code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
# Function to print upper half of diamond (pyramid) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' for i in range(0 , lowerCAmelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' for i in range(lowerCAmelCase__ , 0 , -1 ): for _ in range(lowerCAmelCase__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(lowerCAmelCase__ ) # upper half reverse_floyd(lowerCAmelCase__ ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") lowercase__ :Dict = 1 while K: lowercase__ :Optional[Any] = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) lowercase__ :Any = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
101
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") SCREAMING_SNAKE_CASE : str = F'https://www.google.com/search?q={query}&num=100' SCREAMING_SNAKE_CASE : Union[str, Any] = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: SCREAMING_SNAKE_CASE : List[Any] = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
102
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase( __UpperCamelCase : Optional[int] ,__UpperCamelCase : str ): # Load checkpoint lowerCAmelCase_ : Union[str, Any] = torch.load(__UpperCamelCase ,map_location='''cpu''' ) lowerCAmelCase_ : List[str] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository lowerCAmelCase_ : Union[str, Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCAmelCase_ : str = v else: lowerCAmelCase_ : List[str] = v lowerCAmelCase_ : Tuple = chkpt['''params'''] lowerCAmelCase_ : Optional[Any] = {n: v for n, v in config.items() if not isinstance(__UpperCamelCase ,(torch.FloatTensor, numpy.ndarray) )} lowerCAmelCase_ : List[str] = chkpt['''dico_word2id'''] lowerCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' ,'''''' ): i for s, i in vocab.items()} # Save pytorch-model lowerCAmelCase_ : Optional[int] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCAmelCase_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME lowerCAmelCase_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__UpperCamelCase ,__UpperCamelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(__UpperCamelCase ,indent=2 ) + '''\n''' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(__UpperCamelCase ,indent=2 ) + '''\n''' ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__ : Tuple = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
103
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a : Union[str, Any] = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( _lowercase : torch.nn.Module , _lowercase : BnbQuantizationConfig , _lowercase : Union[str, os.PathLike] = None , _lowercase : Optional[Dict[str, Union[int, str, torch.device]]] = None , _lowercase : Optional[List[str]] = None , _lowercase : Optional[Dict[Union[int, str], Union[int, str]]] = None , _lowercase : Optional[Union[str, os.PathLike]] = None , _lowercase : bool = False , ) ->Union[str, Any]: '''simple docstring''' a : Tuple = bnb_quantization_config.load_in_abit a : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) a : Tuple = [] # custom device map if isinstance(_lowercase , _lowercase ) and len(device_map.keys() ) > 1: a : List[str] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: a : List[str] = get_keys_to_not_convert(_lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_lowercase ) a : Optional[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: a : List[str] = [] a : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_lowercase ) # compatibility with peft a : List[str] = load_in_abit a : Optional[int] = load_in_abit a : Union[str, Any] = get_parameter_device(_lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) a : Optional[int] = replace_with_bnb_layers(_lowercase , _lowercase , modules_to_not_convert=_lowercase ) # convert param to the right dtype a : Optional[int] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: a : Optional[int] = name.replace(".weight" , "" ).replace(".bias" , "" ) a : Any = getattr(_lowercase , _lowercase , _lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_lowercase ): param.to(_lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): a : int = replace_with_bnb_layers( _lowercase , _lowercase , modules_to_not_convert=_lowercase ) a : Tuple = get_quantized_model_device_map( _lowercase , _lowercase , _lowercase , max_memory=_lowercase , no_split_module_classes=_lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): a : List[str] = True a : Tuple = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( _lowercase , _lowercase , _lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=_lowercase , offload_state_dict=_lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_lowercase , device_map=_lowercase , offload_dir=_lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : Dict , _lowercase : int , _lowercase : Union[str, Any]=None , _lowercase : Any=None , _lowercase : Union[str, Any]=None ) ->List[Any]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): a : Union[str, Any] = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(_lowercase , _lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) a : List[str] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) a : Optional[Any] = {} a : Optional[int] = special_dtypes a : Union[str, Any] = no_split_module_classes a : List[str] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": a : Optional[int] = get_balanced_memory( _lowercase , low_zero=(device_map == "balanced_low_0") , max_memory=_lowercase , **_lowercase , ) a : Any = max_memory a : Dict = infer_auto_device_map(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ): # check if don't have any quantized module on the cpu a : List[str] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules a : Optional[int] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : Tuple , _lowercase : Tuple=None , _lowercase : List[Any]=None ) ->int: '''simple docstring''' if modules_to_not_convert is None: a : Union[str, Any] = [] a, a : Optional[Any] = _replace_with_bnb_layers( _lowercase , _lowercase , _lowercase , _lowercase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def _SCREAMING_SNAKE_CASE ( _lowercase : Dict , _lowercase : Dict , _lowercase : List[Any]=None , _lowercase : str=None , ) ->Optional[int]: '''simple docstring''' a : Tuple = False for name, module in model.named_children(): if current_key_name is None: a : Tuple = [] current_key_name.append(_lowercase ) if isinstance(_lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` a : Union[str, Any] = ".".join(_lowercase ) a : Optional[Any] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: a : str = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: a : Union[str, Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: a : Union[str, Any] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) a : Union[str, Any] = module.weight.data if module.bias is not None: a : List[str] = module.bias.data bnb_module.requires_grad_(_lowercase ) setattr(_lowercase , _lowercase , _lowercase ) a : Optional[int] = True if len(list(module.children() ) ) > 0: a, a : Union[str, Any] = _replace_with_bnb_layers( _lowercase , _lowercase , _lowercase , _lowercase ) a : str = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Union[str, Any]: '''simple docstring''' with init_empty_weights(): a : Dict = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` a : int = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase , _lowercase ): a : Dict = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: a : Union[str, Any] = sum(_lowercase , [] ) a : Any = len(_lowercase ) > 0 # Check if it is a base model a : int = False if hasattr(_lowercase , "base_model_prefix" ): a : List[Any] = not hasattr(_lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a : Optional[Any] = list(model.named_children() ) a : Dict = [list_modules[-1][0]] # add last module together with tied weights a : str = set(_lowercase ) - set(_lowercase ) a : Optional[Any] = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys a : Optional[int] = [".weight", ".bias"] a : List[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a : Dict = name.replace(_lowercase , "" ) filtered_module_names.append(_lowercase ) return filtered_module_names def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->Optional[int]: '''simple docstring''' for m in model.modules(): if isinstance(_lowercase , bnb.nn.Linearabit ): return True return False def _SCREAMING_SNAKE_CASE ( _lowercase : nn.Module ) ->Union[str, Any]: '''simple docstring''' return next(parameter.parameters() ).device def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : List[str] ) ->Dict: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(_lowercase , _lowercase , 0 , dtype=_lowercase , value=_lowercase ) a : str = param_name a : int = model if "." in tensor_name: a : str = tensor_name.split("." ) for split in splits[:-1]: a : Tuple = getattr(_lowercase , _lowercase ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) a : Dict = new_module a : Any = splits[-1] # offload weights a : Dict = False offload_weight(module._parameters[tensor_name] , _lowercase , _lowercase , index=_lowercase ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , _lowercase , index=_lowercase , ) else: offload_weight(_lowercase , _lowercase , _lowercase , index=_lowercase ) offload_weight(_lowercase , param_name.replace("weight" , "SCB" ) , _lowercase , index=_lowercase ) set_module_tensor_to_device(_lowercase , _lowercase , "meta" , dtype=_lowercase , value=torch.empty(*param.size() ) )
105
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "timm_backbone" def __init__( self : List[str] ,lowercase_ : Any=None ,lowercase_ : int=3 ,lowercase_ : List[Any]=True ,lowercase_ : str=True ,lowercase_ : Union[str, Any]=None ,**lowercase_ : List[Any] ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = backbone lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : Optional[int] = features_only lowerCAmelCase__ : Any = use_pretrained_backbone lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : str = out_indices if out_indices is not None else (-1,)
106
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class snake_case__ : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=99 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Optional[int]=5 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[str]=5_12 , __lowerCamelCase : Any=16 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : str=None , ) -> int: a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope a = vocab_size - 1 def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_labels: a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = self.get_config() return config, input_ids, input_mask, token_labels def __UpperCAmelCase ( self : Union[str, Any] ) -> str: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self : str ) -> Any: a , a , a , a = self.prepare_config_and_inputs() a = True return config, input_ids, input_mask, token_labels def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ) -> Optional[int]: a = GPTNeoXModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ) -> Dict: a = True a = GPTNeoXModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ) -> str: a = GPTNeoXForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> str: a = self.num_labels a = GPTNeoXForQuestionAnswering(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: a = self.num_labels a = GPTNeoXForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> Dict: a = self.num_labels a = GPTNeoXForTokenClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> List[Any]: a = True a = GPTNeoXForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] , dim=-1 ) a = torch.cat([input_mask, next_mask] , dim=-1 ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase ) a = output_from_no_past["hidden_states"][0] a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["hidden_states"][0] # select random slice a = ids_tensor((1,) , output_from_past.shape[-1] ).item() a = output_from_no_past[:, -3:, random_slice_idx].detach() a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : List[Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[Any] = False def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a = GPTNeoXModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=64 , num_attention_heads=8 ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> Dict: a , a , a , a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: a , a , a , a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ) -> int: # This regression test was failing with PyTorch < 1.3 a , a , a , a = self.model_tester.prepare_config_and_inputs_for_decoder() a = None self.model_tester.create_and_check_model_as_decoder(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: a , a , a , a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> List[Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> str: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def __UpperCAmelCase ( self : List[Any] ) -> Any: pass @parameterized.expand([("linear",), ("dynamic",)] ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> str: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ids_tensor([1, 10] , config.vocab_size ) a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = GPTNeoXModel(__lowerCamelCase ) original_model.to(__lowerCamelCase ) original_model.eval() a = original_model(__lowerCamelCase ).last_hidden_state a = original_model(__lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = {"type": scaling_type, "factor": 10.0} a = GPTNeoXModel(__lowerCamelCase ) scaled_model.to(__lowerCamelCase ) scaled_model.eval() a = scaled_model(__lowerCamelCase ).last_hidden_state a = scaled_model(__lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) @require_torch class snake_case__ (unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Any ) -> List[Any]: a = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: a = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__lowerCamelCase ) a = tokenizer("My favorite food is" , return_tensors="pt" ).to(__lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 a = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" a = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=20 ) a = tokenizer.batch_decode(__lowerCamelCase )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase )
107
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase__ = '''path-to-your-trained-model''' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase__ = pipe.to(device) # to channels last lowerCAmelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase__ = torch.randn(2, 4, 64, 64) lowerCAmelCase__ = torch.rand(1) * 999 lowerCAmelCase__ = torch.randn(2, 77, 768) lowerCAmelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase__ = 666 lowerCAmelCase__ = torch.Generator(device).manual_seed(seed) lowerCAmelCase__ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
108
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _snake_case ( UpperCamelCase : Dataset , UpperCamelCase : Dict[str, str] ): UpperCAmelCase : Any = args.log_outputs UpperCAmelCase : Any = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCAmelCase : List[Any] = load_metric("""wer""" ) UpperCAmelCase : Any = load_metric("""cer""" ) # compute metrics UpperCAmelCase : int = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) UpperCAmelCase : str = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results UpperCAmelCase : Tuple = F"WER: {wer_result}\nCER: {cer_result}" print(UpperCamelCase ) with open(F"{dataset_id}_eval_results.txt" , """w""" ) as f: f.write(UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase : str = F"log_{dataset_id}_predictions.txt" UpperCAmelCase : Tuple = F"log_{dataset_id}_targets.txt" with open(UpperCamelCase , """w""" ) as p, open(UpperCamelCase , """w""" ) as t: # mapping function to write output def write_to_file(UpperCamelCase : List[Any] , UpperCamelCase : List[Any] ): p.write(F"{i}" + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(F"{i}" + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(UpperCamelCase , with_indices=UpperCamelCase ) def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : List[str] = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase : Dict = re.sub(UpperCamelCase , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCAmelCase : Optional[Any] = """ """.join(text.split(UpperCamelCase ) ) return text def _snake_case ( UpperCamelCase : Tuple ): # load dataset UpperCAmelCase : Union[str, Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase : Any = feature_extractor.sampling_rate # resample audio UpperCAmelCase : List[str] = dataset.cast_column("""audio""" , Audio(sampling_rate=UpperCamelCase ) ) # load eval pipeline if args.device is None: UpperCAmelCase : Optional[int] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase : Tuple = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(UpperCamelCase : Any ): UpperCAmelCase : Any = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase : Tuple = prediction["""text"""] UpperCAmelCase : List[str] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCAmelCase : int = dataset.map(UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": A: List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) A: Union[str, Any] = parser.parse_args() main(args)
