_ , atol=1e-4 ) )
| 323 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__UpperCAmelCase = logging.getLogger(__name__)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , lowerCamelCase_ )
# Set seed
set_seed(training_args.seed )
try:
SCREAMING_SNAKE_CASE : Dict = processors[data_args.task_name]()
SCREAMING_SNAKE_CASE : Optional[int] = processor.get_labels()
SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , )
# Get datasets
SCREAMING_SNAKE_CASE : Optional[Any] = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
SCREAMING_SNAKE_CASE : Dict = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(lowerCamelCase_ ) -> Dict:
SCREAMING_SNAKE_CASE : str = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(lowerCamelCase_ , p.label_ids )}
# Data collator
SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
SCREAMING_SNAKE_CASE : Any = Trainer(
model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate()
SCREAMING_SNAKE_CASE : str = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(lowerCamelCase_ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , lowerCamelCase_ , lowerCamelCase_ )
writer.write("""%s = %s\n""" % (key, value) )
results.update(lowerCamelCase_ )
return results
def __A ( lowerCamelCase_ ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 323 | 1 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 323 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block
SCREAMING_SNAKE_CASE : int = torch.nn.Convad(
lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] )
# down
SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0]
for i, down_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Any = output_channel
SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block(
lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
self.down_blocks.append(lowerCamelCase_ )
# mid
SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# out
SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU()
SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels
SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Tuple = False
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = x
SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[Any] ):
def custom_forward(*lowerCamelCase_ : List[str] ):
return module(*lowerCamelCase_ )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ )
else:
# down
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ )
# post-process
SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : int = layers_per_block
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad(
lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] )
SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None
# mid
SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# up
SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = output_channel
SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i]
SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : List[Any] = get_up_block(
lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , )
self.up_blocks.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = output_channel
# out
if norm_type == "spatial":
SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : Dict = nn.SiLU()
SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Dict = False
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = z
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[str] ):
def custom_forward(*lowerCamelCase_ : str ):
return module(*lowerCamelCase_ )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ )
# post-process
if latent_embeds is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Tuple = n_e
SCREAMING_SNAKE_CASE : int = vq_embed_dim
SCREAMING_SNAKE_CASE : Tuple = beta
SCREAMING_SNAKE_CASE : Union[str, Any] = legacy
SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
SCREAMING_SNAKE_CASE : Optional[Any] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0]
SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed
SCREAMING_SNAKE_CASE : Any = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
SCREAMING_SNAKE_CASE : Optional[int] = n_e
SCREAMING_SNAKE_CASE : Any = sane_index_shape
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long()
SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 )
SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1
if self.unknown_index == "random":
SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
SCREAMING_SNAKE_CASE : Any = self.unknown_index
return new.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
if self.re_embed > self.used.shape[0]: # extra token
SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero
SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ )
return back.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous()
SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 )
SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape )
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : List[str] = None
# compute loss for embedding
if not self.legacy:
SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach()
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
if self.remap is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ )
if shape is not None:
SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ )
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = parameters
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 )
SCREAMING_SNAKE_CASE : Dict = deterministic
SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar )
SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar )
if self.deterministic:
SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = randn_tensor(
self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype )
SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample
return x
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
return self.mean
| 323 | 1 |
'''simple docstring'''
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(lowerCamelCase_ , lowerCamelCase_ )
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = emb.weight.shape
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = emb.weight.data
return lin_layer
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = torch.load(lowerCamelCase_ , map_location="""cpu""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = Namespace(**checkpoint["""cfg"""]["""model"""] )
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint["""model"""]
remove_ignore_keys_(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = state_dict["""decoder.embed_tokens.weight"""].shape[0]
SCREAMING_SNAKE_CASE : Optional[Any] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()}
SCREAMING_SNAKE_CASE : List[str] = XGLMConfig(
vocab_size=lowerCamelCase_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
SCREAMING_SNAKE_CASE : Tuple = XGLMForCausalLM(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ )
print(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""")
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
__UpperCAmelCase = parser.parse_args()
__UpperCAmelCase = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 323 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL
@property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 4
SCREAMING_SNAKE_CASE : str = 3
SCREAMING_SNAKE_CASE : List[Any] = (32, 32)
SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input
return init_dict, inputs_dict
| 323 | 1 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class UpperCamelCase__ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Any = pad_token_id
SCREAMING_SNAKE_CASE : List[Any] = max_length
SCREAMING_SNAKE_CASE : Optional[int] = vocab
SCREAMING_SNAKE_CASE : List[Any] = merges
SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : GPTaTokenizer , *lowerCamelCase_ : str , **lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab()
return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
return cls(**lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.tf_tokenizer(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ )
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = pad_model_inputs(
lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 323 |
'''simple docstring'''
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
pass
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ )
import datasets
SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
SCREAMING_SNAKE_CASE : Any = depth_estimator(
[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
] )
self.assertEqual(
[
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
] , lowerCamelCase_ , )
@require_tf
@unittest.skip("""Depth estimation is not implemented in TF""" )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large"""
SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 )
@require_torch
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
| 323 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
class UpperCamelCase__ ( lowercase_ , lowercase_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , lowerCamelCase_ : int = 16 , lowerCamelCase_ : int = 88 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "geglu" , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : int = num_attention_heads
SCREAMING_SNAKE_CASE : Union[str, Any] = attention_head_dim
SCREAMING_SNAKE_CASE : Any = num_attention_heads * attention_head_dim
SCREAMING_SNAKE_CASE : str = in_channels
SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.GroupNorm(num_groups=lowerCamelCase_ , num_channels=lowerCamelCase_ , eps=1e-6 , affine=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = nn.Linear(lowerCamelCase_ , lowerCamelCase_ )
# 3. Define transformers blocks
SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dropout=lowerCamelCase_ , cross_attention_dim=lowerCamelCase_ , activation_fn=lowerCamelCase_ , attention_bias=lowerCamelCase_ , double_self_attention=lowerCamelCase_ , norm_elementwise_affine=lowerCamelCase_ , )
for d in range(lowerCamelCase_ )
] )
SCREAMING_SNAKE_CASE : str = nn.Linear(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=1 , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : bool = True , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = hidden_states.shape
SCREAMING_SNAKE_CASE : Union[str, Any] = batch_frames // num_frames
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states
SCREAMING_SNAKE_CASE : Optional[int] = hidden_states[None, :].reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = hidden_states.permute(0 , 2 , 1 , 3 , 4 )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.norm(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = self.proj_in(lowerCamelCase_ )
# 2. Blocks
for block in self.transformer_blocks:
SCREAMING_SNAKE_CASE : Optional[Any] = block(
lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , timestep=lowerCamelCase_ , cross_attention_kwargs=lowerCamelCase_ , class_labels=lowerCamelCase_ , )
# 3. Output
SCREAMING_SNAKE_CASE : Union[str, Any] = self.proj_out(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = (
hidden_states[None, None, :]
.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
.permute(0 , 3 , 4 , 1 , 2 )
.contiguous()
)
SCREAMING_SNAKE_CASE : List[Any] = hidden_states.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=lowerCamelCase_ )
| 323 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
SCREAMING_SNAKE_CASE : Optional[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : Any = num_channels
SCREAMING_SNAKE_CASE : str = image_size
SCREAMING_SNAKE_CASE : Dict = min_resolution
SCREAMING_SNAKE_CASE : List[str] = max_resolution
SCREAMING_SNAKE_CASE : str = do_resize
SCREAMING_SNAKE_CASE : Optional[Any] = size
SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize
SCREAMING_SNAKE_CASE : List[Any] = image_mean
SCREAMING_SNAKE_CASE : str = image_std
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self )
@property
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 323 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""",
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class UpperCamelCase__ ( lowercase_ , lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''dinat'''
SCREAMING_SNAKE_CASE__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : List[Any]=64 , lowerCamelCase_ : Optional[int]=[3, 4, 6, 5] , lowerCamelCase_ : str=[2, 4, 8, 16] , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowerCamelCase_ : Any=3.0 , lowerCamelCase_ : int=True , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Tuple=0.02 , lowerCamelCase_ : int=1e-5 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : int=None , lowerCamelCase_ : Tuple=None , **lowerCamelCase_ : List[str] , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = patch_size
SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE : Dict = embed_dim
SCREAMING_SNAKE_CASE : List[str] = depths
SCREAMING_SNAKE_CASE : str = len(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = num_heads
SCREAMING_SNAKE_CASE : Any = kernel_size
SCREAMING_SNAKE_CASE : Optional[Any] = dilations
SCREAMING_SNAKE_CASE : Dict = mlp_ratio
SCREAMING_SNAKE_CASE : Optional[int] = qkv_bias
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Dict = drop_path_rate
SCREAMING_SNAKE_CASE : Any = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE : Tuple = initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE : Tuple = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
SCREAMING_SNAKE_CASE : Optional[int] = layer_scale_init_value
SCREAMING_SNAKE_CASE : Any = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(lowerCamelCase_ ) + 1 )]
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = get_aligned_output_features_output_indices(
out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
| 323 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
__UpperCAmelCase = {
"""config""": [
"""EXTERNAL_DATA_FORMAT_SIZE_LIMIT""",
"""OnnxConfig""",
"""OnnxConfigWithPast""",
"""OnnxSeq2SeqConfigWithPast""",
"""PatchingSpec""",
],
"""convert""": ["""export""", """validate_model_outputs"""],
"""features""": ["""FeaturesManager"""],
"""utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 323 | 1 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def __A ( lowerCamelCase_ ):
"""simple docstring"""
if "cls_token" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace("""cls_token""" , """vit.embeddings.cls_token""" )
if "mask_token" in name:
SCREAMING_SNAKE_CASE : Tuple = name.replace("""mask_token""" , """decoder.mask_token""" )
if "decoder_pos_embed" in name:
SCREAMING_SNAKE_CASE : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE : str = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE : List[str] = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" )
if "decoder_blocks" in name:
SCREAMING_SNAKE_CASE : List[str] = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""blocks""" , """vit.encoder.layer""" )
if "attn.proj" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
SCREAMING_SNAKE_CASE : Any = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
SCREAMING_SNAKE_CASE : List[str] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE : Any = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
SCREAMING_SNAKE_CASE : int = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
SCREAMING_SNAKE_CASE : Tuple = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name:
SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name:
SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""norm.bias""" , """vit.layernorm.bias""" )
return name
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(lowerCamelCase_ )
if "qkv" in key:
SCREAMING_SNAKE_CASE : Union[str, Any] = key.split(""".""" )
SCREAMING_SNAKE_CASE : str = int(key_split[1] )
if "decoder_blocks" in key:
SCREAMING_SNAKE_CASE : int = config.decoder_hidden_size
SCREAMING_SNAKE_CASE : Union[str, Any] = """decoder.decoder_layers."""
if "weight" in key:
SCREAMING_SNAKE_CASE : Union[str, Any] = val[:dim, :]
SCREAMING_SNAKE_CASE : List[str] = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE : int = val[-dim:, :]
elif "bias" in key:
SCREAMING_SNAKE_CASE : Tuple = val[:dim]
SCREAMING_SNAKE_CASE : List[Any] = val[dim : dim * 2]
SCREAMING_SNAKE_CASE : Dict = val[-dim:]
else:
SCREAMING_SNAKE_CASE : Tuple = config.hidden_size
SCREAMING_SNAKE_CASE : List[Any] = """vit.encoder.layer."""