109
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a_ = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } a_ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' a_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _a( UpperCamelCase__ : tuple ): '''simple docstring''' return x[0] def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =get_letter_count(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : dict[int, list[str]] ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : dict[int, str] ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =''.join(freq_to_letter[freq] ) SCREAMING_SNAKE_CASE__ : Any =list(freq_to_letter_str.items() ) freq_pairs.sort(key=UpperCamelCase__, reverse=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : list[str] =[freq_pair[1] for freq_pair in freq_pairs] return "".join(UpperCamelCase__ ) def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =get_frequency_order(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
152
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : int = 0 lowercase__ : Tuple = len(UpperCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ : Tuple = i + 1 else: lowercase__ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
198
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A =logging.get_logger(__name__) __A ={ '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ): lowerCAmelCase__ = 'nat' lowerCAmelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , lowercase=4 , lowercase=3 , lowercase=64 , lowercase=[3, 4, 6, 5] , lowercase=[2, 4, 8, 16] , lowercase=7 , lowercase=3.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=0.0_2 , lowercase=1e-5 , lowercase=0.0 , lowercase=None , lowercase=None , **lowercase , ) -> Any: super().__init__(**lowercase ) lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = depths lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = num_heads lowerCamelCase_ = kernel_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_ = int(embed_dim * 2 ** (len(lowercase ) - 1) ) lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = ['stem'] + [f'stage{idx}' for idx in range(1 , len(lowercase ) + 1 )] lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
19
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _lowerCAmelCase : Tuple = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
169
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1, __lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def A__ ( __lowerCamelCase ): if len(__lowerCamelCase ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) // 2 SCREAMING_SNAKE_CASE_ = arr[0:mid] SCREAMING_SNAKE_CASE_ = arr[mid:] SCREAMING_SNAKE_CASE_ = count_inversions_recursive(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = count_inversions_recursive(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = _count_cross_inversions(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = inversion_p + inversions_q + cross_inversions return c, num_inversions def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 while i < len(__lowerCamelCase ) and j < len(__lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def A__ ( ): SCREAMING_SNAKE_CASE_ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE_ = count_inversions_bf(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = count_inversions_recursive(__lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''', __lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE_ = count_inversions_bf(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = count_inversions_recursive(__lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''', __lowerCamelCase ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = count_inversions_bf(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = count_inversions_recursive(__lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''', __lowerCamelCase ) if __name__ == "__main__": main()
299
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class _a ( snake_case__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __a : str = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __a : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __a : ClassVar[Features] = Features({"""summary""": Value("""string""" )} ) __a : str = "text" __a : str = "summary" @property def A ( self : Tuple ): '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
34
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
'''simple docstring''' from __future__ import annotations _UpperCamelCase = 10 def a_ ( _lowerCAmelCase ) -> list[int]: __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : str = max(_lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(_lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : str = int((i / placement) % RADIX ) buckets[tmp].append(_lowerCAmelCase ) # put each buckets' contents into list_of_ints __lowerCamelCase : str = 0 for b in range(_lowerCAmelCase ): for i in buckets[b]: __lowerCamelCase : List[str] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
208
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
from __future__ import annotations def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def a__ ( snake_case , snake_case , snake_case , ): """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def a__ ( snake_case , snake_case , snake_case , ): """simple docstring""" if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
303
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case_ = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } snake_case_ = {"""allegro/herbert-base-cased""": 514} snake_case_ = {} class A_ ( snake_case__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = HerbertTokenizer def __init__( self :Optional[Any] , lowercase_ :Optional[int]=None , lowercase_ :Dict=None , lowercase_ :Optional[int]=None , lowercase_ :List[Any]="<s>" , lowercase_ :Optional[Any]="<unk>" , lowercase_ :Optional[int]="<pad>" , lowercase_ :Tuple="<mask>" , lowercase_ :List[Any]="</s>" , **lowercase_ :Union[str, Any] , ) -> int: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sep_token=lowercase_ , **lowercase_ , ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :Optional[str] = None ) -> Tuple[str]: UpperCAmelCase = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
78
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : float , UpperCamelCase__ : Callable , UpperCamelCase__ : int , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : str = None , ) -> Union[str, Any]: """simple docstring""" super().__init__() __magic_name__ = initial_learning_rate __magic_name__ = warmup_steps __magic_name__ = power __magic_name__ = decay_schedule_fn __magic_name__ = name def __call__( self : int , UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __magic_name__ = tf.cast(UpperCamelCase__ , tf.floataa ) __magic_name__ = tf.cast(self.warmup_steps , tf.floataa ) __magic_name__ = global_step_float / warmup_steps_float __magic_name__ = self.initial_learning_rate * tf.math.pow(UpperCamelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase__ , ) def _lowercase ( self : Tuple ) -> int: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def a__ ( A_, A_, A_, A_ = 0.0, A_ = 0.9, A_ = 0.999, A_ = 1e-8, A_ = None, A_ = None, A_ = 0.0, A_ = 1.0, A_ = None, ): '''simple docstring''' __magic_name__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A_, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=A_, ) if num_warmup_steps: __magic_name__ = WarmUp( initial_learning_rate=A_, decay_schedule_fn=A_, warmup_steps=A_, ) if weight_decay_rate > 0.0: __magic_name__ = AdamWeightDecay( learning_rate=A_, weight_decay_rate=A_, beta_a=A_, beta_a=A_, epsilon=A_, clipnorm=A_, global_clipnorm=A_, exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""], include_in_weight_decay=A_, ) else: __magic_name__ = tf.keras.optimizers.Adam( learning_rate=A_, beta_a=A_, beta_a=A_, epsilon=A_, clipnorm=A_, global_clipnorm=A_, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ ( snake_case__ ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase__ : float = 0.9 , UpperCamelCase__ : float = 0.999 , UpperCamelCase__ : float = 1E-7 , UpperCamelCase__ : bool = False , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "AdamWeightDecay" , **UpperCamelCase__ : str , ) -> int: """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = weight_decay_rate __magic_name__ = include_in_weight_decay __magic_name__ = exclude_from_weight_decay @classmethod def _lowercase ( cls : str , UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" __magic_name__ = {'WarmUp': WarmUp} return super(UpperCamelCase__ , cls ).from_config(UpperCamelCase__ , custom_objects=UpperCamelCase__ ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" super(UpperCamelCase__ , self )._prepare_local(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _lowercase ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = list(zip(*UpperCamelCase__ ) ) return super(UpperCamelCase__ , self ).apply_gradients(zip(UpperCamelCase__ , UpperCamelCase__ ) , name=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ) -> str: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} __magic_name__ = apply_state or {} __magic_name__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: __magic_name__ = self._fallback_apply_state(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowercase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any]=None ) -> List[Any]: """simple docstring""" __magic_name__ = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase__ ) __magic_name__ = self._decay_weights_op(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase__ , self )._resource_apply_dense(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=None ) -> List[str]: """simple docstring""" __magic_name__ = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase__ ) __magic_name__ = self._decay_weights_op(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase__ , self )._resource_apply_sparse(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __magic_name__ = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase__ , UpperCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase__ , UpperCamelCase__ ) is not None: return False return True class UpperCAmelCase_ ( snake_case__ ): '''simple docstring''' def __init__( self : int ) -> List[Any]: """simple docstring""" __magic_name__ = [] __magic_name__ = None @property def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" if self._accum_steps is None: __magic_name__ = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _lowercase ( self : Union[str, Any] ) -> int: """simple docstring""" if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase__ : Any ) -> Any: """simple docstring""" if not self._gradients: __magic_name__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase__ ) , trainable=UpperCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase__ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase__ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase__ ) self._accum_steps.assign_add(1 ) def _lowercase ( self : int ) -> int: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase__ ) )
88
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging A__: List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Dict=False ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _a : Any =os.path.abspath(_UpperCAmelCase ) logger.info(F"Loading PyTorch weights from {pt_path}" ) _a : Tuple =torch.load(_UpperCAmelCase ,map_location="""cpu""" ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) _a : int =convert_pytorch_state_dict_to_flax(_UpperCAmelCase ,_UpperCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _a : Union[str, Any] =convert_pytorch_sharded_state_dict_to_flax(_UpperCAmelCase ,_UpperCAmelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple[str] ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : Dict[str, jnp.ndarray] ,_UpperCAmelCase : str ,) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(_UpperCAmelCase : Tuple[str] ) -> bool: return len(set(_UpperCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _a : Union[str, Any] =pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _a : Union[str, Any] =pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _a : Optional[Any] =pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _a : Tuple =pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _a : Optional[Any] =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): _a : int =pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _a : str =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): _a : Dict =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _a : List[Any] =pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _a : List[Any] =pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _a : str =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _a : Any =pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _a : Dict =pt_tuple_key[-2] + '_v' if name is not None: _a : Tuple =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : List[str] ) -> Any: _a : str ={k: v.numpy() for k, v in pt_state_dict.items()} _a : List[Any] =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _a : Optional[Any] =flax_model.params['params'] else: _a : Optional[int] =flax_model.params _a : Optional[Any] =flatten_dict(_UpperCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _a : Any =flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(_UpperCAmelCase ) _a : Any ={} _a : Optional[int] =(model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _a : List[str] =(model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a : Tuple =tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _a : str =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _a : Tuple =pt_tuple_key[1:] # Correctly rename weight parameters _a : Optional[int] =rename_key_and_reshape_tensor( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # add model prefix if necessary _a : str =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _a : Dict =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _a : int =jnp.asarray(_UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCAmelCase ,_UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown _a : str =jnp.asarray(_UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown _a : Union[str, Any] =jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Optional[int] ) -> List[Any]: import torch # Load the index _a : Optional[int] ={} for shard_file in shard_filenames: # load using msgpack utils _a : Any =torch.load(_UpperCAmelCase ) _a : Tuple ={k: v.numpy() for k, v in pt_state_dict.items()} _a : Union[str, Any] =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _a : Dict =flax_model.params['params'] _a : Any =flatten_dict(_UpperCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _a : Optional[int] =flax_model.params _a : List[Any] =flatten_dict(_UpperCAmelCase ) _a : Optional[Any] =(model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _a : Tuple =(model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a : Any =tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _a : List[Any] =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _a : Dict =pt_tuple_key[1:] # Correctly rename weight parameters _a : List[str] =rename_key_and_reshape_tensor( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # add model prefix if necessary _a : str =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _a : Any =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _a : Optional[Any] =jnp.asarray(_UpperCAmelCase ) continue if "var" in flax_key[-1]: _a : int =jnp.asarray(_UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCAmelCase ,_UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown _a : Optional[int] =jnp.asarray(_UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown _a : Union[str, Any] =jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[int] ) -> List[str]: _a : Any =os.path.abspath(_UpperCAmelCase ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class _a : Dict =getattr(_UpperCAmelCase ,"""Flax""" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCAmelCase ,"""rb""" ) as state_f: try: _a : Tuple =from_bytes(_UpperCAmelCase ,state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(_UpperCAmelCase ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Union[str, Any] ) -> Optional[int]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _a : Optional[int] =flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa ,_UpperCAmelCase ) ).values() if any(_UpperCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _a : List[Any] =jax.tree_util.tree_map( lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,_UpperCAmelCase ) _a : int =flatten_dict(_UpperCAmelCase ) _a : Optional[Any] =pt_model.state_dict() _a : int =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _a : Dict =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _a : List[str] =[] _a : Any =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _a : str =flax_key_tuple[0] == pt_model.base_model_prefix _a : str ='.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _a : Optional[int] =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _a : List[Any] =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCAmelCase ) not in pt_model_dict: # conv layer _a : str =flax_key_tuple[:-1] + ('weight',) _a : Dict =jnp.transpose(_UpperCAmelCase ,(3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase ) not in pt_model_dict: # linear layer _a : Union[str, Any] =flax_key_tuple[:-1] + ('weight',) _a : List[Any] =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _a : Any =flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _a : str =flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: _a : Tuple =flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: _a : Union[str, Any] ='.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _a : List[Any] ='.'.join(_UpperCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _a : List[Any] ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _a : Dict =key.split(""".""" ) _a : Optional[Any] =None if key_components[-3::2] == ["parametrizations", "original0"]: _a : List[str] =key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: _a : Any =key_components[-2] + '_v' if name is not None: _a : List[str] =key_components[:-3] + [name] _a : Tuple ='.'.join(_UpperCAmelCase ) _a : List[str] =key if flax_key in special_pt_names: _a : Dict =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict _a : Union[str, Any] =np.asarray(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase ,np.ndarray ) else flax_tensor _a : Union[str, Any] =torch.from_numpy(_UpperCAmelCase ) # remove from missing keys missing_keys.remove(_UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCAmelCase ) pt_model.load_state_dict(_UpperCAmelCase ) # re-transform missing_keys to list _a : Any =list(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(_UpperCAmelCase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" """If your task is similar to the task the model of the checkpoint was trained on, """ F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