if "weight" in key:
SCREAMING_SNAKE_CASE : Optional[int] = val[:dim, :]
SCREAMING_SNAKE_CASE : Dict = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE : str = val[-dim:, :]
elif "bias" in key:
SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim]
SCREAMING_SNAKE_CASE : List[Any] = val[dim : dim * 2]
SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:]
else:
SCREAMING_SNAKE_CASE : List[Any] = val
return orig_state_dict
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEConfig()
if "large" in checkpoint_url:
SCREAMING_SNAKE_CASE : Tuple = 10_24
SCREAMING_SNAKE_CASE : Optional[Any] = 40_96
SCREAMING_SNAKE_CASE : Any = 24
SCREAMING_SNAKE_CASE : Optional[int] = 16
elif "huge" in checkpoint_url:
SCREAMING_SNAKE_CASE : Dict = 14
SCREAMING_SNAKE_CASE : Union[str, Any] = 12_80
SCREAMING_SNAKE_CASE : Any = 51_20
SCREAMING_SNAKE_CASE : Optional[Any] = 32
SCREAMING_SNAKE_CASE : Union[str, Any] = 16
SCREAMING_SNAKE_CASE : List[str] = ViTMAEForPreTraining(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" )["""model"""]
SCREAMING_SNAKE_CASE : Tuple = ViTMAEImageProcessor(size=config.image_size )
SCREAMING_SNAKE_CASE : List[Any] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
model.eval()
SCREAMING_SNAKE_CASE : Optional[Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg"""
SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw )
SCREAMING_SNAKE_CASE : Dict = ViTMAEImageProcessor(size=config.image_size )
SCREAMING_SNAKE_CASE : Any = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
SCREAMING_SNAKE_CASE : List[str] = model(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits
if "large" in checkpoint_url:
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] )
elif "huge" in checkpoint_url:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(
[[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(
[[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
__UpperCAmelCase = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 323 |
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 323 | 1 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small"""
SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : str = """en_speaker_1"""
SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string"""
SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json"""
SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings"""
def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
SCREAMING_SNAKE_CASE : List[str] = 35
SCREAMING_SNAKE_CASE : List[Any] = 2
SCREAMING_SNAKE_CASE : int = 8
SCREAMING_SNAKE_CASE : Optional[int] = {
"""semantic_prompt""": np.ones(lowerCamelCase_ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string )
SCREAMING_SNAKE_CASE : Tuple = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 323 |
'''simple docstring'''
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number | (1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number & ~(1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number ^ (1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return ((number >> position) & 1) == 1
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any]=13 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : int=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Union[str, Any]=99 , lowerCamelCase_ : Any=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : Dict="gelu" , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : int=2 , lowerCamelCase_ : Optional[Any]=0.02 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : Dict=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = parent
SCREAMING_SNAKE_CASE : Any = 13
SCREAMING_SNAKE_CASE : Tuple = 7
SCREAMING_SNAKE_CASE : Optional[int] = True
SCREAMING_SNAKE_CASE : Optional[int] = True
SCREAMING_SNAKE_CASE : List[Any] = True
SCREAMING_SNAKE_CASE : Union[str, Any] = True
SCREAMING_SNAKE_CASE : List[Any] = 99
SCREAMING_SNAKE_CASE : Tuple = 32
SCREAMING_SNAKE_CASE : Tuple = 2
SCREAMING_SNAKE_CASE : str = 4
SCREAMING_SNAKE_CASE : List[str] = 37
SCREAMING_SNAKE_CASE : List[Any] = """gelu"""
SCREAMING_SNAKE_CASE : int = 0.1
SCREAMING_SNAKE_CASE : Dict = 0.1
SCREAMING_SNAKE_CASE : str = 5_12
SCREAMING_SNAKE_CASE : List[str] = 16
SCREAMING_SNAKE_CASE : Optional[int] = 2
SCREAMING_SNAKE_CASE : str = 0.02
SCREAMING_SNAKE_CASE : int = 3
SCREAMING_SNAKE_CASE : Optional[Any] = 4
SCREAMING_SNAKE_CASE : Dict = None
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : List[str] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : Dict = None
if self.use_labels:
SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE : Tuple = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = TFRoFormerModel(config=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
SCREAMING_SNAKE_CASE : Optional[Any] = [input_ids, input_mask]
SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = True
SCREAMING_SNAKE_CASE : str = TFRoFormerForCausalLM(config=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ )["""logits"""]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = TFRoFormerForMaskedLM(config=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.num_labels
SCREAMING_SNAKE_CASE : Union[str, Any] = TFRoFormerForSequenceClassification(config=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.num_choices
SCREAMING_SNAKE_CASE : List[Any] = TFRoFormerForMultipleChoice(config=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE : List[str] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE : List[str] = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.num_labels
SCREAMING_SNAKE_CASE : int = TFRoFormerForTokenClassification(config=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE : str = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TFRoFormerForQuestionAnswering(config=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
), (
SCREAMING_SNAKE_CASE
), (
SCREAMING_SNAKE_CASE
), (
SCREAMING_SNAKE_CASE
), (
SCREAMING_SNAKE_CASE
), (
SCREAMING_SNAKE_CASE
), (
SCREAMING_SNAKE_CASE
),
) : int = config_and_inputs
SCREAMING_SNAKE_CASE : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE__ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : str ):
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = TFRoFormerModelTester(self )
SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" )
self.assertIsNotNone(lowerCamelCase_ )
@require_tf
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
SCREAMING_SNAKE_CASE : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ )[0]
# TODO Replace vocab size
SCREAMING_SNAKE_CASE : Dict = 5_00_00
SCREAMING_SNAKE_CASE : List[Any] = [1, 6, vocab_size]
self.assertEqual(output.shape , lowerCamelCase_ )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
SCREAMING_SNAKE_CASE : int = tf.constant(
[
[
[-0.12_053_341, -1.0_264_901, 0.29_221_946],
[-1.5_133_783, 0.197_433, 0.15_190_607],
[-5.0_135_403, -3.900_256, -0.84_038_764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1e-4 )
@require_tf
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 1e-4
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = tf.constant([[4, 10]] )
SCREAMING_SNAKE_CASE : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
SCREAMING_SNAKE_CASE : Optional[int] = emba(input_ids.shape )
SCREAMING_SNAKE_CASE : Dict = tf.constant(
[[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] )
tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , atol=self.tolerance )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = tf.constant(
[
[0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000],
[0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617],
[0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870],
] )
SCREAMING_SNAKE_CASE : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 )
emba([2, 16, 5_12] )
SCREAMING_SNAKE_CASE : List[str] = emba.weight[:3, :5]
tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , atol=self.tolerance )
@require_tf
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 1e-4
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
SCREAMING_SNAKE_CASE : List[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
SCREAMING_SNAKE_CASE : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
SCREAMING_SNAKE_CASE : Optional[int] = embed_positions([2, 16, 7_68] )[None, None, :, :]
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = tf.constant(
[
[0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700],
[-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343],
[-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985],
[-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871],
[0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980],
[3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253],
] )
SCREAMING_SNAKE_CASE : int = tf.constant(
[
[0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700],
[0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343],
[1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985],
[2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871],
[-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980],
[-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowerCamelCase_ , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowerCamelCase_ , atol=self.tolerance )
| 323 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[int] = batch_size
SCREAMING_SNAKE_CASE : Any = seq_length
SCREAMING_SNAKE_CASE : List[str] = is_training
SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask
SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids
SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE : str = vocab_size
SCREAMING_SNAKE_CASE : str = hidden_size
SCREAMING_SNAKE_CASE : List[Any] = rotary_dim
SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Tuple = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = vocab_size - 1
SCREAMING_SNAKE_CASE : str = vocab_size - 1
SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : List[str] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs
SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = 20
SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
SCREAMING_SNAKE_CASE : Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
SCREAMING_SNAKE_CASE : str = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 20
SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
SCREAMING_SNAKE_CASE : Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
SCREAMING_SNAKE_CASE : Dict = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
@tooslow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id
SCREAMING_SNAKE_CASE : str = jax.jit(model.generate )
SCREAMING_SNAKE_CASE : str = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
@is_pt_flax_cross_test
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape
SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Union[str, Any] = 1
SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = fx_state
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple()
SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape
SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : Tuple = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple()
SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 323 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
__UpperCAmelCase = namedtuple("""CoinsDistribResult""", """moves excess""")
def __A ( lowerCamelCase_ ):
"""simple docstring"""
if root is None:
return 0
# Validation
def count_nodes(lowerCamelCase_ ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(lowerCamelCase_ ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(lowerCamelCase_ ) != count_coins(lowerCamelCase_ ):
raise ValueError("""The nodes number should be same as the number of coins""" )
# Main calculation
def get_distrib(lowerCamelCase_ ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = get_distrib(node.left )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = get_distrib(node.right )
SCREAMING_SNAKE_CASE : Dict = 1 - left_distrib_excess
SCREAMING_SNAKE_CASE : Optional[int] = 1 - right_distrib_excess
SCREAMING_SNAKE_CASE : int = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowerCamelCase_ )
+ abs(lowerCamelCase_ )
)
SCREAMING_SNAKE_CASE : str = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowerCamelCase_ , lowerCamelCase_ )
return get_distrib(lowerCamelCase_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 |
'''simple docstring'''
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias''']
@register_to_config
def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'''
f''' `n_embd`: {n_embd} are not equal.''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim
SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim
SCREAMING_SNAKE_CASE : Tuple = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
SCREAMING_SNAKE_CASE : str = (
nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
SCREAMING_SNAKE_CASE : Any = GPTaConfig(
vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 )
SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ):
'''simple docstring'''
return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ )
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
return self.encode_prefix(lowerCamelCase_ )
@torch.no_grad()
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 )
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : Tuple = []
for feature in features:
SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature
# Only support beam search for now
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam(
input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = eos_token_id
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : List[Any] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool )
if input_embeds is not None:
SCREAMING_SNAKE_CASE : Dict = input_embeds
else:
SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ )
for i in range(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = outputs.logits
SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log()
if scores is None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
SCREAMING_SNAKE_CASE : List[Any] = next_tokens
else:
SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] )
SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 )
else:
SCREAMING_SNAKE_CASE : Tuple = -float(np.inf )
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None]
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1]
SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source]
SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1]
SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 )
SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source]
SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source]
SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths
SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source]
SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 )
SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze()
if is_stopped.all():
break
SCREAMING_SNAKE_CASE : int = scores / seq_lengths
SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ )
# tokens tensors are already padded to max_seq_length
SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order]
SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 323 | 1 |
'''simple docstring'''
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple=7_68 ):
'''simple docstring'''
super().__init__(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = proj_size
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPVisionModel(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = PaintByExampleMapper(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = nn.LayerNorm(config.hidden_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.model(pixel_values=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = clip_output.pooler_output
SCREAMING_SNAKE_CASE : Any = self.mapper(latent_states[:, None] )
SCREAMING_SNAKE_CASE : Any = self.final_layer_norm(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.proj_out(lowerCamelCase_ )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5
SCREAMING_SNAKE_CASE : Any = config.hidden_size
SCREAMING_SNAKE_CASE : Tuple = 1
SCREAMING_SNAKE_CASE : str = nn.ModuleList(
[
BasicTransformerBlock(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , activation_fn="""gelu""" , attention_bias=lowerCamelCase_ )
for _ in range(lowerCamelCase_ )
] )
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Any ):
'''simple docstring'''
for block in self.blocks:
SCREAMING_SNAKE_CASE : List[Any] = block(lowerCamelCase_ )
return hidden_states
| 323 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git_vision_model'''
def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE : int = num_attention_heads
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Optional[Any] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : List[str] = initializer_range