276
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( snake_case__ ): snake_case_ = 'falcon' snake_case_ = ['past_key_values'] def __init__( self : Dict , __lowercase : Dict=6_50_24 , __lowercase : Optional[int]=45_44 , __lowercase : List[str]=32 , __lowercase : List[str]=71 , __lowercase : Union[str, Any]=1e-5 , __lowercase : Dict=0.02 , __lowercase : Dict=True , __lowercase : List[str]=0.0 , __lowercase : Any=0.0 , __lowercase : Tuple=None , __lowercase : str=False , __lowercase : List[Any]=False , __lowercase : List[Any]=True , __lowercase : int=True , __lowercase : Optional[int]=False , __lowercase : str=11 , __lowercase : Optional[Any]=11 , **__lowercase : Dict , ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =vocab_size # Backward compatibility with n_embed kwarg SCREAMING_SNAKE_CASE__ : str =kwargs.pop('''n_embed''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =hidden_size if n_embed is None else n_embed SCREAMING_SNAKE_CASE__ : Tuple =num_hidden_layers SCREAMING_SNAKE_CASE__ : List[Any] =num_attention_heads SCREAMING_SNAKE_CASE__ : Any =layer_norm_epsilon SCREAMING_SNAKE_CASE__ : Optional[Any] =initializer_range SCREAMING_SNAKE_CASE__ : Dict =use_cache SCREAMING_SNAKE_CASE__ : Optional[Any] =hidden_dropout SCREAMING_SNAKE_CASE__ : Any =attention_dropout SCREAMING_SNAKE_CASE__ : int =bos_token_id SCREAMING_SNAKE_CASE__ : Tuple =eos_token_id SCREAMING_SNAKE_CASE__ : Dict =num_attention_heads if num_kv_heads is None else num_kv_heads SCREAMING_SNAKE_CASE__ : Tuple =alibi SCREAMING_SNAKE_CASE__ : Tuple =new_decoder_architecture SCREAMING_SNAKE_CASE__ : Dict =multi_query # Ignored when new_decoder_architecture is True SCREAMING_SNAKE_CASE__ : Tuple =parallel_attn SCREAMING_SNAKE_CASE__ : Optional[Any] =bias super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) @property def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: return self.hidden_size // self.num_attention_heads @property def __magic_name__ ( self : Tuple ) -> Tuple: return not self.alibi
152
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a: Any = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Union[str, Any] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __a: int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
198
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Tuple: return f'gaussian_noise_s={seed}_shape={"_".join([str(lowercase ) for s in shape] )}.npy' def SCREAMING_SNAKE_CASE_( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE_( self , lowercase=0 , lowercase=(4, 4, 64, 64) , lowercase=False ) -> int: lowerCamelCase_ = jnp.bfloataa if fpaa else jnp.floataa lowerCamelCase_ = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def SCREAMING_SNAKE_CASE_( self , lowercase=False , lowercase="CompVis/stable-diffusion-v1-4" ) -> Dict: lowerCamelCase_ = jnp.bfloataa if fpaa else jnp.floataa lowerCamelCase_ = 'bf16' if fpaa else None lowerCamelCase_ = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder="unet" , dtype=lowercase , revision=lowercase ) return model, params def SCREAMING_SNAKE_CASE_( self , lowercase=0 , lowercase=(4, 77, 768) , lowercase=False ) -> List[str]: lowerCamelCase_ = jnp.bfloataa if fpaa else jnp.floataa lowerCamelCase_ = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=lowercase ) lowerCamelCase_ = self.get_latents(lowercase , fpaa=lowercase ) lowerCamelCase_ = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) lowerCamelCase_ = model.apply( {"params": params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape lowerCamelCase_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCamelCase_ = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> List[Any]: lowerCamelCase_ = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=lowercase ) lowerCamelCase_ = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) lowerCamelCase_ = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1024) , fpaa=lowercase ) lowerCamelCase_ = model.apply( {"params": params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape lowerCamelCase_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCamelCase_ = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1e-2 )
19
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _lowerCAmelCase : int = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : tuple , _lowerCAmelCase : Path , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=False , ): """simple docstring""" output_path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , enable_onnx_checker=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) else: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) @torch.no_grad() def lowerCAmelCase ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : bool = False ): """simple docstring""" UpperCAmelCase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: UpperCAmelCase__ = 'cpu' UpperCAmelCase__ = Path(_lowerCAmelCase ) # VAE DECODER UpperCAmelCase__ = AutoencoderKL.from_pretrained(model_path + "/vae" ) UpperCAmelCase__ = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase__ = vae_decoder.decode onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , 25 , 25 ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=_lowerCAmelCase , ) del vae_decoder if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _lowerCAmelCase : List[str] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
169
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class UpperCamelCase__ ( snake_case__ ): """simple docstring""" UpperCAmelCase_ ='ibert' def __init__( self , _A=30522 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=2 , _A=0.02 , _A=1E-12 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=False , _A="none" , **_A , ) -> List[Any]: super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = quant_mode SCREAMING_SNAKE_CASE_ = force_dequant class UpperCamelCase__ ( snake_case__ ): """simple docstring""" @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
299
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( snake_case__ , unittest.TestCase ): __a : Any = AudioLDMPipeline __a : Optional[int] = TEXT_TO_AUDIO_PARAMS __a : Tuple = TEXT_TO_AUDIO_BATCH_PARAMS __a : Any = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def A ( self : str ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowercase , ) UpperCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) UpperCAmelCase = ClapTextModelWithProjection(lowercase ) UpperCAmelCase = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) UpperCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowercase , ) UpperCAmelCase = SpeechTaHifiGan(lowercase ) UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def A ( self : Tuple , lowercase : Union[str, Any] , lowercase : Optional[int]=0 ): '''simple docstring''' if str(lowercase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowercase ) else: UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def A ( self : Any ): '''simple docstring''' UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_dummy_inputs(lowercase ) UpperCAmelCase = audioldm_pipe(**lowercase ) UpperCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowercase ) == 256 UpperCAmelCase = audio[:10] UpperCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_dummy_inputs(lowercase ) UpperCAmelCase = 3 * [inputs['prompt']] # forward UpperCAmelCase = audioldm_pipe(**lowercase ) UpperCAmelCase = output.audios[0] UpperCAmelCase = self.get_dummy_inputs(lowercase ) UpperCAmelCase = 3 * [inputs.pop('''prompt''' )] UpperCAmelCase = audioldm_pipe.tokenizer( lowercase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowercase , return_tensors='''pt''' , ) UpperCAmelCase = text_inputs['input_ids'].to(lowercase ) UpperCAmelCase = audioldm_pipe.text_encoder( lowercase , ) UpperCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase = F.normalize(lowercase , dim=-1 ) UpperCAmelCase = prompt_embeds # forward UpperCAmelCase = audioldm_pipe(**lowercase ) UpperCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_dummy_inputs(lowercase ) UpperCAmelCase = 3 * ['this is a negative prompt'] UpperCAmelCase = negative_prompt UpperCAmelCase = 3 * [inputs['prompt']] # forward UpperCAmelCase = audioldm_pipe(**lowercase ) UpperCAmelCase = output.audios[0] UpperCAmelCase = self.get_dummy_inputs(lowercase ) UpperCAmelCase = 3 * [inputs.pop('''prompt''' )] UpperCAmelCase = [] for p in [prompt, negative_prompt]: UpperCAmelCase = audioldm_pipe.tokenizer( lowercase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowercase , return_tensors='''pt''' , ) UpperCAmelCase = text_inputs['input_ids'].to(lowercase ) UpperCAmelCase = audioldm_pipe.text_encoder( lowercase , ) UpperCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase = F.normalize(lowercase , dim=-1 ) embeds.append(lowercase ) UpperCAmelCase = embeds # forward UpperCAmelCase = audioldm_pipe(**lowercase ) UpperCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def A ( self : str ): '''simple docstring''' UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowercase ) UpperCAmelCase = AudioLDMPipeline(**lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_dummy_inputs(lowercase ) UpperCAmelCase = 'egg cracking' UpperCAmelCase = audioldm_pipe(**lowercase , negative_prompt=lowercase ) UpperCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowercase ) == 256 UpperCAmelCase = audio[:10] UpperCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def A ( self : Any ): '''simple docstring''' UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowercase ) UpperCAmelCase = AudioLDMPipeline(**lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) UpperCAmelCase = audioldm_pipe(lowercase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCAmelCase = 2 UpperCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCAmelCase = 2 UpperCAmelCase = audioldm_pipe(lowercase , num_inference_steps=2 , num_waveforms_per_prompt=lowercase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCAmelCase = 2 UpperCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowercase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = audioldm_pipe.vocoder.config.sampling_rate UpperCAmelCase = self.get_dummy_inputs(lowercase ) UpperCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **lowercase ) UpperCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowercase ) / vocoder_sampling_rate == 0.016 UpperCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **lowercase ) UpperCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(lowercase ) / vocoder_sampling_rate == 0.032 def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**lowercase ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = ['hey'] UpperCAmelCase = audioldm_pipe(lowercase , num_inference_steps=1 ) UpperCAmelCase = output.audios.shape assert audio_shape == (1, 256) UpperCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCAmelCase = SpeechTaHifiGan(lowercase ).to(lowercase ) UpperCAmelCase = audioldm_pipe(lowercase , num_inference_steps=1 ) UpperCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def A ( self : Optional[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowercase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A ( self : List[str] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase ) @slow class _a ( unittest.TestCase ): def A ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any , lowercase : Optional[Any] , lowercase : Any="cpu" , lowercase : List[str]=torch.floataa , lowercase : Tuple=0 ): '''simple docstring''' UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase = np.random.RandomState(lowercase ).standard_normal((1, 8, 128, 16) ) UpperCAmelCase = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) UpperCAmelCase = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_inputs(lowercase ) UpperCAmelCase = 25 UpperCAmelCase = audioldm_pipe(**lowercase ).audios[0] assert audio.ndim == 1 assert len(lowercase ) == 81_920 UpperCAmelCase = audio[77_230:77_240] UpperCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def A ( self : str ): '''simple docstring''' UpperCAmelCase = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) UpperCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCAmelCase = audioldm_pipe.to(lowercase ) audioldm_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = self.get_inputs(lowercase ) UpperCAmelCase = audioldm_pipe(**lowercase ).audios[0] assert audio.ndim == 1 assert len(lowercase ) == 81_920 UpperCAmelCase = audio[27_780:27_790] UpperCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
34
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' _UpperCamelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def a_ ( _lowerCAmelCase ) -> int: __lowerCamelCase : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _UpperCamelCase = [None] * 10000000 _UpperCamelCase = True _UpperCamelCase = False def a_ ( _lowerCAmelCase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCamelCase : int = chain(next_number(_lowerCAmelCase ) ) __lowerCamelCase : Tuple = number_chain while number < 10000000: __lowerCamelCase : Dict = number_chain number *= 10 return number_chain def a_ ( _lowerCAmelCase = 10000000 ) -> int: for i in range(1 ,_lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
208
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