SCREAMING_SNAKE_CASE : str = attention_dropout
SCREAMING_SNAKE_CASE : Any = layer_norm_eps
SCREAMING_SNAKE_CASE : List[str] = hidden_act
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ):
'''simple docstring'''
cls._set_token_in_kwargs(lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git'''
def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
if vision_config is None:
SCREAMING_SNAKE_CASE : Any = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = vocab_size
SCREAMING_SNAKE_CASE : Tuple = hidden_size
SCREAMING_SNAKE_CASE : int = num_hidden_layers
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : str = hidden_act
SCREAMING_SNAKE_CASE : Dict = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type
SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings
SCREAMING_SNAKE_CASE : int = num_image_with_embedding
SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id
SCREAMING_SNAKE_CASE : str = eos_token_id
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE : Any = self.__class__.model_type
return output
| 323 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : int , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : int ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : int , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Dict , *lowerCamelCase_ : str , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : int ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Dict , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Any , *lowerCamelCase_ : int , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : int ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : Dict , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Any , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
def __A ( *lowerCamelCase_ , **lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , ["""torch"""] )
def __A ( *lowerCamelCase_ , **lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , ["""torch"""] )
def __A ( *lowerCamelCase_ , **lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , ["""torch"""] )
def __A ( *lowerCamelCase_ , **lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , ["""torch"""] )
def __A ( *lowerCamelCase_ , **lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , ["""torch"""] )
def __A ( *lowerCamelCase_ , **lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , ["""torch"""] )
def __A ( *lowerCamelCase_ , **lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : str , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : str , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : Any , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Dict , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : List[Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : int ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : int , **lowerCamelCase_ : int ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Tuple , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : int , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : Any , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : int , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : List[str] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Dict , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : int , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : str , *lowerCamelCase_ : Any , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Dict , *lowerCamelCase_ : Any , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Union[str, Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : int ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Dict , *lowerCamelCase_ : str , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : Any , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : int , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : Any , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : int ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : List[str] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : int , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Any , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Any , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Union[str, Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : int , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Any ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : str , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : int , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : str , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : str , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : int ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : int , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[int] , *lowerCamelCase_ : str , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Any , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Dict , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Optional[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : int , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : str , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : str , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
class UpperCamelCase__ ( metaclass=lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''torch''']
def __init__( self : Any , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
@classmethod
def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Dict ):
'''simple docstring'''
requires_backends(cls , ["""torch"""] )
| 323 |
'''simple docstring'''
from manim import *
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 )
SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Tuple = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : List[Any] = Text("""CPU""" , font_size=24 )
SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[Any] = Text("""GPU""" , font_size=24 )
SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
gpu.move_to([-1, -1, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Union[str, Any] = Text("""Model""" , font_size=24 )
SCREAMING_SNAKE_CASE : List[str] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
model.move_to([3, -1.0, 0] )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = []
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for i, rect in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = fill.copy().set_fill(lowerCamelCase_ , opacity=0.8 )
target.move_to(lowerCamelCase_ )
model_arr.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(lowerCamelCase_ )
self.add(*lowerCamelCase_ , *lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : Dict = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 )
SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=24 )
SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ )
disk.move_to([-4, -1.25, 0] )
self.add(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE : Optional[Any] = MarkupText(
f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = MarkupText(
f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = MarkupText(
f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 )
input.set_fill(lowerCamelCase_ , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , lowerCamelCase_ , buff=0.5 )
self.play(Write(lowerCamelCase_ ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=lowerCamelCase_ , buff=0.02 )
self.play(MoveToTarget(lowerCamelCase_ ) )
self.play(FadeOut(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : int = Arrow(start=lowerCamelCase_ , end=lowerCamelCase_ , color=lowerCamelCase_ , buff=0.5 )
a.next_to(model_arr[0].get_left() , lowerCamelCase_ , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
SCREAMING_SNAKE_CASE : Optional[int] = MarkupText(
f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ , run_time=3 ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02}
self.play(
Write(lowerCamelCase_ ) , Circumscribe(model_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
SCREAMING_SNAKE_CASE : Optional[int] = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase_ , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
SCREAMING_SNAKE_CASE : Any = AnimationGroup(
FadeOut(lowerCamelCase_ , run_time=0.5 ) , MoveToTarget(lowerCamelCase_ , run_time=0.5 ) , FadeIn(lowerCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 )
self.play(lowerCamelCase_ )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
SCREAMING_SNAKE_CASE : Optional[Any] = 0.7
self.play(
Circumscribe(model_arr[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = a_c
SCREAMING_SNAKE_CASE : Optional[Any] = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(lowerCamelCase_ ) , FadeOut(lowerCamelCase_ , run_time=0.5 ) , )
SCREAMING_SNAKE_CASE : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase_ , run_time=3 ) , MoveToTarget(lowerCamelCase_ ) )
self.wait()
| 323 | 1 |
'''simple docstring'''
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
__UpperCAmelCase = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
__UpperCAmelCase = """https://storage.googleapis.com/cvdf-datasets/mnist/"""
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" )
return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCamelCase_ )[0]
@deprecated(lowerCamelCase_ , """Please use tf.data to implement this functionality.""" )
def __A ( lowerCamelCase_ ):
"""simple docstring"""
print("""Extracting""" , f.name )
with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream:
SCREAMING_SNAKE_CASE : int = _readaa(lowerCamelCase_ )
if magic != 20_51:
raise ValueError(
"""Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) )
SCREAMING_SNAKE_CASE : str = _readaa(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = _readaa(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = _readaa(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = bytestream.read(rows * cols * num_images )
SCREAMING_SNAKE_CASE : Dict = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta )
SCREAMING_SNAKE_CASE : Any = data.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 1 )
return data
@deprecated(lowerCamelCase_ , """Please use tf.one_hot on tensors.""" )
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = labels_dense.shape[0]
SCREAMING_SNAKE_CASE : int = numpy.arange(lowerCamelCase_ ) * num_classes
SCREAMING_SNAKE_CASE : Any = numpy.zeros((num_labels, num_classes) )
SCREAMING_SNAKE_CASE : Dict = 1
return labels_one_hot
@deprecated(lowerCamelCase_ , """Please use tf.data to implement this functionality.""" )
def __A ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=10 ):
"""simple docstring"""
print("""Extracting""" , f.name )
with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream:
SCREAMING_SNAKE_CASE : Tuple = _readaa(lowerCamelCase_ )
if magic != 20_49:
raise ValueError(
"""Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) )
SCREAMING_SNAKE_CASE : Union[str, Any] = _readaa(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = bytestream.read(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(lowerCamelCase_ , lowerCamelCase_ )
return labels
class UpperCamelCase__ :
"""simple docstring"""
@deprecated(
lowerCamelCase_ , """Please use alternatives such as official/mnist/_DataSet.py"""
""" from tensorflow/models.""" , )
def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=dtypes.floataa , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Optional[int]=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = random_seed.get_seed(lowerCamelCase_ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
SCREAMING_SNAKE_CASE : Optional[int] = dtypes.as_dtype(lowerCamelCase_ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype )
if fake_data:
SCREAMING_SNAKE_CASE : List[str] = 1_00_00
SCREAMING_SNAKE_CASE : Union[str, Any] = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'''images.shape: {images.shape} labels.shape: {labels.shape}'''
SCREAMING_SNAKE_CASE : Any = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
SCREAMING_SNAKE_CASE : Any = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
SCREAMING_SNAKE_CASE : Union[str, Any] = images.astype(numpy.floataa )
SCREAMING_SNAKE_CASE : str = numpy.multiply(lowerCamelCase_ , 1.0 / 255.0 )
SCREAMING_SNAKE_CASE : int = images
SCREAMING_SNAKE_CASE : Optional[Any] = labels
SCREAMING_SNAKE_CASE : str = 0
SCREAMING_SNAKE_CASE : Optional[Any] = 0
@property
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return self._images
@property
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return self._labels
@property
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
return self._num_examples
@property
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return self._epochs_completed
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=True ):
'''simple docstring'''
if fake_data:
SCREAMING_SNAKE_CASE : Tuple = [1] * 7_84
SCREAMING_SNAKE_CASE : Dict = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(lowerCamelCase_ )],
[fake_label for _ in range(lowerCamelCase_ )],
)
SCREAMING_SNAKE_CASE : Optional[int] = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
SCREAMING_SNAKE_CASE : Union[str, Any] = numpy.arange(self._num_examples )
numpy.random.shuffle(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = self.images[perma]
SCREAMING_SNAKE_CASE : Any = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
SCREAMING_SNAKE_CASE : Tuple = self._num_examples - start
SCREAMING_SNAKE_CASE : Tuple = self._images[start : self._num_examples]
SCREAMING_SNAKE_CASE : Tuple = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
SCREAMING_SNAKE_CASE : int = numpy.arange(self._num_examples )
numpy.random.shuffle(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = self.images[perm]
SCREAMING_SNAKE_CASE : List[str] = self.labels[perm]
# Start next epoch
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : List[str] = batch_size - rest_num_examples
SCREAMING_SNAKE_CASE : List[str] = self._index_in_epoch
SCREAMING_SNAKE_CASE : List[str] = self._images[start:end]
SCREAMING_SNAKE_CASE : Any = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
SCREAMING_SNAKE_CASE : Tuple = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(lowerCamelCase_ , """Please write your own downloading logic.""" )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if not gfile.Exists(lowerCamelCase_ ):
gfile.MakeDirs(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , lowerCamelCase_ )
if not gfile.Exists(lowerCamelCase_ ):
urllib.request.urlretrieve(lowerCamelCase_ , lowerCamelCase_ ) # noqa: S310
with gfile.GFile(lowerCamelCase_ ) as f:
SCREAMING_SNAKE_CASE : Dict = f.size()
print("""Successfully downloaded""" , lowerCamelCase_ , lowerCamelCase_ , """bytes.""" )
return filepath
@deprecated(
lowerCamelCase_ , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" )
def __A ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=dtypes.floataa , lowerCamelCase_=True , lowerCamelCase_=50_00 , lowerCamelCase_=None , lowerCamelCase_=DEFAULT_SOURCE_URL , ):
"""simple docstring"""
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=lowerCamelCase_ , one_hot=lowerCamelCase_ , dtype=lowerCamelCase_ , seed=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = fake()
SCREAMING_SNAKE_CASE : str = fake()
SCREAMING_SNAKE_CASE : List[str] = fake()
return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ )
if not source_url: # empty string check
SCREAMING_SNAKE_CASE : int = DEFAULT_SOURCE_URL
SCREAMING_SNAKE_CASE : Optional[int] = """train-images-idx3-ubyte.gz"""
SCREAMING_SNAKE_CASE : List[Any] = """train-labels-idx1-ubyte.gz"""
SCREAMING_SNAKE_CASE : Optional[Any] = """t10k-images-idx3-ubyte.gz"""
SCREAMING_SNAKE_CASE : Union[str, Any] = """t10k-labels-idx1-ubyte.gz"""
SCREAMING_SNAKE_CASE : Tuple = _maybe_download(
lowerCamelCase_ , lowerCamelCase_ , source_url + train_images_file )
with gfile.Open(lowerCamelCase_ , """rb""" ) as f:
SCREAMING_SNAKE_CASE : Tuple = _extract_images(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = _maybe_download(
lowerCamelCase_ , lowerCamelCase_ , source_url + train_labels_file )
with gfile.Open(lowerCamelCase_ , """rb""" ) as f:
SCREAMING_SNAKE_CASE : Union[str, Any] = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = _maybe_download(
lowerCamelCase_ , lowerCamelCase_ , source_url + test_images_file )
with gfile.Open(lowerCamelCase_ , """rb""" ) as f:
SCREAMING_SNAKE_CASE : List[str] = _extract_images(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = _maybe_download(
lowerCamelCase_ , lowerCamelCase_ , source_url + test_labels_file )
with gfile.Open(lowerCamelCase_ , """rb""" ) as f:
SCREAMING_SNAKE_CASE : Union[str, Any] = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ )
if not 0 <= validation_size <= len(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Optional[int] = (
"""Validation size should be between 0 and """
f'''{len(lowerCamelCase_ )}. Received: {validation_size}.'''
)
raise ValueError(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = train_images[:validation_size]
SCREAMING_SNAKE_CASE : str = train_labels[:validation_size]
SCREAMING_SNAKE_CASE : int = train_images[validation_size:]
SCREAMING_SNAKE_CASE : Any = train_labels[validation_size:]
SCREAMING_SNAKE_CASE : Tuple = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed}
SCREAMING_SNAKE_CASE : int = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ )
| 323 |
'''simple docstring'''
from __future__ import annotations
__UpperCAmelCase = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = graph
# mapping node to its parent in resulting breadth first tree
SCREAMING_SNAKE_CASE : dict[str, str | None] = {}
SCREAMING_SNAKE_CASE : List[str] = source_vertex
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex}
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue
while queue:
SCREAMING_SNAKE_CASE : str = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = vertex
queue.append(lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ )
if target_vertex_parent is None:
SCREAMING_SNAKE_CASE : Tuple = (
f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}'''
)
raise ValueError(lowerCamelCase_ )
return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}'''
if __name__ == "__main__":
__UpperCAmelCase = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 323 | 1 |
'''simple docstring'''
import baseaa
def __A ( lowerCamelCase_ ):
"""simple docstring"""
return baseaa.baaencode(string.encode("""utf-8""" ) )
def __A ( lowerCamelCase_ ):
"""simple docstring"""
return baseaa.baadecode(lowerCamelCase_ ).decode("""utf-8""" )
if __name__ == "__main__":
__UpperCAmelCase = """Hello World!"""
__UpperCAmelCase = baseaa_encode(test)
print(encoded)
__UpperCAmelCase = baseaa_decode(encoded)
print(decoded)
| 323 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__UpperCAmelCase = 0
__UpperCAmelCase = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__UpperCAmelCase = tuple[int, int]
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Node | None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = pos_x
SCREAMING_SNAKE_CASE : Any = pos_y
SCREAMING_SNAKE_CASE : Optional[int] = (pos_y, pos_x)
SCREAMING_SNAKE_CASE : Tuple = goal_x
SCREAMING_SNAKE_CASE : List[str] = goal_y
SCREAMING_SNAKE_CASE : Optional[Any] = g_cost
SCREAMING_SNAKE_CASE : Tuple = parent
SCREAMING_SNAKE_CASE : int = self.calculate_heuristic()
SCREAMING_SNAKE_CASE : Tuple = self.g_cost + self.h_cost
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.pos_x - self.goal_x
SCREAMING_SNAKE_CASE : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowerCamelCase_ ) + abs(lowerCamelCase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : Optional[Any] , lowerCamelCase_ : Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = [self.start]
SCREAMING_SNAKE_CASE : list[Node] = []
SCREAMING_SNAKE_CASE : str = False
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
SCREAMING_SNAKE_CASE : Optional[Any] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowerCamelCase_ )
self.closed_nodes.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = self.get_successors(lowerCamelCase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowerCamelCase_ )
else:
# retrieve the best current path
SCREAMING_SNAKE_CASE : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowerCamelCase_ )
else:
self.open_nodes.append(lowerCamelCase_ )
return [self.start.pos]
def lowerCamelCase_ ( self : int , lowerCamelCase_ : Node ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = []
for action in delta:
SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1]
SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase_ , ) )
return successors
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = node
SCREAMING_SNAKE_CASE : List[str] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
SCREAMING_SNAKE_CASE : Optional[Any] = current_node.parent
path.reverse()
return path
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = AStar(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = AStar(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = False
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
SCREAMING_SNAKE_CASE : List[str] = self.fwd_astar.open_nodes.pop(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowerCamelCase_ , lowerCamelCase_ )
self.fwd_astar.closed_nodes.append(lowerCamelCase_ )
self.bwd_astar.closed_nodes.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = current_bwd_node
SCREAMING_SNAKE_CASE : Any = current_fwd_node
SCREAMING_SNAKE_CASE : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase_ ),
self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowerCamelCase_ )
else:
# retrieve the best current path
SCREAMING_SNAKE_CASE : int = astar.open_nodes.pop(
astar.open_nodes.index(lowerCamelCase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowerCamelCase_ )
else:
astar.open_nodes.append(lowerCamelCase_ )
return [self.fwd_astar.start.pos]
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Node , lowerCamelCase_ : Node ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_astar.retrace_path(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.bwd_astar.retrace_path(lowerCamelCase_ )
bwd_path.pop()
bwd_path.reverse()
SCREAMING_SNAKE_CASE : str = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__UpperCAmelCase = (0, 0)
__UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__UpperCAmelCase = time.time()
__UpperCAmelCase = AStar(init, goal)
__UpperCAmelCase = a_star.search()
__UpperCAmelCase = time.time() - start_time
print(f'''AStar execution time = {end_time:f} seconds''')
__UpperCAmelCase = time.time()
__UpperCAmelCase = BidirectionalAStar(init, goal)
__UpperCAmelCase = time.time() - bd_start_time
print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 323 | 1 |
'''simple docstring'''
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if len(lowerCamelCase_ ) != len(lowerCamelCase_ ):
raise ValueError("""String lengths must match!""" )
SCREAMING_SNAKE_CASE : List[str] = 0
for chara, chara in zip(lowerCamelCase_ , lowerCamelCase_ ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 |
'''simple docstring'''
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''efficientnet'''
def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : int , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE : int = image_size
SCREAMING_SNAKE_CASE : int = width_coefficient
SCREAMING_SNAKE_CASE : List[str] = depth_coefficient
SCREAMING_SNAKE_CASE : Optional[Any] = depth_divisor
SCREAMING_SNAKE_CASE : List[str] = kernel_sizes
SCREAMING_SNAKE_CASE : Dict = in_channels
SCREAMING_SNAKE_CASE : List[str] = out_channels
SCREAMING_SNAKE_CASE : Any = depthwise_padding
SCREAMING_SNAKE_CASE : Dict = strides
SCREAMING_SNAKE_CASE : Optional[Any] = num_block_repeats
SCREAMING_SNAKE_CASE : Any = expand_ratios
SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio
SCREAMING_SNAKE_CASE : List[str] = hidden_act
SCREAMING_SNAKE_CASE : Dict = hidden_dim
SCREAMING_SNAKE_CASE : List[str] = pooling_type
SCREAMING_SNAKE_CASE : List[Any] = initializer_range
SCREAMING_SNAKE_CASE : Any = batch_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum
SCREAMING_SNAKE_CASE : Dict = dropout_rate
SCREAMING_SNAKE_CASE : int = drop_connect_rate
SCREAMING_SNAKE_CASE : Optional[Any] = sum(lowerCamelCase_ ) * 4
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' )
@property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return 1e-5
| 323 | 1 |
'''simple docstring'''
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
__UpperCAmelCase = """
Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.
In March 2021, Hugging Face raised $40 million in a Series B funding round.[3]
On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]
"""
class UpperCamelCase__ ( unittest.TestCase , lowercase_ ):
"""simple docstring"""
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = load_tool("""text-question-answering""" )
self.tool.setup()
SCREAMING_SNAKE_CASE : str = load_tool("""text-question-answering""" , remote=lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.tool(lowerCamelCase_ , """What did Hugging Face do in April 2021?""" )
self.assertEqual(lowerCamelCase_ , """launched the BigScience Research Workshop""" )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.remote_tool(lowerCamelCase_ , """What did Hugging Face do in April 2021?""" )
self.assertEqual(lowerCamelCase_ , """launched the BigScience Research Workshop""" )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.tool(text=lowerCamelCase_ , question="""What did Hugging Face do in April 2021?""" )
self.assertEqual(lowerCamelCase_ , """launched the BigScience Research Workshop""" )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.remote_tool(text=lowerCamelCase_ , question="""What did Hugging Face do in April 2021?""" )
self.assertEqual(lowerCamelCase_ , """launched the BigScience Research Workshop""" )
| 323 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
__UpperCAmelCase = logging.get_logger(__name__)
@add_end_docstrings(lowercase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ):
'''simple docstring'''
super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = {}
SCREAMING_SNAKE_CASE : List[Any] = {}
if prompt is not None:
SCREAMING_SNAKE_CASE : List[Any] = prompt
if generate_kwargs is not None:
SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ):
'''simple docstring'''
return super().__call__(lowerCamelCase_ , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ )
if prompt is not None:
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type
if model_type == "git":
SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids
SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework )
model_inputs.update(lowerCamelCase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
SCREAMING_SNAKE_CASE : Optional[Any] = None
return model_inputs
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ):
'''simple docstring'''
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
SCREAMING_SNAKE_CASE : List[str] = None
if generate_kwargs is None:
SCREAMING_SNAKE_CASE : int = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name )
SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ )
return model_outputs
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for output_ids in model_outputs:
SCREAMING_SNAKE_CASE : List[Any] = {
"""generated_text""": self.tokenizer.decode(
lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , )
}
records.append(lowerCamelCase_ )
return records
| 323 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__UpperCAmelCase = (3, 9, -11, 0, 7, 5, 1, -1)
__UpperCAmelCase = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
SCREAMING_SNAKE_CASE__ = 42
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Tuple , lowerCamelCase_ : Iterable[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Node | None = None
for i in sorted(lowerCamelCase_ , reverse=lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Optional[int] = Node(lowerCamelCase_ , self.head )
def __iter__( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.head
while node:
yield node.data
SCREAMING_SNAKE_CASE : Optional[int] = node.next_node
def __len__( self : Dict ):
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self : int ):
'''simple docstring'''
return " -> ".join([str(lowerCamelCase_ ) for node in self] )
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 323 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,)
SCREAMING_SNAKE_CASE__ = 10
def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = {
"""num_train_timesteps""": 2_01,
"""sigma_min""": 0.002,
"""sigma_max""": 80.0,
}
config.update(**lowerCamelCase_ )
return config
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = 10
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ )
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0]
SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1]
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample
SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample
SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = 1
scheduler.set_timesteps(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = scheduler.timesteps
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(lowerCamelCase_ ):
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 192.7_614 ) < 1e-2
assert abs(result_mean.item() - 0.2_510 ) < 1e-3
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0]
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = self.dummy_model()
SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ )
# 2. predict noise residual
SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ )
# 3. predict previous sample x_t-1
SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample
SCREAMING_SNAKE_CASE : Dict = pred_prev_sample
SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) )
assert abs(result_sum.item() - 347.6_357 ) < 1e-2
assert abs(result_mean.item() - 0.4_527 ) < 1e-3
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0]
with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0]
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ )
with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=lowerCamelCase_ )
| 323 | 1 |
'''simple docstring'''
from transformers import BertTokenizerFast
from .custom_tokenization import CustomTokenizer
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = CustomTokenizer
pass
| 323 |
'''simple docstring'''
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ):
'''simple docstring'''
super().__init__(
lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE : Optional[int] = Text(
cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : List[str] = None
self.builder.download_and_prepare(
download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE : int = self.builder.as_dataset(
split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory )
return dataset
| 323 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""",
"""kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""",
"""kssteven/ibert-roberta-large-mnli""": (
"""https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"""
),
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''ibert'''
def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any]=3_05_22 , lowerCamelCase_ : Tuple=7_68 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : Optional[Any]=30_72 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : List[Any]=5_12 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Optional[Any]=0.02 , lowerCamelCase_ : List[Any]=1e-12 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Tuple=0 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Tuple="absolute" , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Optional[int]="none" , **lowerCamelCase_ : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = vocab_size
SCREAMING_SNAKE_CASE : str = hidden_size
SCREAMING_SNAKE_CASE : Dict = num_hidden_layers
SCREAMING_SNAKE_CASE : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Any = type_vocab_size
SCREAMING_SNAKE_CASE : int = initializer_range
SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps
SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type
SCREAMING_SNAKE_CASE : int = quant_mode
SCREAMING_SNAKE_CASE : List[str] = force_dequant
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
@property
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
SCREAMING_SNAKE_CASE : Dict = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 323 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 3_84
SCREAMING_SNAKE_CASE : Union[str, Any] = 7
if "tiny" in model_name:
SCREAMING_SNAKE_CASE : List[str] = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2)
SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24)
elif "small" in model_name:
SCREAMING_SNAKE_CASE : Any = 96
SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24)
elif "base" in model_name:
SCREAMING_SNAKE_CASE : int = 1_28
SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32)
SCREAMING_SNAKE_CASE : Optional[Any] = 12
SCREAMING_SNAKE_CASE : str = 5_12
elif "large" in model_name:
SCREAMING_SNAKE_CASE : Tuple = 1_92
SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2)
SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48)
SCREAMING_SNAKE_CASE : Tuple = 12
SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68
# set label information
SCREAMING_SNAKE_CASE : List[str] = 1_50
SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files"""
SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json"""
SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig(
embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
SCREAMING_SNAKE_CASE : List[str] = UperNetConfig(
backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , )
return config
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
# fmt: off
# stem
rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = val
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE : Dict = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE : Any = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :]
# fmt: on
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape
SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape
SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = x.shape[0]
SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 )
SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = x.shape[0]
SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 )
SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ )
return x
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = {
"""upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""",
"""upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""",
"""upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""",
"""upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""",
}
SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name]
SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[
"""state_dict"""
]
for name, param in state_dict.items():
print(lowerCamelCase_ , param.shape )
SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ )
if "bn" in key:
SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" )
SCREAMING_SNAKE_CASE : Optional[Any] = val
# rename keys
SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ )
for src, dest in rename_keys:
rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
read_in_q_k_v(lowerCamelCase_ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ )
if "norm" in key:
SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# verify on image
SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" )
SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor()
SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = outputs.logits
print(logits.shape )
print("""First values of logits:""" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(lowerCamelCase_ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
__UpperCAmelCase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 323 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=lowercase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
SCREAMING_SNAKE_CASE__ = Features({'''audio''': Audio()} )
SCREAMING_SNAKE_CASE__ = Features({'''labels''': ClassLabel} )
SCREAMING_SNAKE_CASE__ = "audio"
SCREAMING_SNAKE_CASE__ = "labels"
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowerCamelCase_ ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
SCREAMING_SNAKE_CASE : Any = copy.deepcopy(self )
SCREAMING_SNAKE_CASE : Optional[int] = self.label_schema.copy()
SCREAMING_SNAKE_CASE : Optional[Any] = features[self.label_column]
SCREAMING_SNAKE_CASE : int = label_schema
return task_template
@property
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 323 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class UpperCamelCase__ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Any = pad_token_id
SCREAMING_SNAKE_CASE : List[Any] = max_length
SCREAMING_SNAKE_CASE : Optional[int] = vocab
SCREAMING_SNAKE_CASE : List[Any] = merges
SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : GPTaTokenizer , *lowerCamelCase_ : str , **lowerCamelCase_ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab()
return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ )
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
return cls(**lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.tf_tokenizer(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ )
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = pad_model_inputs(
lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 323 | 1 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__UpperCAmelCase = tuple[int, int]
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = []
SCREAMING_SNAKE_CASE : Optional[Any] = set()
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float("""inf""" )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
return len(self.elements ) == 0
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ):
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(lowerCamelCase_ )
else:
# update
# print("update", item)
SCREAMING_SNAKE_CASE : Any = []
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : Optional[int] = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
if item in self.set:
self.set.remove(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = []
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : Union[str, Any] = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : Optional[int] = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return self.elements[0][1]
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements )
self.set.remove(lowerCamelCase_ )
return (priority, item)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = np.array(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(lowerCamelCase_ )
return np.linalg.norm(a - b )
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return consistent_heuristic(lowerCamelCase_ , lowerCamelCase_ ) // t
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = g_function[start] + Wa * heuristics[i](lowerCamelCase_ , lowerCamelCase_ )
return ans
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = np.chararray((n, n) )
for i in range(lowerCamelCase_ ):
for j in range(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Dict = """*"""
for i in range(lowerCamelCase_ ):
for j in range(lowerCamelCase_ ):
if (j, (n - 1) - i) in blocks:
SCREAMING_SNAKE_CASE : List[str] = """#"""
SCREAMING_SNAKE_CASE : Optional[int] = """-"""
SCREAMING_SNAKE_CASE : List[str] = back_pointer[goal]
while x != start:
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : int = x
# print(x)
SCREAMING_SNAKE_CASE : Dict = """-"""
SCREAMING_SNAKE_CASE : Dict = back_pointer[x]
SCREAMING_SNAKE_CASE : Any = """-"""
for i in range(lowerCamelCase_ ):
for j in range(lowerCamelCase_ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=""" """ )
print("""<-- End position""" , end=""" """ )
else:
print(grid[i][j] , end=""" """ )
print()
print("""^""" )
print("""Start position""" )
print()
print("""# is an obstacle""" )
print("""- is the path taken by algorithm""" )
print("""PATH TAKEN BY THE ALGORITHM IS:-""" )
SCREAMING_SNAKE_CASE : Tuple = back_pointer[goal]
while x != start:
print(lowerCamelCase_ , end=""" """ )
SCREAMING_SNAKE_CASE : Any = back_pointer[x]
print(lowerCamelCase_ )
sys.exit()
def __A ( lowerCamelCase_ ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ):
"""simple docstring"""
for itera in range(lowerCamelCase_ ):
open_list[itera].remove_element(lowerCamelCase_ )
# print("s", s)
# print("j", j)
((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) : Any = s
SCREAMING_SNAKE_CASE : Dict = (x - 1, y)
SCREAMING_SNAKE_CASE : Dict = (x + 1, y)
SCREAMING_SNAKE_CASE : List[str] = (x, y + 1)
SCREAMING_SNAKE_CASE : int = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(lowerCamelCase_ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = -1
SCREAMING_SNAKE_CASE : Union[str, Any] = float("""inf""" )
if valid(lowerCamelCase_ ) and g_function[neighbours] > g_function[s] + 1:
SCREAMING_SNAKE_CASE : Tuple = g_function[s] + 1
SCREAMING_SNAKE_CASE : str = s
if neighbours not in close_list_anchor:
open_list[0].put(lowerCamelCase_ , key(lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ ) )
if neighbours not in close_list_inad:
for var in range(1 , lowerCamelCase_ ):
if key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) <= Wa * key(
lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ ):
open_list[j].put(
lowerCamelCase_ , key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
__UpperCAmelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__UpperCAmelCase = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__UpperCAmelCase = make_common_ground()
__UpperCAmelCase = blocks_blk
# hyper parameters
__UpperCAmelCase = 1
__UpperCAmelCase = 1
__UpperCAmelCase = 20
__UpperCAmelCase = 3 # one consistent and two other inconsistent
# start and end destination
__UpperCAmelCase = (0, 0)
__UpperCAmelCase = (n - 1, n - 1)
__UpperCAmelCase = 1
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = {start: 0, goal: float("""inf""" )}
SCREAMING_SNAKE_CASE : Tuple = {start: -1, goal: -1}
SCREAMING_SNAKE_CASE : str = []
SCREAMING_SNAKE_CASE : Union[str, Any] = set()
for i in range(lowerCamelCase_ ):
open_list.append(PriorityQueue() )
open_list[i].put(lowerCamelCase_ , key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : list[int] = []
SCREAMING_SNAKE_CASE : list[int] = []
while open_list[0].minkey() < float("""inf""" ):
for i in range(1 , lowerCamelCase_ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float("""inf""" ):
do_something(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = open_list[i].top_show()
visited.add(lowerCamelCase_ )
expand_state(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
close_list_inad.append(lowerCamelCase_ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("""inf""" ):
do_something(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Any = open_list[0].top_show()
visited.add(lowerCamelCase_ )
expand_state(
lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
close_list_anchor.append(lowerCamelCase_ )
print("""No path found to goal""" )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(lowerCamelCase_ ):
if (j, i) in blocks:
print("""#""" , end=""" """ )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print("""*""" , end=""" """ )
else:
print("""-""" , end=""" """ )
else:
print("""*""" , end=""" """ )
if (j, i) == (n - 1, n - 1):
print("""<-- End position""" , end=""" """ )
print()
print("""^""" )
print("""Start position""" )
print()
print("""# is an obstacle""" )
print("""- is the path taken by algorithm""" )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 323 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths
SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train"""
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Union[str, Any] = streaming
SCREAMING_SNAKE_CASE : Optional[int] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
pass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = features
SCREAMING_SNAKE_CASE : int = cache_dir
SCREAMING_SNAKE_CASE : Dict = keep_in_memory
SCREAMING_SNAKE_CASE : Tuple = streaming
SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs
@abstractmethod
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
pass
| 323 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = KandinskyVaaPipeline
SCREAMING_SNAKE_CASE__ = [
'''image_embeds''',
'''negative_image_embeds''',
]
SCREAMING_SNAKE_CASE__ = ['''image_embeds''', '''negative_image_embeds''']
SCREAMING_SNAKE_CASE__ = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
SCREAMING_SNAKE_CASE__ = False
@property
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
return 32
@property
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return 32
@property
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return 1_00
@property
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[int] = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(**lowerCamelCase_ )
return model
@property
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.dummy_unet
SCREAMING_SNAKE_CASE : Tuple = self.dummy_movq
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Optional[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any]=0 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
lowerCamelCase_ )
if str(lowerCamelCase_ ).startswith("""mps""" ):
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = """cpu"""
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Any = output.images
SCREAMING_SNAKE_CASE : Optional[Any] = pipe(
**self.get_dummy_inputs(lowerCamelCase_ ) , return_dict=lowerCamelCase_ , )[0]
SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE : str = np.array(
[0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : Optional[Any] = pipeline.to(lowerCamelCase_ )
pipeline.set_progress_bar_config(disable=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = """red cat, 4k photo"""
SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = pipe_prior(
lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
SCREAMING_SNAKE_CASE : int = torch.Generator(device="""cuda""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = pipeline(
image_embeds=lowerCamelCase_ , negative_image_embeds=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=1_00 , output_type="""np""" , )
SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
| 323 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small"""
SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE : str = """en_speaker_1"""
SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string"""
SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json"""
SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings"""
def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
SCREAMING_SNAKE_CASE : List[str] = 35
SCREAMING_SNAKE_CASE : List[Any] = 2
SCREAMING_SNAKE_CASE : int = 8
SCREAMING_SNAKE_CASE : Optional[int] = {
"""semantic_prompt""": np.ones(lowerCamelCase_ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string )
SCREAMING_SNAKE_CASE : Tuple = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 323 | 1 |
'''simple docstring'''
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = 0
while len(lowerCamelCase_ ) > 1:
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
SCREAMING_SNAKE_CASE : Optional[int] = files.index(min(lowerCamelCase_ ) )
temp += files[min_index]
files.pop(lowerCamelCase_ )
files.append(lowerCamelCase_ )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__UpperCAmelCase = logging.getLogger(__name__)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
SCREAMING_SNAKE_CASE__ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
SCREAMING_SNAKE_CASE__ = field(
default=lowercase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def __A ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , lowerCamelCase_ )
# Set seed
set_seed(training_args.seed )
try:
SCREAMING_SNAKE_CASE : Dict = processors[data_args.task_name]()
SCREAMING_SNAKE_CASE : Optional[int] = processor.get_labels()
SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , )
# Get datasets
SCREAMING_SNAKE_CASE : Optional[Any] = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
SCREAMING_SNAKE_CASE : Dict = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(lowerCamelCase_ ) -> Dict:
SCREAMING_SNAKE_CASE : str = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(lowerCamelCase_ , p.label_ids )}
# Data collator
SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
SCREAMING_SNAKE_CASE : Any = Trainer(
model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate()
SCREAMING_SNAKE_CASE : str = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(lowerCamelCase_ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , lowerCamelCase_ , lowerCamelCase_ )
writer.write("""%s = %s\n""" % (key, value) )
results.update(lowerCamelCase_ )
return results
def __A ( lowerCamelCase_ ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 323 | 1 |
'''simple docstring'''
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
__UpperCAmelCase = """\
@inproceedings{lin-2004-rouge,
title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",
author = \"Lin, Chin-Yew\",
booktitle = \"Text Summarization Branches Out\",
month = jul,
year = \"2004\",
address = \"Barcelona, Spain\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W04-1013\",
pages = \"74--81\",
}
"""
__UpperCAmelCase = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
__UpperCAmelCase = """
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,
`\"rougeL\"`: Longest common subsequence based scoring.