from manim import * class __UpperCamelCase ( snake_case__ ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = Rectangle(height=0.5 , width=0.5 ) __SCREAMING_SNAKE_CASE : str = Rectangle(height=0.25 , width=0.25 ) __SCREAMING_SNAKE_CASE : int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE : List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE : Optional[Any] = VGroup(*_A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : Any = VGroup(*_A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : str = VGroup(_A , _A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = Text('''CPU''' , font_size=24 ) __SCREAMING_SNAKE_CASE : int = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [mem.copy() for i in range(4 )] __SCREAMING_SNAKE_CASE : Tuple = VGroup(*_A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : int = Text('''GPU''' , font_size=24 ) __SCREAMING_SNAKE_CASE : Optional[int] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) gpu.move_to([-1, -1, 0] ) self.add(_A ) __SCREAMING_SNAKE_CASE : Tuple = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE : Any = VGroup(*_A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : List[Any] = Text('''Model''' , font_size=24 ) __SCREAMING_SNAKE_CASE : List[Any] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) model.move_to([3, -1.0, 0] ) self.add(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : Optional[int] = [] for i, rect in enumerate(_A ): rect.set_stroke(_A ) __SCREAMING_SNAKE_CASE : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_A , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_A ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_A , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_A , buff=0.0 ) self.add(_A ) model_cpu_arr.append(_A ) self.add(*_A , *_A , *_A ) __SCREAMING_SNAKE_CASE : Tuple = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE : Tuple = VGroup(*_A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : int = Text('''Loaded Checkpoint''' , font_size=24 ) __SCREAMING_SNAKE_CASE : Tuple = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) checkpoint.move_to([3, 0.5, 0] ) self.add(_A ) __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : Optional[Any] = [] for i, rect in enumerate(_A ): __SCREAMING_SNAKE_CASE : Any = fill.copy().set_fill(_A , opacity=0.7 ) target.move_to(_A ) ckpt_arr.append(_A ) __SCREAMING_SNAKE_CASE : int = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_A ) self.add(*_A , *_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __SCREAMING_SNAKE_CASE : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_A , _A ) __SCREAMING_SNAKE_CASE : Tuple = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_A ) __SCREAMING_SNAKE_CASE : Tuple = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) __SCREAMING_SNAKE_CASE : Optional[int] = [meta_mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE : Dict = [meta_mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE : List[str] = VGroup(*_A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : Tuple = VGroup(*_A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = VGroup(_A , _A ).arrange(_A , buff=0 ) __SCREAMING_SNAKE_CASE : Any = Text('''Disk''' , font_size=24 ) __SCREAMING_SNAKE_CASE : Any = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_A , run_time=3 ) , Write(_A , run_time=1 ) , Create(_A , run_time=1 ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i, rect in enumerate(_A ): __SCREAMING_SNAKE_CASE : Dict = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_A , run_time=1.5 ) ) self.play(*_A ) self.play(FadeOut(_A ) ) __SCREAMING_SNAKE_CASE : str = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_A , run_time=3 ) ) self.play( FadeOut(_A , _A , *_A , *_A ) , ) self.wait()
303
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A_ ( snake_case__ ): """simple docstring""" __UpperCamelCase = 'wav2vec2' def __init__( self :str , lowercase_ :Any=32 , lowercase_ :Optional[Any]=7_68 , lowercase_ :Any=12 , lowercase_ :Optional[int]=12 , lowercase_ :Any=30_72 , lowercase_ :Optional[Any]="gelu" , lowercase_ :List[str]=0.1 , lowercase_ :List[str]=0.1 , lowercase_ :Dict=0.1 , lowercase_ :str=0.0 , lowercase_ :str=0.0 , lowercase_ :Tuple=0.1 , lowercase_ :int=0.1 , lowercase_ :Dict=0.02 , lowercase_ :Dict=1E-5 , lowercase_ :Optional[Any]="group" , lowercase_ :Union[str, Any]="gelu" , lowercase_ :Any=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ :Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ :Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ :List[Any]=False , lowercase_ :Union[str, Any]=1_28 , lowercase_ :List[str]=16 , lowercase_ :str=False , lowercase_ :Union[str, Any]=True , lowercase_ :Dict=0.05 , lowercase_ :List[str]=10 , lowercase_ :List[str]=2 , lowercase_ :Optional[Any]=0.0 , lowercase_ :Union[str, Any]=10 , lowercase_ :List[Any]=0 , lowercase_ :List[Any]=3_20 , lowercase_ :Union[str, Any]=2 , lowercase_ :Optional[Any]=0.1 , lowercase_ :Union[str, Any]=1_00 , lowercase_ :Optional[Any]=2_56 , lowercase_ :Optional[int]=2_56 , lowercase_ :str=0.1 , lowercase_ :Dict="sum" , lowercase_ :Union[str, Any]=False , lowercase_ :int=False , lowercase_ :Any=2_56 , lowercase_ :Optional[Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , lowercase_ :Tuple=(5, 3, 3, 1, 1) , lowercase_ :Tuple=(1, 2, 3, 1, 1) , lowercase_ :Optional[Any]=5_12 , lowercase_ :Optional[int]=0 , lowercase_ :Optional[int]=1 , lowercase_ :Any=2 , lowercase_ :int=False , lowercase_ :List[Any]=3 , lowercase_ :Dict=2 , lowercase_ :Tuple=3 , lowercase_ :List[str]=None , lowercase_ :List[str]=None , **lowercase_ :Union[str, Any] , ) -> Optional[int]: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size UpperCAmelCase = do_stable_layer_norm UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase = num_codevectors_per_group UpperCAmelCase = num_codevector_groups UpperCAmelCase = contrastive_logits_temperature UpperCAmelCase = feat_quantizer_dropout UpperCAmelCase = num_negatives UpperCAmelCase = codevector_dim UpperCAmelCase = proj_codevector_dim UpperCAmelCase = diversity_loss_weight # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # adapter UpperCAmelCase = add_adapter UpperCAmelCase = adapter_kernel_size UpperCAmelCase = adapter_stride UpperCAmelCase = num_adapter_layers UpperCAmelCase = output_hidden_size or hidden_size UpperCAmelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = xvector_output_dim @property def UpperCAmelCase__ ( self :Any ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
78
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __lowerCAmelCase : Dict = getLogger(__name__) def a__ ( A_, A_, A_, A_ = 8, A_ = 1024, A_="val", A_=None, A_=False, A_="summarization", A_=None, A_=1, A_ = None, A_="", **A_, ): '''simple docstring''' __magic_name__ = str(A_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""", rank=A_ ) __magic_name__ = Path(A_ ) __magic_name__ = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(A_ ) __magic_name__ = AutoModelForSeqaSeqLM.from_pretrained(A_ ).cuda() if fpaa: __magic_name__ = model.half() # determine if we need to increase num_beams use_task_specific_params(A_, A_ ) # update config with task specific params __magic_name__ = generate_kwargs.pop("""num_beams""", model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __magic_name__ = num_return_sequences __magic_name__ = AutoTokenizer.from_pretrained(A_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: __magic_name__ = tokenizer.model_max_length if prefix is None: __magic_name__ = prefix or getattr(model.config, """prefix""", """""" ) or '' __magic_name__ = SeqaSeqDataset( A_, A_, A_, max_target_length=1024, type_path=A_, n_obs=A_, prefix=A_, **A_, ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __magic_name__ = ds.make_sortish_sampler(A_, distributed=A_, add_extra_examples=A_, shuffle=A_ ) __magic_name__ = DataLoader(A_, sampler=A_, batch_size=A_, collate_fn=ds.collate_fn ) __magic_name__ = [] for batch in tqdm(A_ ): __magic_name__ = model.generate( input_ids=batch["""input_ids"""].to(model.device ), attention_mask=batch["""attention_mask"""].to(model.device ), num_return_sequences=A_, num_beams=A_, **A_, ) __magic_name__ = tokenizer.batch_decode(A_, skip_special_tokens=A_, clean_up_tokenization_spaces=A_ ) __magic_name__ = batch['ids'] if num_return_sequences > 1: __magic_name__ = chunks(A_, A_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(A_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(A_, A_ ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""", type=A_, help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""", type=A_, help="""like facebook/bart-large-cnn,t5-base, etc.""", default="""sshleifer/distilbart-xsum-12-3""", ) parser.add_argument("""--save_dir""", type=A_, help="""where to save""", default="""tmp_gen""" ) parser.add_argument("""--max_source_length""", type=A_, default=A_ ) parser.add_argument( """--type_path""", type=A_, default="""test""", help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""", type=A_, default="""summarization""", help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""", type=A_, default=8, required=A_, help="""batch size""" ) parser.add_argument( """--local_rank""", type=A_, default=-1, required=A_, help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""", type=A_, default=A_, required=A_, help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""", type=A_, default=1, required=A_, help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""", type=A_, default=600, required=A_, help="""How long should master process wait for other processes to finish.""", ) parser.add_argument("""--src_lang""", type=A_, default=A_, required=A_ ) parser.add_argument("""--tgt_lang""", type=A_, default=A_, required=A_ ) parser.add_argument( """--prefix""", type=A_, required=A_, default=A_, help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""", action="""store_true""" ) parser.add_argument("""--debug""", action="""store_true""" ) __magic_name__ = time.time() __magic_name__ = parser.parse_known_args() __magic_name__ = parse_numeric_n_bool_cl_kwargs(A_ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) __magic_name__ = Path(args.save_dir + """_tmp""" ) Path(A_ ).mkdir(exist_ok=A_ ) # this handles locking. __magic_name__ = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __magic_name__ = {} if args.src_lang is not None: __magic_name__ = args.src_lang if args.tgt_lang is not None: __magic_name__ = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=A_ ) __magic_name__ = eval_data_dir( args.data_dir, A_, args.model_name, type_path=args.type_path, bs=args.bs, fpaa=args.fpaa, task=args.task, local_rank=args.local_rank, n_obs=args.n_obs, max_source_length=args.max_source_length, num_return_sequences=args.num_return_sequences, prefix=args.prefix, dataset_kwargs=A_, **A_, ) if args.local_rank <= 0: __magic_name__ = Path(args.save_dir ) save_dir.mkdir(exist_ok=A_ ) __magic_name__ = gather_results_from_each_node(A_, A_, args.sync_timeout ) __magic_name__ = combine_partial_results(A_ ) if args.num_return_sequences > 1: __magic_name__ = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(A_, A_ ) return __magic_name__ = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(A_ ) as f: __magic_name__ = [x.rstrip() for x in f.readlines()][: len(A_ )] # Calculate metrics, save metrics, and save _generations.txt __magic_name__ = 'translation' in args.task __magic_name__ = calculate_bleu if calc_bleu else calculate_rouge __magic_name__ = 'bleu' if calc_bleu else 'rouge' __magic_name__ = score_fn(A_, A_ ) __magic_name__ = len(A_ ) __magic_name__ = time.time() - start_time __magic_name__ = round(runtime / metrics["""n_obs"""], 4 ) __magic_name__ = num_replicas # TODO(@stas00): add whatever metadata to metrics __magic_name__ = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(A_, A_, indent=A_ ) print(A_ ) write_txt_file(A_, save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(A_, save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = [] for partial_result in partial_results: records.extend(A_ ) __magic_name__ = sorted(A_, key=lambda A_ : x["id"] ) __magic_name__ = [x['pred'] for x in records] return preds def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = time.time() logger.info("""waiting for all nodes to finish""" ) __magic_name__ = None while (time.time() - start_wait) < timeout: __magic_name__ = list(save_dir.glob("""rank_*.json""" ) ) if len(A_ ) < num_replicas: continue try: # make sure all json files are fully saved __magic_name__ = lmap(A_, A_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
88
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) A__: Optional[int] = logging.getLogger() def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _a : Dict =argparse.ArgumentParser() parser.add_argument("""-f""" ) _a : List[Any] =parser.parse_args() return args.f class A__ ( snake_case__ ): def __UpperCAmelCase ( self :Any ) -> None: '''simple docstring''' _a : Union[str, Any] =logging.StreamHandler(sys.stdout ) logger.addHandler(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int ) -> Dict: '''simple docstring''' _a : int =get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(SCREAMING_SNAKE_CASE , """argv""" , SCREAMING_SNAKE_CASE ): _a : int =run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(SCREAMING_SNAKE_CASE , 0.666 ) @slow @require_torch_non_multi_gpu def __UpperCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' _a : List[Any] ='\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(SCREAMING_SNAKE_CASE ) _a : List[Any] ='\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(SCREAMING_SNAKE_CASE ) _a : Any ='\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(SCREAMING_SNAKE_CASE )
276
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a_ = list[list[float | int]] def _a( UpperCamelCase__ : Matrix, UpperCamelCase__ : Matrix ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(size + 1 )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float for row in range(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =matrix[row][col] SCREAMING_SNAKE_CASE__ : Union[str, Any] =vector[row][0] SCREAMING_SNAKE_CASE__ : List[str] =0 SCREAMING_SNAKE_CASE__ : Tuple =0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE__ : int =max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCamelCase__, UpperCamelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =augmented[pivot_row], augmented[row] for rowa in range(row + 1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE__ : List[str] =0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, UpperCamelCase__ ): for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Dict =augmented[row][col] / augmented[col][col] for cola in range(UpperCamelCase__, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 1_0 )] for row in range(UpperCamelCase__ ) ] def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix =[[0] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int for x_val, y_val in enumerate(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : str =(x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE__ : List[str] =y_val SCREAMING_SNAKE_CASE__ : Any =solve(UpperCamelCase__, UpperCamelCase__ ) def interpolated_func(UpperCamelCase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCamelCase__ ) ) return interpolated_func def _a( UpperCamelCase__ : int ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def _a( UpperCamelCase__ : Callable[[int], int] = question_function, UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : list[int] =[func(UpperCamelCase__ ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE__ : list[Callable[[int], int]] =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Callable[[int], int] SCREAMING_SNAKE_CASE__ : int for poly in polynomials: SCREAMING_SNAKE_CASE__ : Optional[Any] =1 while func(UpperCamelCase__ ) == poly(UpperCamelCase__ ): x_val += 1 ret += poly(UpperCamelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
152
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __a: Any = logging.get_logger("""transformers.models.speecht5""") def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): hf_model.apply_weight_norm() lowercase__ : Optional[Any] = checkpoint['input_conv.weight_g'] lowercase__ : List[str] = checkpoint['input_conv.weight_v'] lowercase__ : Any = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowercase__ : List[str] = checkpoint[F"""upsamples.{i}.1.weight_g"""] lowercase__ : int = checkpoint[F"""upsamples.{i}.1.weight_v"""] lowercase__ : Union[str, Any] = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase__ : Tuple = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] lowercase__ : Optional[Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] lowercase__ : List[str] = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] lowercase__ : Any = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] lowercase__ : Optional[Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] lowercase__ : Union[str, Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] lowercase__ : int = checkpoint['output_conv.1.weight_g'] lowercase__ : int = checkpoint['output_conv.1.weight_v'] lowercase__ : str = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , ): if config_path is not None: lowercase__ : Optional[int] = SpeechTaHifiGanConfig.from_pretrained(UpperCAmelCase ) else: lowercase__ : Dict = SpeechTaHifiGanConfig() lowercase__ : Tuple = SpeechTaHifiGan(UpperCAmelCase ) lowercase__ : Tuple = torch.load(UpperCAmelCase ) load_weights(orig_checkpoint['''model''']['''generator'''] , UpperCAmelCase , UpperCAmelCase ) lowercase__ : int = np.load(UpperCAmelCase ) lowercase__ : Optional[Any] = stats[0].reshape(-1 ) lowercase__ : Any = stats[1].reshape(-1 ) lowercase__ : List[str] = torch.from_numpy(UpperCAmelCase ).float() lowercase__ : Union[str, Any] = torch.from_numpy(UpperCAmelCase ).float() model.save_pretrained(UpperCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(UpperCAmelCase ) if __name__ == "__main__": __a: List[str] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __a: Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
198
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ): @register_to_config def __init__( self , lowercase = 768 , ) -> Tuple: super().__init__() lowerCamelCase_ = nn.Parameter(torch.zeros(1 , lowercase ) ) lowerCamelCase_ = nn.Parameter(torch.ones(1 , lowercase ) ) def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase = None , ) -> Union[str, Any]: lowerCamelCase_ = nn.Parameter(self.mean.to(lowercase ).to(lowercase ) ) lowerCamelCase_ = nn.Parameter(self.std.to(lowercase ).to(lowercase ) ) return self def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[Any]: lowerCamelCase_ = (embeds * self.std) + self.mean return embeds
19
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase ( _lowerCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = filter(lambda _lowerCAmelCase : p.requires_grad , model.parameters() ) UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowerCAmelCase : int = logging.getLogger(__name__) def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" if metric == "rouge2": UpperCAmelCase__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": UpperCAmelCase__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": UpperCAmelCase__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": UpperCAmelCase__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) UpperCAmelCase__ = ModelCheckpoint( dirpath=_lowerCAmelCase , filename=_lowerCAmelCase , monitor=F'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ): """simple docstring""" return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=_lowerCAmelCase , verbose=_lowerCAmelCase , ) class _UpperCamelCase ( pl.Callback ): def UpperCAmelCase_ ( self :Any , lowerCamelCase :str , lowerCamelCase :Any ) -> List[Any]: UpperCAmelCase__ = {f'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase ) @rank_zero_only def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :pl.Trainer , lowerCamelCase :pl.LightningModule , lowerCamelCase :str , lowerCamelCase :Tuple=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCAmelCase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase__ = od / 'test_results.txt' UpperCAmelCase__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase__ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase__ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowerCamelCase ) generations_file.parent.mkdir(exist_ok=lowerCamelCase ) with open(lowerCamelCase , "a+" ) as writer: for key in sorted(lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase__ = metrics[key] if isinstance(lowerCamelCase , torch.Tensor ): UpperCAmelCase__ = val.item() UpperCAmelCase__ = f'''{key}: {val:.6f}\n''' writer.write(lowerCamelCase ) if not save_generations: return if "preds" in metrics: UpperCAmelCase__ = '\n'.join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCamelCase ) @rank_zero_only def UpperCAmelCase_ ( self :Dict , lowerCamelCase :List[str] , lowerCamelCase :List[str] ) -> Any: try: UpperCAmelCase__ = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase__ = pl_module.model.num_parameters() UpperCAmelCase__ = count_trainable_parameters(lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :pl.Trainer , lowerCamelCase :pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase , lowerCamelCase , "test" ) @rank_zero_only def UpperCAmelCase_ ( self :str , lowerCamelCase :pl.Trainer , lowerCamelCase :List[Any] ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
169
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) set_seed(7_70) __UpperCAmelCase = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } __UpperCAmelCase = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } __UpperCAmelCase = os.path.dirname(os.path.abspath(__file__)) __UpperCAmelCase = os.path.join(os.path.expanduser("~"), ".cache") __UpperCAmelCase = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def A__ ( __lowerCamelCase, __lowerCamelCase=False ): SCREAMING_SNAKE_CASE_ = model_type if use_small: key += "_small" return os.path.join(__lowerCamelCase, REMOTE_MODEL_PATHS[key]['''file_name'''] ) def A__ ( __lowerCamelCase, __lowerCamelCase ): os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) hf_hub_download(repo_id=__lowerCamelCase, filename=__lowerCamelCase, local_dir=__lowerCamelCase ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase="text" ): if model_type == "text": SCREAMING_SNAKE_CASE_ = BarkSemanticModel SCREAMING_SNAKE_CASE_ = BarkSemanticConfig SCREAMING_SNAKE_CASE_ = BarkSemanticGenerationConfig elif model_type == "coarse": SCREAMING_SNAKE_CASE_ = BarkCoarseModel SCREAMING_SNAKE_CASE_ = BarkCoarseConfig SCREAMING_SNAKE_CASE_ = BarkCoarseGenerationConfig elif model_type == "fine": SCREAMING_SNAKE_CASE_ = BarkFineModel SCREAMING_SNAKE_CASE_ = BarkFineConfig SCREAMING_SNAKE_CASE_ = BarkFineGenerationConfig else: raise NotImplementedError() SCREAMING_SNAKE_CASE_ = F'''{model_type}_small''' if use_small else model_type SCREAMING_SNAKE_CASE_ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCamelCase ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['''repo_id'''], model_info['''file_name'''] ) SCREAMING_SNAKE_CASE_ = torch.load(__lowerCamelCase, map_location=__lowerCamelCase ) # this is a hack SCREAMING_SNAKE_CASE_ = checkpoint['model_args'] if "input_vocab_size" not in model_args: SCREAMING_SNAKE_CASE_ = model_args['vocab_size'] SCREAMING_SNAKE_CASE_ = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments SCREAMING_SNAKE_CASE_ = model_args.pop('''n_head''' ) SCREAMING_SNAKE_CASE_ = model_args.pop('''n_embd''' ) SCREAMING_SNAKE_CASE_ = model_args.pop('''n_layer''' ) SCREAMING_SNAKE_CASE_ = ConfigClass(**checkpoint['''model_args'''] ) SCREAMING_SNAKE_CASE_ = ModelClass(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = GenerationConfigClass() SCREAMING_SNAKE_CASE_ = model_generation_config SCREAMING_SNAKE_CASE_ = checkpoint['model'] # fixup checkpoint SCREAMING_SNAKE_CASE_ = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(__lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation SCREAMING_SNAKE_CASE_ = k[len(__lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: SCREAMING_SNAKE_CASE_ = new_k.replace(__lowerCamelCase, new_layer_name_dict[old_layer_name] ) SCREAMING_SNAKE_CASE_ = state_dict.pop(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = set(state_dict.keys() ) - set(model.state_dict().keys() ) SCREAMING_SNAKE_CASE_ = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} SCREAMING_SNAKE_CASE_ = set(model.state_dict().keys() ) - set(state_dict.keys() ) SCREAMING_SNAKE_CASE_ = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(__lowerCamelCase ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(__lowerCamelCase ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model.num_parameters(exclude_embeddings=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = checkpoint['best_val_loss'].item() logger.info(F'''model loaded: {round(n_params/1E6, 1 )}M params, {round(__lowerCamelCase, 3 )} loss''' ) model.eval() model.to(__lowerCamelCase ) del checkpoint, state_dict return model def A__ ( __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() SCREAMING_SNAKE_CASE_ = 'cpu' # do conversion on cpu SCREAMING_SNAKE_CASE_ = _get_ckpt_path(__lowerCamelCase, use_small=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = _load_model(__lowerCamelCase, __lowerCamelCase, model_type=__lowerCamelCase, use_small=__lowerCamelCase ) # load bark initial model SCREAMING_SNAKE_CASE_ = _bark_load_model(__lowerCamelCase, '''cpu''', model_type=__lowerCamelCase, use_small=__lowerCamelCase ) if model_type == "text": SCREAMING_SNAKE_CASE_ = bark_model['model'] if model.num_parameters(exclude_embeddings=__lowerCamelCase ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = 10 if model_type in ["text", "coarse"]: SCREAMING_SNAKE_CASE_ = torch.randint(2_56, (batch_size, sequence_length), dtype=torch.int ) SCREAMING_SNAKE_CASE_ = bark_model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE_ = model(__lowerCamelCase ) # take last logits SCREAMING_SNAKE_CASE_ = output_new_model_total.logits[:, [-1], :] else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = torch.randint(2_56, (batch_size, sequence_length, n_codes_total), dtype=torch.int ) SCREAMING_SNAKE_CASE_ = model(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = bark_model(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('''initial and new outputs are not equal''' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCamelCase, '''config.json''' ) ) SCREAMING_SNAKE_CASE_ = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCamelCase, '''config.json''' ) ) SCREAMING_SNAKE_CASE_ = BarkFineConfig.from_pretrained(os.path.join(__lowerCamelCase, '''config.json''' ) ) SCREAMING_SNAKE_CASE_ = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) SCREAMING_SNAKE_CASE_ = BarkSemanticModel.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BarkCoarseModel.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BarkFineModel.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) SCREAMING_SNAKE_CASE_ = BarkConfig.from_sub_model_configs( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config ) SCREAMING_SNAKE_CASE_ = BarkModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = semantic SCREAMING_SNAKE_CASE_ = coarseAcoustic SCREAMING_SNAKE_CASE_ = fineAcoustic SCREAMING_SNAKE_CASE_ = codec SCREAMING_SNAKE_CASE_ = bark_generation_config Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) bark.save_pretrained(__lowerCamelCase, repo_id=__lowerCamelCase, push_to_hub=__lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") __UpperCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
299
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def snake_case_ (_a : Any , _a : Optional[int] , _a : Union[str, Any] , _a : int=1_0_2_4 ): UpperCAmelCase = [], [] UpperCAmelCase = list(zip(_a , _a ) ) UpperCAmelCase = sorted_examples[0] def is_too_big(_a : Tuple ): return tok(_a , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase = new_src + ' ' + src UpperCAmelCase = new_tgt + ' ' + tgt if is_too_big(_a ) or is_too_big(_a ): # cant fit, finalize example finished_src.append(_a ) finished_tgt.append(_a ) UpperCAmelCase = src, tgt else: # can fit, keep adding UpperCAmelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_a ) finished_tgt.append(_a ) return finished_src, finished_tgt def snake_case_ (_a : Optional[Any] , _a : Path , _a : Dict , _a : Optional[int] ): UpperCAmelCase = Path(_a ) save_path.mkdir(exist_ok=_a ) for split in ["train"]: UpperCAmelCase = data_dir / F"{split}.source", data_dir / F"{split}.target" UpperCAmelCase = [x.rstrip() for x in Path(_a ).open().readlines()] UpperCAmelCase = [x.rstrip() for x in Path(_a ).open().readlines()] UpperCAmelCase = pack_examples(_a , _a , _a , _a ) print(F"packed {split} split from {len(_a )} examples -> {len(_a )}." ) Path(save_path / F"{split}.source" ).open('''w''' ).write('''\n'''.join(_a ) ) Path(save_path / F"{split}.target" ).open('''w''' ).write('''\n'''.join(_a ) ) for split in ["val", "test"]: UpperCAmelCase = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(_a , save_path / F"{split}.source" ) shutil.copyfile(_a , save_path / F"{split}.target" ) def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=_a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=_a , default=1_2_8 ) parser.add_argument('''--data_dir''' , type=_a ) parser.add_argument('''--save_path''' , type=_a ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
34
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
'''simple docstring''' from __future__ import annotations def a_ ( _lowerCAmelCase ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCamelCase : Dict = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
208
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [] if isinstance(snake_case , snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(snake_case ) ) elif isinstance(snake_case , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(snake_case ) ) elif isinstance(snake_case , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for d in reversed(snake_case ): idx.append(flat_idx % d ) __SCREAMING_SNAKE_CASE : Any = flat_idx // d return tuple(reversed(snake_case ) ) @torch.jit.ignore def a__ ( snake_case , snake_case , snake_case , snake_case = None , snake_case = None , ): """simple docstring""" def reduce_edge_list(snake_case ) -> None: __SCREAMING_SNAKE_CASE : Dict = True for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE : int = -1 * (i + 1) l[reversed_idx] &= tally __SCREAMING_SNAKE_CASE : List[Any] = l[reversed_idx] if start_edges is None: __SCREAMING_SNAKE_CASE : Optional[int] = [s == 0 for s in start] reduce_edge_list(snake_case ) if end_edges is None: __SCREAMING_SNAKE_CASE : Optional[Any] = [e == (d - 1) for e, d in zip(snake_case , snake_case )] reduce_edge_list(snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(snake_case ) == 0: return [()] elif len(snake_case ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __SCREAMING_SNAKE_CASE : List[Tuple[slice, ...]] = [] __SCREAMING_SNAKE_CASE : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(snake_case , snake_case ): if s == e: path_list.append(slice(snake_case , s + 1 ) ) else: break __SCREAMING_SNAKE_CASE : Tuple[slice, ...] = tuple(snake_case ) __SCREAMING_SNAKE_CASE : Any = len(snake_case ) # start == end, and we're done if divergence_idx == len(snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __SCREAMING_SNAKE_CASE : Union[str, Any] = start[divergence_idx] return tuple( path + (slice(snake_case , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __SCREAMING_SNAKE_CASE : int = end[divergence_idx] return tuple( path + (slice(snake_case , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __SCREAMING_SNAKE_CASE : List[Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = t.shape[:no_batch_dims] __SCREAMING_SNAKE_CASE : Any = list(_flat_idx_to_idx(snake_case , snake_case ) ) # _get_minimal_slice_set is inclusive __SCREAMING_SNAKE_CASE : Optional[int] = list(_flat_idx_to_idx(flat_end - 1 , snake_case ) ) # Get an ordered list of slices to perform __SCREAMING_SNAKE_CASE : Tuple = _get_minimal_slice_set( snake_case , snake_case , snake_case , ) __SCREAMING_SNAKE_CASE : Optional[int] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case = False , snake_case = None , snake_case = False , ): """simple docstring""" if not (len(snake_case ) > 0): raise ValueError('''Must provide at least one input''' ) __SCREAMING_SNAKE_CASE : int = [shape[:no_batch_dims] for shape in _fetch_dims(snake_case )] __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple([max(snake_case ) for s in zip(*snake_case )] ) def _prep_inputs(snake_case ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __SCREAMING_SNAKE_CASE : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __SCREAMING_SNAKE_CASE : Tuple = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_prep_inputs , snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if _out is not None: __SCREAMING_SNAKE_CASE : List[str] = tensor_tree_map(lambda snake_case : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __SCREAMING_SNAKE_CASE : Any = 1 for d in orig_batch_dims: flat_batch_dim *= d __SCREAMING_SNAKE_CASE : List[str] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(snake_case ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Optional[int] = prepped_outputs for _ in range(snake_case ): # Chunk the input if not low_mem: __SCREAMING_SNAKE_CASE : str = _select_chunk else: __SCREAMING_SNAKE_CASE : Dict = partial( _chunk_slice , flat_start=snake_case , flat_end=min(snake_case , i + chunk_size ) , no_batch_dims=len(snake_case ) , ) __SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(snake_case , snake_case ) # Run the layer on the chunk __SCREAMING_SNAKE_CASE : Optional[int] = layer(**snake_case ) # Allocate space for the output if out is None: __SCREAMING_SNAKE_CASE : Optional[int] = tensor_tree_map(lambda snake_case : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , snake_case ) # Put the chunk in its pre-allocated space if isinstance(snake_case , snake_case ): def assign(snake_case , snake_case ) -> None: for k, v in da.items(): if isinstance(snake_case , snake_case ): assign(snake_case , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __SCREAMING_SNAKE_CASE : Union[str, Any] = da[k] assign(snake_case , snake_case ) elif isinstance(snake_case , snake_case ): for xa, xa in zip(snake_case , snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: __SCREAMING_SNAKE_CASE : Dict = xa elif isinstance(snake_case , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __SCREAMING_SNAKE_CASE : Dict = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __SCREAMING_SNAKE_CASE : Union[str, Any] = tensor_tree_map(lambda snake_case : t.view(orig_batch_dims + t.shape[1:] ) , snake_case ) return out class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , _A : int = 512 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = max_chunk_size __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[tuple] = None def UpperCAmelCase__ ( self : List[Any] , _A : Callable , _A : tuple , _A : int ): """simple docstring""" logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __SCREAMING_SNAKE_CASE : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __SCREAMING_SNAKE_CASE : Tuple = [c for c in candidates if c > min_chunk_size] __SCREAMING_SNAKE_CASE : int = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_A : int ) -> bool: try: with torch.no_grad(): fn(*_A , chunk_size=_A ) return True except RuntimeError: return False __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Any = len(_A ) - 1 while i > min_viable_chunk_size_index: __SCREAMING_SNAKE_CASE : Tuple = test_chunk_size(candidates[i] ) if not viable: __SCREAMING_SNAKE_CASE : Dict = (min_viable_chunk_size_index + i) // 2 else: __SCREAMING_SNAKE_CASE : Optional[int] = i __SCREAMING_SNAKE_CASE : Union[str, Any] = (i + len(_A ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCAmelCase__ ( self : Optional[int] , _A : Iterable , _A : Iterable ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = True for aa, aa in zip(_A , _A ): assert type(_A ) == type(_A ) if isinstance(_A , (list, tuple) ): consistent &= self._compare_arg_caches(_A , _A ) elif isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda _A : x[0] )] __SCREAMING_SNAKE_CASE : Tuple = [v for _, v in sorted(aa.items() , key=lambda _A : x[0] )] consistent &= self._compare_arg_caches(_A , _A ) else: consistent &= aa == aa return consistent def UpperCAmelCase__ ( self : Dict , _A : Callable , _A : tuple , _A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : tuple = tree_map(lambda _A : a.shape if isinstance(_A , torch.Tensor ) else a , _A , _A ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , _A ) else: # Otherwise, we can reuse the precomputed value __SCREAMING_SNAKE_CASE : str = False if not consistent: __SCREAMING_SNAKE_CASE : Dict = self._determine_favorable_chunk_size( _A , _A , _A , ) __SCREAMING_SNAKE_CASE : Tuple = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