`\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric('rouge')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results[\"rouge1\"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results[\"rouge1\"].mid.fmeasure)
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/ROUGE_(metric)""",
"""https://github.com/google-research/google-research/tree/master/rouge""",
] , )
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : int=None , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : int=False ):
'''simple docstring'''
if rouge_types is None:
SCREAMING_SNAKE_CASE : Optional[Any] = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""]
SCREAMING_SNAKE_CASE : List[str] = rouge_scorer.RougeScorer(rouge_types=lowerCamelCase_ , use_stemmer=lowerCamelCase_ )
if use_aggregator:
SCREAMING_SNAKE_CASE : List[str] = scoring.BootstrapAggregator()
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Dict = scorer.score(lowerCamelCase_ , lowerCamelCase_ )
if use_aggregator:
aggregator.add_scores(lowerCamelCase_ )
else:
scores.append(lowerCamelCase_ )
if use_aggregator:
SCREAMING_SNAKE_CASE : Any = aggregator.aggregate()
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
for key in scores[0]:
SCREAMING_SNAKE_CASE : Union[str, Any] = [score[key] for score in scores]
return result
| 323 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 42
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block
SCREAMING_SNAKE_CASE : int = torch.nn.Convad(
lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] )
# down
SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0]
for i, down_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Any = output_channel
SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i]
SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block(
lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
self.down_blocks.append(lowerCamelCase_ )
# mid
SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# out
SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU()
SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels
SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Tuple = False
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = x
SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[Any] ):
def custom_forward(*lowerCamelCase_ : List[str] ):
return module(*lowerCamelCase_ )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ )
else:
# down
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ )
# middle
SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ )
# post-process
SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : int = layers_per_block
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad(
lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] )
SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None
# mid
SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# up
SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = output_channel
SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i]
SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : List[Any] = get_up_block(
lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , )
self.up_blocks.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = output_channel
# out
if norm_type == "spatial":
SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 )
SCREAMING_SNAKE_CASE : Dict = nn.SiLU()
SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 )
SCREAMING_SNAKE_CASE : Dict = False
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = z
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowerCamelCase_ : List[str] ):
def custom_forward(*lowerCamelCase_ : str ):
return module(*lowerCamelCase_ )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ )
else:
# middle
SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ )
# post-process
if latent_embeds is None:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ )
return sample
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Tuple = n_e
SCREAMING_SNAKE_CASE : int = vq_embed_dim
SCREAMING_SNAKE_CASE : Tuple = beta
SCREAMING_SNAKE_CASE : Union[str, Any] = legacy
SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
SCREAMING_SNAKE_CASE : Optional[Any] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0]
SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed
SCREAMING_SNAKE_CASE : Any = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
SCREAMING_SNAKE_CASE : Optional[int] = n_e
SCREAMING_SNAKE_CASE : Any = sane_index_shape
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long()
SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 )
SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1
if self.unknown_index == "random":
SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
SCREAMING_SNAKE_CASE : Any = self.unknown_index
return new.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape
assert len(lowerCamelCase_ ) > 1
SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ )
if self.re_embed > self.used.shape[0]: # extra token
SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero
SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ )
return back.reshape(lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous()
SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 )
SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape )
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : List[str] = None
# compute loss for embedding
if not self.legacy:
SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach()
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
'''simple docstring'''
if self.remap is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ )
if shape is not None:
SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ )
# reshape back to match original input shape
SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = parameters
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 )
SCREAMING_SNAKE_CASE : Dict = deterministic
SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar )
SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar )
if self.deterministic:
SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = randn_tensor(
self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype )
SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample
return x
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
return self.mean
| 323 | 1 |
'''simple docstring'''
from collections.abc import Iterable
from typing import Generic, TypeVar
__UpperCAmelCase = TypeVar("""_T""")
class UpperCamelCase__ ( Generic[_T] ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase_ : Iterable[_T] | None = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : list[_T] = list(iterable or [] )
SCREAMING_SNAKE_CASE : list[_T] = []
def __len__( self : Tuple ):
'''simple docstring'''
return len(self._stacka ) + len(self._stacka )
def __repr__( self : List[str] ):
'''simple docstring'''
return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})'''
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : _T ):
'''simple docstring'''
self._stacka.append(lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self._stacka.pop
SCREAMING_SNAKE_CASE : List[str] = self._stacka.append
if not self._stacka:
while self._stacka:
stacka_append(stacka_pop() )
if not self._stacka:
raise IndexError("""Queue is empty""" )
return self._stacka.pop()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 323 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL
@property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 4
SCREAMING_SNAKE_CASE : str = 3
SCREAMING_SNAKE_CASE : List[Any] = (32, 32)
SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input
return init_dict, inputs_dict
| 323 | 1 |
'''simple docstring'''
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = hex_num.strip()
if not hex_num:
raise ValueError("""No value was passed to the function""" )
SCREAMING_SNAKE_CASE : Optional[int] = hex_num[0] == """-"""
if is_negative:
SCREAMING_SNAKE_CASE : List[str] = hex_num[1:]
try:
SCREAMING_SNAKE_CASE : Union[str, Any] = int(lowerCamelCase_ , 16 )
except ValueError:
raise ValueError("""Invalid value was passed to the function""" )
SCREAMING_SNAKE_CASE : Optional[Any] = """"""
while int_num > 0:
SCREAMING_SNAKE_CASE : Union[str, Any] = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(("""-""" + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 |
'''simple docstring'''
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ):
'''simple docstring'''
pass
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ )
import datasets
SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
SCREAMING_SNAKE_CASE : Any = depth_estimator(
[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
] )
self.assertEqual(
[
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
] , lowerCamelCase_ , )
@require_tf
@unittest.skip("""Depth estimation is not implemented in TF""" )
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large"""
SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 )
@require_torch
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
| 323 | 1 |
'''simple docstring'''
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__UpperCAmelCase = False
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = """ybelkada/fonts"""
def __A ( ):
"""simple docstring"""
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
f'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use '''
"""Pix2StructImageProcessor. Please upgrade torch.""" )
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , ["""torch"""] )
_check_torch_version()
SCREAMING_SNAKE_CASE : Any = image_tensor.unsqueeze(0 )
SCREAMING_SNAKE_CASE : int = torch.nn.functional.unfold(lowerCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) )
SCREAMING_SNAKE_CASE : List[Any] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCamelCase_ , lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : Any = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def __A ( lowerCamelCase_ , lowerCamelCase_ = 36 , lowerCamelCase_ = "black" , lowerCamelCase_ = "white" , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = None , lowerCamelCase_ = None , ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , """vision""" )
# Add new lines so that each line is no more than 80 characters.
SCREAMING_SNAKE_CASE : Optional[Any] = textwrap.TextWrapper(width=80 )
SCREAMING_SNAKE_CASE : Tuple = wrapper.wrap(text=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = """\n""".join(lowerCamelCase_ )
if font_bytes is not None and font_path is None:
SCREAMING_SNAKE_CASE : List[str] = io.BytesIO(lowerCamelCase_ )
elif font_path is not None:
SCREAMING_SNAKE_CASE : List[str] = font_path
else:
SCREAMING_SNAKE_CASE : Dict = hf_hub_download(lowerCamelCase_ , """Arial.TTF""" )
SCREAMING_SNAKE_CASE : Tuple = ImageFont.truetype(lowerCamelCase_ , encoding="""UTF-8""" , size=lowerCamelCase_ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
SCREAMING_SNAKE_CASE : int = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = temp_draw.textbbox((0, 0) , lowerCamelCase_ , lowerCamelCase_ )
# Create the actual image with a bit of padding around the text.
SCREAMING_SNAKE_CASE : Union[str, Any] = text_width + left_padding + right_padding
SCREAMING_SNAKE_CASE : Any = text_height + top_padding + bottom_padding
SCREAMING_SNAKE_CASE : List[str] = Image.new("""RGB""" , (image_width, image_height) , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = ImageDraw.Draw(lowerCamelCase_ )
draw.text(xy=(left_padding, top_padding) , text=lowerCamelCase_ , fill=lowerCamelCase_ , font=lowerCamelCase_ )
return image
def __A ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ):
"""simple docstring"""
requires_backends(lowerCamelCase_ , """vision""" )
# Convert to PIL image if necessary
SCREAMING_SNAKE_CASE : List[str] = to_pil_image(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = render_text(lowerCamelCase_ , **lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = max(header_image.width , image.width )
SCREAMING_SNAKE_CASE : int = int(image.height * (new_width / image.width) )
SCREAMING_SNAKE_CASE : Tuple = int(header_image.height * (new_width / header_image.width) )
SCREAMING_SNAKE_CASE : Optional[int] = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
SCREAMING_SNAKE_CASE : List[str] = to_numpy_array(lowerCamelCase_ )
if infer_channel_dimension_format(lowerCamelCase_ ) == ChannelDimension.LAST:
SCREAMING_SNAKE_CASE : Optional[Any] = to_channel_dimension_format(lowerCamelCase_ , ChannelDimension.LAST )
return new_image
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ['''flattened_patches''']
def __init__( self : str , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : int = 20_48 , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Any , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = patch_size if patch_size is not None else {"""height""": 16, """width""": 16}
SCREAMING_SNAKE_CASE : Optional[int] = do_normalize
SCREAMING_SNAKE_CASE : int = do_convert_rgb
SCREAMING_SNAKE_CASE : Any = max_patches
SCREAMING_SNAKE_CASE : Optional[Any] = is_vqa
def lowerCamelCase_ ( self : str , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : int , lowerCamelCase_ : dict , **lowerCamelCase_ : str ):
'''simple docstring'''
requires_backends(self.extract_flattened_patches , """torch""" )
_check_torch_version()
# convert to torch
SCREAMING_SNAKE_CASE : str = to_channel_dimension_format(lowerCamelCase_ , ChannelDimension.FIRST )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = patch_size["""height"""], patch_size["""width"""]
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = get_image_size(lowerCamelCase_ )