303
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case_ = ["""text""", """image""", """audio"""] def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase_ , lowercase_ ): inputs.append(create_inputs(lowercase_ ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = [] for output in outputs: if isinstance(lowercase_ , (str, AgentText) ): output_types.append('text' ) elif isinstance(lowercase_ , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(lowercase_ , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class A_ : """simple docstring""" def UpperCAmelCase__ ( self :str ) -> Optional[int]: self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) UpperCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input , lowercase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*lowercase_ ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase = [outputs] self.assertListEqual(output_types(lowercase_ ) , self.tool.outputs ) def UpperCAmelCase__ ( self :int ) -> Union[str, Any]: self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def UpperCAmelCase__ ( self :Tuple ) -> Tuple: UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [outputs] self.assertEqual(len(lowercase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowercase_ , self.tool.outputs ): UpperCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) def UpperCAmelCase__ ( self :List[str] ) -> Any: UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = [] for _input, input_type in zip(lowercase_ , self.tool.inputs ): if isinstance(lowercase_ , lowercase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase = self.tool(*lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [outputs] self.assertEqual(len(lowercase_ ) , len(self.tool.outputs ) )
78
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = len(A_ ), len(grid[0] ) if ( min(A_, A_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __magic_name__ = 0 count += depth_first_search(A_, row + 1, A_, A_ ) count += depth_first_search(A_, row - 1, A_, A_ ) count += depth_first_search(A_, A_, col + 1, A_ ) count += depth_first_search(A_, A_, col - 1, A_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
88
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand A__: Optional[Any] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) A__: int = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) A__: List[str] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) A__: List[str] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) A__: int = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) A__: int = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) A__: int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def SCREAMING_SNAKE_CASE_ ( ) -> str: _a : Union[str, Any] =randrange(len(_UpperCAmelCase ) ), randrange(len(_UpperCAmelCase ) ) _a : Any =['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _a : Optional[int] =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> Dict: return (generate_random_hand() for _ in range(_UpperCAmelCase )) @pytest.mark.parametrize("""hand, expected""" ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : Tuple ) -> Union[str, Any]: assert PokerHand(_UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ) -> Tuple: assert PokerHand(_UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : str ) -> Dict: _a : Union[str, Any] =PokerHand(_UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: assert PokerHand(_UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : Optional[Any] ) -> List[Any]: assert PokerHand(_UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] ) -> List[str]: assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" ,generate_random_hands() ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ) -> int: assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : List[str] =[PokerHand(_UpperCAmelCase ) for hand in SORTED_HANDS] _a : List[Any] =poker_hands.copy() shuffle(_UpperCAmelCase ) _a : Tuple =chain(sorted(_UpperCAmelCase ) ) for index, hand in enumerate(_UpperCAmelCase ): assert hand == poker_hands[index] def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: _a : Tuple =[PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=_UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: _a : List[str] =PokerHand("""2C 4S AS 3D 5C""" ) _a : Tuple =True _a : List[str] =[5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def SCREAMING_SNAKE_CASE_ ( ) -> str: _a : List[str] =0 _a : str =os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) _a : Union[str, Any] =os.path.join(_UpperCAmelCase ,"""poker_hands.txt""" ) with open(_UpperCAmelCase ) as file_hand: for line in file_hand: _a : Optional[Any] =line[:14].strip() _a : Optional[Any] =line[15:].strip() _a : str =PokerHand(_UpperCAmelCase ), PokerHand(_UpperCAmelCase ) _a : int =player.compare_with(_UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
276
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece.model') a_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') a_ = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( snake_case__ , unittest.TestCase ): snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def __magic_name__ ( self : List[Any] ) -> int: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : int =CamembertTokenizer(__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] ='<pad>' SCREAMING_SNAKE_CASE__ : int =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : int =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowercase ) , 10_04 ) def __magic_name__ ( self : int ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __magic_name__ ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ : Any =CamembertTokenizer(__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Tuple =CamembertTokenizerFast.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Optional[int] ='I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ : int =tokenizer.encode(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : int =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) SCREAMING_SNAKE_CASE__ : Dict =tokenizer.convert_ids_to_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : List[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str =self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] ='I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ : str =tokenizer.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.encode(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def __magic_name__ ( self : Optional[Any] ) -> Dict: # fmt: off SCREAMING_SNAKE_CASE__ : int ={'input_ids': [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. SCREAMING_SNAKE_CASE__ : Tuple =[ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=__lowercase , )
152
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> str: lowercase__ : Tuple = 10 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = [1, 2, 3, 4] lowercase__ : int = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__lowerCAmelCase , self.block_size , 0 ) , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> int: lowercase__ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] lowercase__ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowerCAmelCase , self.block_size , 0 ) , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] lowercase__ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowerCAmelCase , self.block_size , 0 ) , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : Dict = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' lowercase__ : Any = process_story(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [] ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Optional[int] = '' lowercase__ : int = process_story(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [] ) self.assertEqual(__lowerCAmelCase , [] ) def _lowerCAmelCase( self ) -> Any: lowercase__ : str = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) lowercase__ : Optional[Any] = process_story(__lowerCAmelCase ) lowercase__ : List[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Optional[Any] = ['It was the best of times.'] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : int = torch.tensor([1, 2, 3, 4] ) lowercase__ : Optional[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__lowerCAmelCase , 0 ).numpy() , expected.numpy() ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : str = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) lowercase__ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowerCAmelCase , 23 ).numpy() , expected.numpy() ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowercase__ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowerCAmelCase , 1 ).numpy() , expected.numpy() ) def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[int] = 101 lowercase__ : List[str] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) lowercase__ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowercase__ : Optional[int] = compute_token_type_ids(__lowerCAmelCase , __lowerCAmelCase ) np.testing.assert_array_equal(__lowerCAmelCase , __lowerCAmelCase )
198
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A ={ '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''LayoutLMv3FeatureExtractor'''] __A =['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :List[Any] ) -> List[Any]: UpperCAmelCase__ = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCAmelCase__ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) UpperCAmelCase__ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCAmelCase__ = {'unk_token': '<unk>'} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase ) ) UpperCAmelCase__ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCAmelCase__ = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[Any] , **lowerCamelCase :Tuple ) -> Union[str, Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[Any] , **lowerCamelCase :List[Any] ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **lowerCamelCase ) def UpperCAmelCase_ ( self :Union[str, Any] , **lowerCamelCase :Any ) -> str: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self :Optional[int] ) -> List[Any]: UpperCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self :List[Any] ) -> Dict: UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) UpperCAmelCase__ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def UpperCAmelCase_ ( self :List[str] ) -> List[str]: UpperCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase__ = self.get_image_processor(do_normalize=lowerCamelCase ) UpperCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple ) -> Optional[Any]: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(lowerCamelCase , return_tensors="np" ) UpperCAmelCase__ = processor(images=lowerCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self :str ) -> Union[str, Any]: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = processor(text=lowerCamelCase , return_tensors="np" ) UpperCAmelCase__ = tokenizer(lowerCamelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase_ ( self :Optional[int] ) -> List[Any]: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase_ ( self :Any ) -> Tuple: UpperCAmelCase__ = 'google/owlvit-base-patch32' UpperCAmelCase__ = OwlViTProcessor.from_pretrained(lowerCamelCase ) UpperCAmelCase__ = ['cat', 'nasa badge'] UpperCAmelCase__ = processor(text=lowerCamelCase ) UpperCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase_ ( self :Optional[int] ) -> Any: UpperCAmelCase__ = 'google/owlvit-base-patch32' UpperCAmelCase__ = OwlViTProcessor.from_pretrained(lowerCamelCase ) UpperCAmelCase__ = [['cat', 'nasa badge'], ['person']] UpperCAmelCase__ = processor(text=lowerCamelCase ) UpperCAmelCase__ = 16 UpperCAmelCase__ = len(lowerCamelCase ) UpperCAmelCase__ = max([len(lowerCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase_ ( self :List[Any] ) -> int: UpperCAmelCase__ = 'google/owlvit-base-patch32' UpperCAmelCase__ = OwlViTProcessor.from_pretrained(lowerCamelCase ) UpperCAmelCase__ = ['cat', 'nasa badge'] UpperCAmelCase__ = processor(text=lowerCamelCase ) UpperCAmelCase__ = 16 UpperCAmelCase__ = inputs['input_ids'] UpperCAmelCase__ = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase_ ( self :Optional[Any] ) -> str: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(images=lowerCamelCase , query_images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase_ ( self :int ) -> Dict: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = OwlViTProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(lowerCamelCase ) UpperCAmelCase__ = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase )
169
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class UpperCamelCase__ ( snake_case__ ): """simple docstring""" UpperCAmelCase_ ='autoformer' UpperCAmelCase_ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _A = None , _A = None , _A = "student_t" , _A = "nll" , _A = 1 , _A = [1, 2, 3, 4, 5, 6, 7] , _A = True , _A = 0 , _A = 0 , _A = 0 , _A = 0 , _A = None , _A = None , _A = 64 , _A = 2 , _A = 2 , _A = 2 , _A = 2 , _A = 32 , _A = 32 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 100 , _A = 0.02 , _A = True , _A=True , _A = 10 , _A = 25 , _A = 3 , **_A , ) -> str: # time series specific configuration SCREAMING_SNAKE_CASE_ = prediction_length SCREAMING_SNAKE_CASE_ = context_length if context_length is not None else prediction_length SCREAMING_SNAKE_CASE_ = distribution_output SCREAMING_SNAKE_CASE_ = loss SCREAMING_SNAKE_CASE_ = input_size SCREAMING_SNAKE_CASE_ = num_time_features SCREAMING_SNAKE_CASE_ = lags_sequence SCREAMING_SNAKE_CASE_ = scaling SCREAMING_SNAKE_CASE_ = num_dynamic_real_features SCREAMING_SNAKE_CASE_ = num_static_real_features SCREAMING_SNAKE_CASE_ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = cardinality else: SCREAMING_SNAKE_CASE_ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = embedding_dimension else: SCREAMING_SNAKE_CASE_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE_ = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE_ = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = use_cache # Autoformer SCREAMING_SNAKE_CASE_ = label_length SCREAMING_SNAKE_CASE_ = moving_average SCREAMING_SNAKE_CASE_ = autocorrelation_factor super().__init__(is_encoder_decoder=_A , **_A ) @property def _UpperCamelCase ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
299
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A =logging.get_logger(__name__) A ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A ={ 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } A ={ 'yjernite/retribert-base-uncased': 5_12, } A ={ 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _a ( snake_case__ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : int = PRETRAINED_INIT_CONFIGURATION __a : Optional[Any] = RetriBertTokenizer __a : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self : str , lowercase : int=None , lowercase : Any=None , lowercase : Dict=True , lowercase : Optional[int]="[UNK]" , lowercase : Dict="[SEP]" , lowercase : List[str]="[PAD]" , lowercase : str="[CLS]" , lowercase : Tuple="[MASK]" , lowercase : Dict=True , lowercase : str=None , **lowercase : List[str] , ): '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowercase ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowercase , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowercase ) UpperCAmelCase = do_lower_case def A ( self : Dict , lowercase : Optional[int] , lowercase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : Optional[Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : List[str] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
34
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' from __future__ import annotations import queue class lowerCamelCase_ : """simple docstring""" def __init__( self : List[str] , _a : Dict ) -> int: __lowerCamelCase : Any = data __lowerCamelCase : Any = None __lowerCamelCase : Dict = None def a_ ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) __lowerCamelCase : Dict = input('Enter the value of the root node: ' ).strip().lower() __lowerCamelCase : queue.Queue = queue.Queue() __lowerCamelCase : int = TreeNode(int(_lowerCAmelCase ) ) q.put(_lowerCAmelCase ) while not q.empty(): __lowerCamelCase : str = q.get() __lowerCamelCase : str = F'Enter the left node of {node_found.data}: ' __lowerCamelCase : int = input(_lowerCAmelCase ).strip().lower() or 'n' if check == "n": return tree_node __lowerCamelCase : Optional[Any] = TreeNode(int(_lowerCAmelCase ) ) __lowerCamelCase : str = left_node q.put(_lowerCAmelCase ) __lowerCamelCase : List[str] = F'Enter the right node of {node_found.data}: ' __lowerCamelCase : Optional[Any] = input(_lowerCAmelCase ).strip().lower() or 'n' if check == "n": return tree_node __lowerCamelCase : str = TreeNode(int(_lowerCAmelCase ) ) __lowerCamelCase : Union[str, Any] = right_node q.put(_lowerCAmelCase ) raise def a_ ( _lowerCAmelCase ) -> None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def a_ ( _lowerCAmelCase ) -> None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def a_ ( _lowerCAmelCase ) -> None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def a_ ( _lowerCAmelCase ) -> None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not node: return __lowerCamelCase : queue.Queue = queue.Queue() q.put(_lowerCAmelCase ) while not q.empty(): __lowerCamelCase : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a_ ( _lowerCAmelCase ) -> None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not node: return __lowerCamelCase : queue.Queue = queue.Queue() q.put(_lowerCAmelCase ) while not q.empty(): __lowerCamelCase : Optional[Any] = [] while not q.empty(): __lowerCamelCase : Dict = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCAmelCase ) def a_ ( _lowerCAmelCase ) -> None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not node: return __lowerCamelCase : list[TreeNode] = [] __lowerCamelCase : Any = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(_lowerCAmelCase ) __lowerCamelCase : Dict = n.left # end of while means current node doesn't have left child __lowerCamelCase : List[Any] = stack.pop() # start to traverse its right child __lowerCamelCase : List[Any] = n.right def a_ ( _lowerCAmelCase ) -> None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not node: return __lowerCamelCase : list[TreeNode] = [] __lowerCamelCase : List[str] = node while n or stack: while n: stack.append(_lowerCAmelCase ) __lowerCamelCase : int = n.left __lowerCamelCase : Union[str, Any] = stack.pop() print(n.data ,end=',' ) __lowerCamelCase : List[str] = n.right def a_ ( _lowerCAmelCase ) -> None: if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not node: return __lowerCamelCase : Optional[Any] = [], [] __lowerCamelCase : Optional[int] = node stacka.append(_lowerCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 __lowerCamelCase : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def a_ ( _lowerCAmelCase = "" ,_lowerCAmelCase=50 ,_lowerCAmelCase="*" ) -> str: if not s: return "\n" + width * char __lowerCamelCase : List[str] = divmod(width - len(_lowerCAmelCase ) - 2 ,2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) _UpperCamelCase = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
208
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , _A : List[str] , _A : Dict=13 , _A : Dict=3 , _A : List[Any]=224 , _A : List[str]=30 , _A : str=400 , _A : Dict=True , _A : Dict=None , _A : List[str]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Tuple=[0.5, 0.5, 0.5] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {'height': 18, 'width': 18} __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : str = batch_size __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : int = min_resolution __SCREAMING_SNAKE_CASE : Optional[int] = max_resolution __SCREAMING_SNAKE_CASE : int = do_resize __SCREAMING_SNAKE_CASE : str = size __SCREAMING_SNAKE_CASE : List[Any] = do_normalize __SCREAMING_SNAKE_CASE : int = image_mean __SCREAMING_SNAKE_CASE : Optional[Any] = image_std def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __UpperCamelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = EfficientFormerImageProcessorTester(self ) @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def UpperCAmelCase__ ( self : str ): """simple docstring""" pass def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : List[Any] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : List[Any] = image_processor(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : List[Any] = image_processor(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : str = image_processor(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
303
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple: debug_launcher(test_script.main ) def UpperCAmelCase__ ( self :Any ) -> Optional[int]: debug_launcher(test_ops.main )
78
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : str = '' __lowerCAmelCase : Tuple = '' __lowerCAmelCase : Tuple = '' __lowerCAmelCase : Optional[int] = 1 # (0 is vertical, 1 is horizontal) def a__ ( ): '''simple docstring''' __magic_name__ = get_dataset(A_, A_ ) print("""Processing...""" ) __magic_name__ = update_image_and_anno(A_, A_, A_ ) for index, image in enumerate(A_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __magic_name__ = random_chars(32 ) __magic_name__ = paths[index].split(os.sep )[-1].rsplit(""".""", 1 )[0] __magic_name__ = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''', A_, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(A_ )} with {file_name}''' ) __magic_name__ = [] for anno in new_annos[index]: __magic_name__ = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(A_ ) with open(f'''/{file_root}.txt''', """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = [] __magic_name__ = [] for label_file in glob.glob(os.path.join(A_, """*.txt""" ) ): __magic_name__ = label_file.split(os.sep )[-1].rsplit(""".""", 1 )[0] with open(A_ ) as in_file: __magic_name__ = in_file.readlines() __magic_name__ = os.path.join(A_, f'''{label_name}.jpg''' ) __magic_name__ = [] for obj_list in obj_lists: __magic_name__ = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(A_ ) labels.append(A_ ) return img_paths, labels def a__ ( A_, A_, A_ = 1 ): '''simple docstring''' __magic_name__ = [] __magic_name__ = [] __magic_name__ = [] for idx in range(len(A_ ) ): __magic_name__ = [] __magic_name__ = img_list[idx] path_list.append(A_ ) __magic_name__ = anno_list[idx] __magic_name__ = cva.imread(A_ ) if flip_type == 1: __magic_name__ = cva.flip(A_, A_ ) for bbox in img_annos: __magic_name__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __magic_name__ = cva.flip(A_, A_ ) for bbox in img_annos: __magic_name__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(A_ ) new_imgs_list.append(A_ ) return new_imgs_list, new_annos_lists, path_list def a__ ( A_ = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __magic_name__ = ascii_lowercase + digits return "".join(random.choice(A_ ) for _ in range(A_ ) ) if __name__ == "__main__": main() print('DONE ✅')
88
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : str ) -> list[int]: _a : Union[str, Any] =int(_UpperCAmelCase ) # Initialize Result _a : int =[] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A__: List[Any] = [] A__: Dict = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): A__: Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"Denomination {i}: ").strip())) A__: List[Any] = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter A__: Dict = [1, 2, 5, 10, 20, 50, 100, 500, 2000] A__: Dict = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"Following is minimal change for {value}: ") A__: Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
276
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
'''simple docstring''' def _a( UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _a( ): '''simple docstring''' print(sum_of_series(1, 1, 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
152
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=True , __lowerCAmelCase=1 / 255 , __lowerCAmelCase=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__ : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : int = num_channels lowercase__ : Optional[int] = min_resolution lowercase__ : Union[str, Any] = max_resolution lowercase__ : Union[str, Any] = do_resize lowercase__ : str = size lowercase__ : int = do_normalize lowercase__ : Any = image_mean lowercase__ : str = image_std lowercase__ : Tuple = do_rescale lowercase__ : Optional[int] = rescale_factor lowercase__ : int = do_pad def _lowerCAmelCase( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: if not batched: lowercase__ : List[str] = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): lowercase__ : Union[str, Any] = image.size else: lowercase__ : int = image.shape[1], image.shape[2] if w < h: lowercase__ : Dict = int(self.size['''shortest_edge'''] * h / w ) lowercase__ : str = self.size['shortest_edge'] elif w > h: lowercase__ : str = self.size['shortest_edge'] lowercase__ : Tuple = int(self.size['''shortest_edge'''] * w / h ) else: lowercase__ : Any = self.size['shortest_edge'] lowercase__ : Optional[int] = self.size['shortest_edge'] else: lowercase__ : int = [] for image in image_inputs: lowercase__ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : str = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] lowercase__ : Union[str, Any] = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor if is_vision_available() else None def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[Any] = ConditionalDetrImageProcessingTester(self ) @property def _lowerCAmelCase( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) lowercase__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[str]: pass def _lowerCAmelCase( self ) -> int: # Initialize image_processing lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Dict = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) lowercase__ : Tuple = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase( self ) -> List[Any]: # Initialize image_processing lowercase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ : List[str] = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Union[str, Any] = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values lowercase__ : str = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase( self ) -> List[str]: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ : Dict = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ : Dict = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCAmelCase( self ) -> Tuple: # prepare image and target lowercase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase__ : Dict = json.loads(f.read() ) lowercase__ : int = {'image_id': 39769, 'annotations': target} # encode them lowercase__ : Dict = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) lowercase__ : Optional[Any] = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase__ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area lowercase__ : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes lowercase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) lowercase__ : Tuple = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id lowercase__ : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd lowercase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels lowercase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size lowercase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size lowercase__ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def _lowerCAmelCase( self ) -> Tuple: # prepare image, target and masks_path lowercase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase__ : Optional[int] = json.loads(f.read() ) lowercase__ : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} lowercase__ : Tuple = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase__ : str = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) lowercase__ : Optional[Any] = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase__ : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) lowercase__ : List[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area lowercase__ : List[str] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes lowercase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) lowercase__ : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id lowercase__ : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd lowercase__ : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels lowercase__ : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks lowercase__ : Optional[int] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size lowercase__ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size lowercase__ : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
198
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.0_2 , ) -> int: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = num_patches + 1 def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, pixel_values def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Optional[Any]: lowerCamelCase_ = FlaxViTModel(config=lowercase ) lowerCamelCase_ = model(lowercase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = (self.image_size, self.image_size) lowerCamelCase_ = (self.patch_size, self.patch_size) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Any: lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FlaxViTForImageClassification(config=lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FlaxViTForImageClassification(lowercase ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.prepare_config_and_inputs() ( lowerCamelCase_ ) = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( snake_case__ , unittest.TestCase ): lowerCAmelCase__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = FlaxViTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) lowerCamelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ = self._prepare_for_class(lowercase , lowercase ) lowerCamelCase_ = model_class(lowercase ) @jax.jit def model_jitted(lowercase , **lowercase ): return model(pixel_values=lowercase , **lowercase ) with self.subTest("JIT Enabled" ): lowerCamelCase_ = model_jitted(**lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase_ = model_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: for model_class_name in self.all_model_classes: lowerCamelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) lowerCamelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowercase )
19
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCAmelCase : List[str] = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class _UpperCamelCase ( unittest.TestCase , snake_case__ ): def UpperCAmelCase_ ( self :Optional[int] ) -> List[str]: UpperCAmelCase__ = load_tool("text-question-answering" ) self.tool.setup() UpperCAmelCase__ = load_tool("text-question-answering" , remote=lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[Any] ) -> List[Any]: UpperCAmelCase__ = self.tool(lowerCamelCase , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase , "launched the BigScience Research Workshop" ) def UpperCAmelCase_ ( self :int ) -> Union[str, Any]: UpperCAmelCase__ = self.remote_tool(lowerCamelCase , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase , "launched the BigScience Research Workshop" ) def UpperCAmelCase_ ( self :List[Any] ) -> str: UpperCAmelCase__ = self.tool(text=lowerCamelCase , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase , "launched the BigScience Research Workshop" ) def UpperCAmelCase_ ( self :List[Any] ) -> Any: UpperCAmelCase__ = self.remote_tool(text=lowerCamelCase , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase , "launched the BigScience Research Workshop" )
169
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