# maximize scale s.t.
SCREAMING_SNAKE_CASE : List[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
SCREAMING_SNAKE_CASE : Union[str, Any] = max(min(math.floor(scale * image_height / patch_height ) , lowerCamelCase_ ) , 1 )
SCREAMING_SNAKE_CASE : Optional[int] = max(min(math.floor(scale * image_width / patch_width ) , lowerCamelCase_ ) , 1 )
SCREAMING_SNAKE_CASE : List[str] = max(num_feasible_rows * patch_height , 1 )
SCREAMING_SNAKE_CASE : List[Any] = max(num_feasible_cols * patch_width , 1 )
SCREAMING_SNAKE_CASE : List[str] = torch.nn.functional.interpolate(
image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=lowerCamelCase_ , antialias=lowerCamelCase_ , ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
SCREAMING_SNAKE_CASE : Tuple = torch_extract_patches(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = patches.shape
SCREAMING_SNAKE_CASE : List[str] = patches_shape[1]
SCREAMING_SNAKE_CASE : Optional[Any] = patches_shape[2]
SCREAMING_SNAKE_CASE : Union[str, Any] = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
SCREAMING_SNAKE_CASE : List[Any] = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
SCREAMING_SNAKE_CASE : Dict = torch.arange(lowerCamelCase_ ).reshape([rows, 1] ).repeat(1 , lowerCamelCase_ ).reshape([rows * columns, 1] )
SCREAMING_SNAKE_CASE : int = torch.arange(lowerCamelCase_ ).reshape([1, columns] ).repeat(lowerCamelCase_ , 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
SCREAMING_SNAKE_CASE : List[Any] = row_ids.to(torch.floataa )
SCREAMING_SNAKE_CASE : int = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
SCREAMING_SNAKE_CASE : int = torch.cat([row_ids, col_ids, patches] , -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
SCREAMING_SNAKE_CASE : List[Any] = torch.nn.functional.pad(lowerCamelCase_ , [0, 0, 0, max_patches - (rows * columns)] ).float()
SCREAMING_SNAKE_CASE : List[Any] = to_numpy_array(lowerCamelCase_ )
return result
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
if image.dtype == np.uinta:
SCREAMING_SNAKE_CASE : Tuple = image.astype(np.floataa )
# take mean across the whole `image`
SCREAMING_SNAKE_CASE : Optional[int] = np.mean(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = np.std(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = max(lowerCamelCase_ , 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , **lowerCamelCase_ )
def lowerCamelCase_ ( self : int , lowerCamelCase_ : ImageInput , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[Dict[str, int]] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ : Optional[int] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size if patch_size is not None else self.patch_size
SCREAMING_SNAKE_CASE : List[Any] = max_patches if max_patches is not None else self.max_patches
SCREAMING_SNAKE_CASE : Any = self.is_vqa
if kwargs.get("""data_format""" , lowerCamelCase_ ) is not None:
raise ValueError("""data_format is not an accepted input as the outputs are """ )
SCREAMING_SNAKE_CASE : Tuple = make_list_of_images(lowerCamelCase_ )
if not valid_images(lowerCamelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE : List[Any] = [convert_to_rgb(lowerCamelCase_ ) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE : Any = [to_numpy_array(lowerCamelCase_ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError("""A header text must be provided for VQA models.""" )
SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("""font_bytes""" , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop("""font_path""" , lowerCamelCase_ )
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : str = [header_text] * len(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = [
render_header(lowerCamelCase_ , header_text[i] , font_bytes=lowerCamelCase_ , font_path=lowerCamelCase_ )
for i, image in enumerate(lowerCamelCase_ )
]
if do_normalize:
SCREAMING_SNAKE_CASE : Union[str, Any] = [self.normalize(image=lowerCamelCase_ ) for image in images]
# convert to torch tensor and permute
SCREAMING_SNAKE_CASE : str = [
self.extract_flattened_patches(image=lowerCamelCase_ , max_patches=lowerCamelCase_ , patch_size=lowerCamelCase_ )
for image in images
]
# create attention mask in numpy
SCREAMING_SNAKE_CASE : List[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
SCREAMING_SNAKE_CASE : Optional[int] = BatchFeature(
data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=lowerCamelCase_ )
return encoded_outputs
| 323 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
SCREAMING_SNAKE_CASE : Optional[Any] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : Any = num_channels
SCREAMING_SNAKE_CASE : str = image_size
SCREAMING_SNAKE_CASE : Dict = min_resolution
SCREAMING_SNAKE_CASE : List[str] = max_resolution
SCREAMING_SNAKE_CASE : str = do_resize
SCREAMING_SNAKE_CASE : Optional[Any] = size
SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize
SCREAMING_SNAKE_CASE : List[Any] = image_mean
SCREAMING_SNAKE_CASE : str = image_std
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class UpperCamelCase__ ( lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self )
@property
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 323 | 1 |
'''simple docstring'''
import argparse
import copy
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = {}
with open(lowerCamelCase_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
SCREAMING_SNAKE_CASE : List[Any] = []
_list.append([line.split()[1], line.split()[2]] )
SCREAMING_SNAKE_CASE : Optional[Any] = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
_list.append([line.split()[0], line.split()[2]] )
SCREAMING_SNAKE_CASE : Optional[int] = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
with open(lowerCamelCase_ ) as f:
SCREAMING_SNAKE_CASE : List[Any] = f.read(1 )
SCREAMING_SNAKE_CASE : Dict = start_node
SCREAMING_SNAKE_CASE : List[Any] = []
SCREAMING_SNAKE_CASE : List[str] = start_node
SCREAMING_SNAKE_CASE : str = 0
while visiting not in first_solution:
SCREAMING_SNAKE_CASE : Any = 1_00_00
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(lowerCamelCase_ ) and k[0] not in first_solution:
SCREAMING_SNAKE_CASE : Tuple = k[1]
SCREAMING_SNAKE_CASE : str = k[0]
first_solution.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = distance_of_first_solution + int(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = best_node
first_solution.append(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
SCREAMING_SNAKE_CASE : List[Any] = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_00_00
)
return first_solution, distance_of_first_solution
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = []
for n in solution[1:-1]:
SCREAMING_SNAKE_CASE : str = solution.index(lowerCamelCase_ )
for kn in solution[1:-1]:
SCREAMING_SNAKE_CASE : str = solution.index(lowerCamelCase_ )
if n == kn:
continue
SCREAMING_SNAKE_CASE : int = copy.deepcopy(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = kn
SCREAMING_SNAKE_CASE : List[Any] = n
SCREAMING_SNAKE_CASE : Optional[int] = 0
for k in _tmp[:-1]:
SCREAMING_SNAKE_CASE : Dict = _tmp[_tmp.index(lowerCamelCase_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
SCREAMING_SNAKE_CASE : Optional[int] = distance + int(i[1] )
_tmp.append(lowerCamelCase_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
SCREAMING_SNAKE_CASE : List[str] = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda lowerCamelCase_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : Union[str, Any] = first_solution
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : int = distance_of_first_solution
SCREAMING_SNAKE_CASE : List[Any] = solution
while count <= iters:
SCREAMING_SNAKE_CASE : str = find_neighborhood(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : List[Any] = neighborhood[index_of_best_solution]
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ ) - 1
SCREAMING_SNAKE_CASE : int = False
while not found:
SCREAMING_SNAKE_CASE : Any = 0
while i < len(lowerCamelCase_ ):
if best_solution[i] != solution[i]:
SCREAMING_SNAKE_CASE : int = best_solution[i]
SCREAMING_SNAKE_CASE : Dict = solution[i]
break
SCREAMING_SNAKE_CASE : Union[str, Any] = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
SCREAMING_SNAKE_CASE : Dict = True
SCREAMING_SNAKE_CASE : Union[str, Any] = best_solution[:-1]
SCREAMING_SNAKE_CASE : List[Any] = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
SCREAMING_SNAKE_CASE : Tuple = cost
SCREAMING_SNAKE_CASE : str = solution
else:
SCREAMING_SNAKE_CASE : Dict = index_of_best_solution + 1
SCREAMING_SNAKE_CASE : str = neighborhood[index_of_best_solution]
if len(lowerCamelCase_ ) >= size:
tabu_list.pop(0 )
SCREAMING_SNAKE_CASE : Dict = count + 1
return best_solution_ever, best_cost
def __A ( lowerCamelCase_=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = generate_neighbours(args.File )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = generate_first_solution(
args.File , lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = tabu_search(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.Iterations , args.Size , )
print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description="""Tabu Search""")
parser.add_argument(
"""-f""",
"""--File""",
type=str,
help="""Path to the file containing the data""",
required=True,
)
parser.add_argument(
"""-i""",
"""--Iterations""",
type=int,
help="""How many iterations the algorithm should perform""",
required=True,
)
parser.add_argument(
"""-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 323 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
__UpperCAmelCase = {
"""config""": [
"""EXTERNAL_DATA_FORMAT_SIZE_LIMIT""",
"""OnnxConfig""",
"""OnnxConfigWithPast""",
"""OnnxSeq2SeqConfigWithPast""",
"""PatchingSpec""",
],
"""convert""": ["""export""", """validate_model_outputs"""],
"""features""": ["""FeaturesManager"""],
"""utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 323 | 1 |
'''simple docstring'''
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = [
"""word_embeddings_layernorm.weight""",
"""word_embeddings_layernorm.bias""",
"""input_layernorm.weight""",
"""input_layernorm.bias""",
"""post_attention_layernorm.weight""",
"""post_attention_layernorm.bias""",
"""self_attention.dense.bias""",
"""mlp.dense_4h_to_h.bias""",
"""ln_f.weight""",
"""ln_f.bias""",
]
__UpperCAmelCase = [
"""mlp.dense_4h_to_h.weight""",
"""self_attention.dense.weight""",
]
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = {
"""word_embeddings.weight""": """word_embeddings.weight""",
"""word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""",
"""word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""",
"""weight""": """ln_f.weight""",
"""bias""": """ln_f.bias""",
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
SCREAMING_SNAKE_CASE : Dict = int(re.match(R""".*layer_(\d*).*""" , lowerCamelCase_ )[1] )
layer_number -= 3
return f'''h.{layer_number}.''' + key
def __A ( lowerCamelCase_ ):
"""simple docstring"""
if dtype == torch.bool:
return 1 / 8
SCREAMING_SNAKE_CASE : str = re.search(R"""[^\d](\d+)$""" , str(lowerCamelCase_ ) )
if bit_search is None:
raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' )
SCREAMING_SNAKE_CASE : int = int(bit_search.groups()[0] )
return bit_size // 8
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if bloom_config_file == "":
SCREAMING_SNAKE_CASE : int = BloomConfig()
else:
SCREAMING_SNAKE_CASE : Any = BloomConfig.from_json_file(lowerCamelCase_ )
if shard_model:
SCREAMING_SNAKE_CASE : Union[str, Any] = os.listdir(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = sorted(filter(lambda lowerCamelCase_ : s.startswith("""layer""" ) and "model_00" in s , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Any = {"""weight_map""": {}, """metadata""": {}}
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : Dict = BloomConfig()
for j, file in enumerate(lowerCamelCase_ ):
print("""Processing file: {}""".format(lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : List[str] = None
for i in range(lowerCamelCase_ ):
# load all TP files
SCREAMING_SNAKE_CASE : Union[str, Any] = file.replace("""model_00""" , f'''model_0{i}''' )
SCREAMING_SNAKE_CASE : Optional[int] = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , map_location="""cpu""" )
# Rename keys in the transformers names
SCREAMING_SNAKE_CASE : str = list(temp.keys() )
for key in keys:
SCREAMING_SNAKE_CASE : Optional[Any] = temp.pop(lowerCamelCase_ )
if tensors is None:
SCREAMING_SNAKE_CASE : Tuple = temp
else:
for key in tensors.keys():
if any(key.endswith(lowerCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
SCREAMING_SNAKE_CASE : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
SCREAMING_SNAKE_CASE : int = torch.cat([tensors[key], temp[key]] , dim=lowerCamelCase_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(lowerCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
SCREAMING_SNAKE_CASE : Dict = tensors[key] / pretraining_tp
torch.save(
lowerCamelCase_ , os.path.join(
lowerCamelCase_ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(lowerCamelCase_ ) ).zfill(5 ) ) , ) , )
for key in tensors.keys():
SCREAMING_SNAKE_CASE : List[Any] = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
SCREAMING_SNAKE_CASE : Optional[Any] = """pytorch_model_{}-of-{}.bin""".format(
str(j + 1 ).zfill(5 ) , str(len(lowerCamelCase_ ) ).zfill(5 ) )
SCREAMING_SNAKE_CASE : List[Any] = BloomConfig()
SCREAMING_SNAKE_CASE : List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME
SCREAMING_SNAKE_CASE : int = total_size
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
with open(os.path.join(lowerCamelCase_ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f:
SCREAMING_SNAKE_CASE : Any = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + """\n"""
f.write(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : str = BloomModel(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = os.listdir(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = sorted(filter(lambda lowerCamelCase_ : s.startswith("""layer""" ) and "model_00" in s , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE : Optional[int] = None
for i, file in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Optional[Any] = None
for i in range(lowerCamelCase_ ):
# load all TP files
SCREAMING_SNAKE_CASE : Tuple = file.replace("""model_00""" , f'''model_0{i}''' )
SCREAMING_SNAKE_CASE : int = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , map_location="""cpu""" )
# Rename keys in the transformers names
SCREAMING_SNAKE_CASE : Dict = list(temp.keys() )
for key in keys:
SCREAMING_SNAKE_CASE : List[str] = temp.pop(lowerCamelCase_ )
if tensors is None:
SCREAMING_SNAKE_CASE : Tuple = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(lowerCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
SCREAMING_SNAKE_CASE : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
SCREAMING_SNAKE_CASE : Any = torch.cat([tensors[key], temp[key]] , dim=lowerCamelCase_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(lowerCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
SCREAMING_SNAKE_CASE : Union[str, Any] = tensors[key] / pretraining_tp
SCREAMING_SNAKE_CASE : Optional[int] = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ )
assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected'''
if missing_keys is None:
SCREAMING_SNAKE_CASE : int = set(other_keys.missing_keys )
else:
SCREAMING_SNAKE_CASE : str = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, f'''The keys {missing_keys} are missing'''
# Save pytorch-model
os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
SCREAMING_SNAKE_CASE : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' )
if config.torch_dtype is not None:
SCREAMING_SNAKE_CASE : int = model.to(config.torch_dtype )
torch.save(model.state_dict() , lowerCamelCase_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--bloom_checkpoint_path""",
default=None,
type=str,
required=True,
help="""Path to the Megatron-LM checkpoint path.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--bloom_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--shard_model""",
action="""store_true""",
help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""",
)
parser.add_argument(
"""--pretraining_tp""",
default=4,
type=int,
help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""",
)
__UpperCAmelCase = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 323 |
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 323 | 1 |
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def __A ( lowerCamelCase_ ):
"""simple docstring"""
return x + 2
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = """x = 3"""
SCREAMING_SNAKE_CASE : str = {}
SCREAMING_SNAKE_CASE : Any = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
assert result == 3
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3} )
SCREAMING_SNAKE_CASE : Union[str, Any] = """x = y"""
SCREAMING_SNAKE_CASE : List[str] = {"""y""": 5}
SCREAMING_SNAKE_CASE : Any = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(lowerCamelCase_ , {"""x""": 5, """y""": 5} )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = """y = add_two(x)"""
SCREAMING_SNAKE_CASE : Optional[int] = {"""x""": 3}
SCREAMING_SNAKE_CASE : str = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ )
assert result == 5
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 5} )
# Won't work without the tool
with CaptureStdout() as out:
SCREAMING_SNAKE_CASE : Optional[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
assert result is None
assert "tried to execute add_two" in out.out
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = """x = 3"""
SCREAMING_SNAKE_CASE : List[str] = {}
SCREAMING_SNAKE_CASE : Optional[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
assert result == 3
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3} )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = """test_dict = {'x': x, 'y': add_two(x)}"""
SCREAMING_SNAKE_CASE : Any = {"""x""": 3}
SCREAMING_SNAKE_CASE : Any = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ )
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 5} )
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = """x = 3\ny = 5"""
SCREAMING_SNAKE_CASE : int = {}
SCREAMING_SNAKE_CASE : Dict = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 5} )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = """text = f'This is x: {x}.'"""
SCREAMING_SNAKE_CASE : Dict = {"""x""": 3}
SCREAMING_SNAKE_CASE : List[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """text""": """This is x: 3."""} )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = """if x <= 3:\n y = 2\nelse:\n y = 5"""
SCREAMING_SNAKE_CASE : Any = {"""x""": 3}
SCREAMING_SNAKE_CASE : List[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 2} )
SCREAMING_SNAKE_CASE : Optional[int] = {"""x""": 8}
SCREAMING_SNAKE_CASE : Optional[int] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(lowerCamelCase_ , {"""x""": 8, """y""": 5} )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = """test_list = [x, add_two(x)]"""
SCREAMING_SNAKE_CASE : List[str] = {"""x""": 3}
SCREAMING_SNAKE_CASE : Any = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , [3, 5] )
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """test_list""": [3, 5]} )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = """y = x"""
SCREAMING_SNAKE_CASE : Any = {"""x""": 3}
SCREAMING_SNAKE_CASE : Dict = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ )
assert result == 3
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """y""": 3} )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = """test_list = [x, add_two(x)]\ntest_list[1]"""
SCREAMING_SNAKE_CASE : int = {"""x""": 3}
SCREAMING_SNAKE_CASE : Tuple = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ )
assert result == 5
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """test_list""": [3, 5]} )
SCREAMING_SNAKE_CASE : List[str] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']"""
SCREAMING_SNAKE_CASE : str = {"""x""": 3}
SCREAMING_SNAKE_CASE : Dict = evaluate(lowerCamelCase_ , {"""add_two""": add_two} , state=lowerCamelCase_ )
assert result == 5
self.assertDictEqual(lowerCamelCase_ , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = """x = 0\nfor i in range(3):\n x = i"""
SCREAMING_SNAKE_CASE : str = {}
SCREAMING_SNAKE_CASE : Tuple = evaluate(lowerCamelCase_ , {"""range""": range} , state=lowerCamelCase_ )
assert result == 2
self.assertDictEqual(lowerCamelCase_ , {"""x""": 2, """i""": 2} )
| 323 |
'''simple docstring'''
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number | (1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number & ~(1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return number ^ (1 << position)
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return ((number >> position) & 1) == 1
def __A ( lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 323 | 1 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__UpperCAmelCase = """."""
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__UpperCAmelCase = [
"""Assert""",
"""AssignVariableOp""",
"""EmptyTensorList""",
"""MergeV2Checkpoints""",
"""ReadVariableOp""",
"""ResourceGather""",
"""RestoreV2""",
"""SaveV2""",
"""ShardedFilename""",
"""StatefulPartitionedCall""",
"""StaticRegexFullMatch""",
"""VarHandleOp""",
]
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = SavedModel()
SCREAMING_SNAKE_CASE : Tuple = []
with open(os.path.join(lowerCamelCase_ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f:
SCREAMING_SNAKE_CASE : Optional[int] = json.load(lowerCamelCase_ )["""opsets"""]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(lowerCamelCase_ )] )
with open(lowerCamelCase_ , """rb""" ) as f:
saved_model.ParseFromString(f.read() )
SCREAMING_SNAKE_CASE : Optional[int] = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(lowerCamelCase_ )
if strict and len(lowerCamelCase_ ) > 0:
raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(lowerCamelCase_ ) > 0:
print(f'''Found the following incompatible ops for the opset {opset}:''' )
print(*lowerCamelCase_ , sep="""\n""" )
else:
print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""")
parser.add_argument(
"""--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested."""
)
parser.add_argument(
"""--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model."""
)
parser.add_argument(
"""--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)"""
)
__UpperCAmelCase = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 323 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[int] = batch_size
SCREAMING_SNAKE_CASE : Any = seq_length
SCREAMING_SNAKE_CASE : List[str] = is_training
SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask
SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids
SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE : str = vocab_size
SCREAMING_SNAKE_CASE : str = hidden_size
SCREAMING_SNAKE_CASE : List[Any] = rotary_dim
SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Tuple = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Dict = vocab_size - 1
SCREAMING_SNAKE_CASE : str = vocab_size - 1
SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : List[str] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs
SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = 20
SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
SCREAMING_SNAKE_CASE : Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
SCREAMING_SNAKE_CASE : str = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = 20
SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
SCREAMING_SNAKE_CASE : Any = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
SCREAMING_SNAKE_CASE : Dict = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self )
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
@tooslow
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id
SCREAMING_SNAKE_CASE : str = jax.jit(model.generate )
SCREAMING_SNAKE_CASE : str = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
@is_pt_flax_cross_test
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape
SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Optional[int] = 1
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Union[str, Any] = 1
SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Any = fx_state
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple()
SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def lowerCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval()
SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape
SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : Tuple = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple()
SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple()
self.assertEqual(
len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 323 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git_vision_model'''
def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE : int = num_attention_heads
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Optional[Any] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : List[str] = initializer_range
SCREAMING_SNAKE_CASE : str = attention_dropout
SCREAMING_SNAKE_CASE : Any = layer_norm_eps
SCREAMING_SNAKE_CASE : List[str] = hidden_act
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ):
'''simple docstring'''
cls._set_token_in_kwargs(lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git'''
def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
if vision_config is None:
SCREAMING_SNAKE_CASE : Any = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = vocab_size
SCREAMING_SNAKE_CASE : Tuple = hidden_size
SCREAMING_SNAKE_CASE : int = num_hidden_layers
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : str = hidden_act
SCREAMING_SNAKE_CASE : Dict = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type
SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings
SCREAMING_SNAKE_CASE : int = num_image_with_embedding
SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id
SCREAMING_SNAKE_CASE : str = eos_token_id
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE : Any = self.__class__.model_type
return output
| 323 |
'''simple docstring'''
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias''']
@register_to_config
def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : Optional[int] = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'''
f''' `n_embd`: {n_embd} are not equal.''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim
SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim
SCREAMING_SNAKE_CASE : Tuple = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
SCREAMING_SNAKE_CASE : str = (
nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
SCREAMING_SNAKE_CASE : Any = GPTaConfig(
vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , )
SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 )
SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ):
'''simple docstring'''
return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ )
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
return self.encode_prefix(lowerCamelCase_ )
@torch.no_grad()
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 )
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : Tuple = []
for feature in features:
SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature
# Only support beam search for now
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam(
input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = eos_token_id
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : List[Any] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool )
if input_embeds is not None:
SCREAMING_SNAKE_CASE : Dict = input_embeds
else:
SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ )
for i in range(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = outputs.logits
SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log()
if scores is None:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
SCREAMING_SNAKE_CASE : List[Any] = next_tokens
else:
SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] )
SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 )
else:
SCREAMING_SNAKE_CASE : Tuple = -float(np.inf )
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None]
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 )
SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1]
SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source]
SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1]
SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 )
SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source]
SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source]
SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths
SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source]
SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 )
SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze()
if is_stopped.all():
break
SCREAMING_SNAKE_CASE : int = scores / seq_lengths
SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ )
# tokens tensors are already padded to max_seq_length
SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order]
SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 323 | 1 |
'''simple docstring'''
def __A ( lowerCamelCase_ = 10_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = 2**power
SCREAMING_SNAKE_CASE : List[Any] = 0
while n:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 323 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git_vision_model'''
def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE : int = num_attention_heads
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Optional[Any] = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = image_size
SCREAMING_SNAKE_CASE : List[str] = initializer_range
SCREAMING_SNAKE_CASE : str = attention_dropout
SCREAMING_SNAKE_CASE : Any = layer_norm_eps
SCREAMING_SNAKE_CASE : List[str] = hidden_act
@classmethod
def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ):
'''simple docstring'''
cls._set_token_in_kwargs(lowerCamelCase_ )
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = '''git'''
def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ):
'''simple docstring'''
super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
if vision_config is None:
SCREAMING_SNAKE_CASE : Any = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = vocab_size
SCREAMING_SNAKE_CASE : Tuple = hidden_size
SCREAMING_SNAKE_CASE : int = num_hidden_layers
SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : str = hidden_act
SCREAMING_SNAKE_CASE : Dict = intermediate_size
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Dict = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type
SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings
SCREAMING_SNAKE_CASE : int = num_image_with_embedding
SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id
SCREAMING_SNAKE_CASE : str = eos_token_id
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE : Any = self.__class__.model_type
return output
| 323 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.