from math import factorial def A__ ( __lowerCamelCase, __lowerCamelCase ): if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( "If a class of 40 students must be arranged into groups of", F"""4 for group projects, there are {combinations(40, 4)} ways""", "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", F"""are {combinations(10, 3)} ways that first, second and""", "third place can be awarded.", )
299
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _a ( snake_case__ ): __a : str = 'openai/whisper-base' __a : Union[str, Any] = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) __a : Any = 'transcriber' __a : Dict = WhisperProcessor __a : List[Any] = WhisperForConditionalGeneration __a : List[str] = ['audio'] __a : List[str] = ['text'] def A ( self : str , lowercase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowercase , return_tensors='''pt''' ).input_features def A ( self : Tuple , lowercase : List[str] ): '''simple docstring''' return self.model.generate(inputs=lowercase ) def A ( self : int , lowercase : Union[str, Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowercase , skip_special_tokens=lowercase )[0]
34
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase_ ( snake_case__ ): """simple docstring""" a_ =['pixel_values'] def __init__( self : Optional[int] , _a : bool = True , _a : Dict[str, int] = None , _a : PILImageResampling = PIL.Image.BICUBIC , _a : bool = True , _a : Dict[str, int] = None , _a : Union[int, float] = 1 / 255 , _a : bool = True , _a : bool = True , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[float, List[float]]] = None , **_a : List[Any] , ) -> None: super().__init__(**_a ) __lowerCamelCase : Union[str, Any] = size if size is not None else {'height': 256, 'width': 256} __lowerCamelCase : Any = get_size_dict(_a ) __lowerCamelCase : List[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowerCamelCase : Optional[int] = get_size_dict(_a , param_name='crop_size' ) __lowerCamelCase : str = do_resize __lowerCamelCase : int = size __lowerCamelCase : Any = resample __lowerCamelCase : Union[str, Any] = do_center_crop __lowerCamelCase : Any = crop_size __lowerCamelCase : Optional[Any] = do_rescale __lowerCamelCase : List[str] = rescale_factor __lowerCamelCase : int = do_normalize __lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : Any , _a : np.ndarray , _a : Dict[str, int] , _a : PILImageResampling = PIL.Image.BICUBIC , _a : Optional[Union[str, ChannelDimension]] = None , **_a : str , ) -> np.ndarray: __lowerCamelCase : Dict = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( _a , size=(size['height'], size['width']) , resample=_a , data_format=_a , **_a ) def _lowercase ( self : Union[str, Any] , _a : np.ndarray , _a : Dict[str, int] , _a : Optional[Union[str, ChannelDimension]] = None , **_a : Tuple , ) -> np.ndarray: __lowerCamelCase : List[Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_a , size=(size['height'], size['width']) , data_format=_a , **_a ) def _lowercase ( self : Tuple , _a : np.ndarray , _a : Union[int, float] , _a : Optional[Union[str, ChannelDimension]] = None , **_a : List[str] , ) -> Optional[Any]: return rescale(_a , scale=_a , data_format=_a , **_a ) def _lowercase ( self : List[Any] , _a : np.ndarray , _a : Union[float, List[float]] , _a : Union[float, List[float]] , _a : Optional[Union[str, ChannelDimension]] = None , **_a : Union[str, Any] , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def _lowercase ( self : Optional[int] , _a : ImageInput , _a : bool = None , _a : Dict[str, int] = None , _a : List[Any]=None , _a : bool = None , _a : Dict[str, int] = None , _a : bool = None , _a : float = None , _a : bool = None , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[str, TensorType]] = None , _a : ChannelDimension = ChannelDimension.FIRST , **_a : Any , ) -> PIL.Image.Image: __lowerCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : Optional[int] = resample if resample is not None else self.resample __lowerCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : Any = image_std if image_std is not None else self.image_std __lowerCamelCase : Optional[Any] = size if size is not None else self.size __lowerCamelCase : Union[str, Any] = get_size_dict(_a ) __lowerCamelCase : Any = crop_size if crop_size is not None else self.crop_size __lowerCamelCase : int = get_size_dict(_a , param_name='crop_size' ) __lowerCamelCase : Dict = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCamelCase : Union[str, Any] = [to_numpy_array(_a ) for image in images] if do_resize: __lowerCamelCase : Dict = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: __lowerCamelCase : List[Any] = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: __lowerCamelCase : int = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: __lowerCamelCase : Tuple = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] __lowerCamelCase : Optional[Any] = [to_channel_dimension_format(_a , _a ) for image in images] __lowerCamelCase : Optional[int] = {'pixel_values': images} return BatchFeature(data=_a , tensor_type=_a )
208
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowercase_ = """ Human: <<task>> Assistant: """ lowercase_ = """huggingface-tools/default-prompts""" lowercase_ = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def a__ ( snake_case , snake_case , snake_case="run" ): """simple docstring""" if prompt_or_repo_id is None: __SCREAMING_SNAKE_CASE : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , snake_case ) is not None: return prompt_or_repo_id __SCREAMING_SNAKE_CASE : Optional[Any] = cached_file( snake_case , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(snake_case , '''r''' , encoding='''utf-8''' ) as f: return f.read()
303
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
"""simple docstring""" import math def _lowerCAmelCase ( ): UpperCAmelCase = input('Enter message: ' ) UpperCAmelCase = int(input(F"""Enter key [2-{len(lowercase_ ) - 1}]: """ ) ) UpperCAmelCase = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): UpperCAmelCase = encrypt_message(lowercase_ , lowercase_ ) elif mode.lower().startswith('d' ): UpperCAmelCase = decrypt_message(lowercase_ , lowercase_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + '|'}""" ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = [''] * key for col in range(lowercase_ ): UpperCAmelCase = col while pointer < len(lowercase_ ): cipher_text[col] += message[pointer] pointer += key return "".join(lowercase_ ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = math.ceil(len(lowercase_ ) / key ) UpperCAmelCase = key UpperCAmelCase = (num_cols * num_rows) - len(lowercase_ ) UpperCAmelCase = [''] * num_cols UpperCAmelCase = 0 UpperCAmelCase = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase = 0 row += 1 return "".join(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
78
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str=13 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Any=99 , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Optional[int]=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Optional[int]=37 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : List[str]=None , ) -> int: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = self.vocab_size - 1 def _lowercase ( self : int ) -> Union[str, Any]: """simple docstring""" __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , *UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" __magic_name__ = OpenAIGPTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , *UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __magic_name__ = OpenAIGPTLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __magic_name__ = OpenAIGPTDoubleHeadsModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : int ) -> int: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = OpenAIGPTForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int ) -> str: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ( __magic_name__ ) = config_and_inputs __magic_name__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' a__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _lowercase ( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ) -> Any: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _lowercase ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str=False ) -> Any: """simple docstring""" __magic_name__ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) __magic_name__ = inputs_dict['labels'] __magic_name__ = inputs_dict['labels'] __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase__ , ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = OpenAIGPTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase__ ) def _lowercase ( self : str ) -> int: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase__ ) @slow def _lowercase ( self : Dict ) -> int: """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = OpenAIGPTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __magic_name__ = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(UpperCamelCase__ ) __magic_name__ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCamelCase__ ) # the president is __magic_name__ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __magic_name__ = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].tolist() , UpperCamelCase__ )
88
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
'''simple docstring''' import collections import os import re from pathlib import Path A__: Any = '''src/transformers''' # Matches is_xxx_available() A__: int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} A__: Union[str, Any] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A__: Union[str, Any] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available A__: List[str] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") A__: Any = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A__: Optional[Any] = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", A__: Tuple = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], A__: Dict = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo A__: Tuple = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: A__: int = re.compile(R'''^\s*try:''') # Catches a line with else: A__: Dict = re.compile(R'''^\s*else:''') def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: if _re_test_backend.search(_UpperCAmelCase ) is None: return None _a : Union[str, Any] =[b[0] for b in _re_backend.findall(_UpperCAmelCase )] backends.sort() return "_and_".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> Optional[Any]: with open(_UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _a : str =f.readlines() _a : Optional[Any] =0 while line_index < len(_UpperCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure _a : Union[str, Any] =[] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _a : Any =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_UpperCAmelCase ): _a : Tuple =_re_one_line_import_struct.search(_UpperCAmelCase ).groups()[0] _a : Any =re.findall(R"""\[([^\]]+)\]""" ,_UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _a : Any =_re_import_struct_key_value.search(_UpperCAmelCase ) if single_line_import_search is not None: _a : List[Any] =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _a : Optional[int] ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _a : List[str] =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _a : Optional[Any] =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _a : int =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _a : Optional[int] =lines[line_index] if _re_import_struct_add_one.search(_UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(_UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_UpperCAmelCase ) is not None: _a : List[str] =_re_import_struct_add_many.search(_UpperCAmelCase ).groups()[0].split(""", """ ) _a : Any =[obj[1:-1] for obj in imports if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif _re_between_brackets.search(_UpperCAmelCase ) is not None: _a : str =_re_between_brackets.search(_UpperCAmelCase ).groups()[0].split(""", """ ) _a : Union[str, Any] =[obj[1:-1] for obj in imports if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif _re_quote_object.search(_UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(_UpperCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _a : Any =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _a : List[str] =[] while ( line_index < len(_UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _a : List[str] =lines[line_index] _a : List[str] =_re_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _a : Dict ={'none': objects} # Let's continue with backend-specific objects while line_index < len(_UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. _a : Tuple =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _a : List[Any] =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _a : List[Any] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _a : Tuple =lines[line_index] _a : List[str] =_re_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _a : Optional[int] =objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Optional[int] ) -> Optional[int]: def find_duplicates(_UpperCAmelCase : int ): return [k for k, v in collections.Counter(_UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _a : Optional[int] =[] for key in import_dict_objects.keys(): _a : int =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) _a : List[Any] =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _a : int ='base imports' if key == 'none' else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: _a : str =[] for root, _, files in os.walk(_UpperCAmelCase ): if "__init__.py" in files: _a : Union[str, Any] =os.path.join(_UpperCAmelCase ,"""__init__.py""" ) _a : List[str] =parse_init(_UpperCAmelCase ) if objects is not None: _a : str =analyze_results(*_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _a : Dict =F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > 0: raise ValueError("""\n\n""".join(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( ) -> str: _a : Tuple =[] for path, directories, files in os.walk(_UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_UpperCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue _a : Dict =str((Path(_UpperCAmelCase ) / folder).relative_to(_UpperCAmelCase ) ) _a : Tuple =short_path.replace(os.path.sep ,""".""" ) submodules.append(_UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue _a : List[str] =str((Path(_UpperCAmelCase ) / fname).relative_to(_UpperCAmelCase ) ) _a : Union[str, Any] =short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_UpperCAmelCase ) return submodules A__: int = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: from transformers.utils import direct_transformers_import _a : List[Any] =direct_transformers_import(_UpperCAmelCase ) _a : int =set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_UpperCAmelCase ,"""__init__.py""" ) ,"""r""" ) as f: _a : int =f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" ,_UpperCAmelCase ) ) ) _a : str =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_UpperCAmelCase ) > 0: _a : List[Any] ='\n'.join(F"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
276
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Any , __lowercase : Union[str, Any] , __lowercase : str=13 , __lowercase : Optional[Any]=7 , __lowercase : str=True , __lowercase : Any=True , __lowercase : Tuple=True , __lowercase : Any=True , __lowercase : Optional[int]=True , __lowercase : List[str]=False , __lowercase : Tuple=False , __lowercase : int=False , __lowercase : Optional[int]=2 , __lowercase : Any=99 , __lowercase : str=0 , __lowercase : Dict=32 , __lowercase : int=5 , __lowercase : Optional[int]=4 , __lowercase : Any=0.1 , __lowercase : str=0.1 , __lowercase : int=5_12 , __lowercase : str=2 , __lowercase : Optional[int]=0.02 , __lowercase : Optional[Any]=2 , __lowercase : List[str]=4 , __lowercase : Dict="last" , __lowercase : int=True , __lowercase : Dict=None , __lowercase : Union[str, Any]=0 , ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =parent SCREAMING_SNAKE_CASE__ : Dict =batch_size SCREAMING_SNAKE_CASE__ : Tuple =seq_length SCREAMING_SNAKE_CASE__ : Tuple =is_training SCREAMING_SNAKE_CASE__ : Optional[Any] =use_input_lengths SCREAMING_SNAKE_CASE__ : List[str] =use_token_type_ids SCREAMING_SNAKE_CASE__ : Dict =use_labels SCREAMING_SNAKE_CASE__ : int =gelu_activation SCREAMING_SNAKE_CASE__ : Optional[int] =sinusoidal_embeddings SCREAMING_SNAKE_CASE__ : Tuple =causal SCREAMING_SNAKE_CASE__ : Optional[Any] =asm SCREAMING_SNAKE_CASE__ : int =n_langs SCREAMING_SNAKE_CASE__ : Tuple =vocab_size SCREAMING_SNAKE_CASE__ : List[Any] =n_special SCREAMING_SNAKE_CASE__ : List[Any] =hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_hidden_layers SCREAMING_SNAKE_CASE__ : Dict =num_attention_heads SCREAMING_SNAKE_CASE__ : int =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Dict =max_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] =type_sequence_label_size SCREAMING_SNAKE_CASE__ : str =initializer_range SCREAMING_SNAKE_CASE__ : List[str] =num_labels SCREAMING_SNAKE_CASE__ : List[str] =num_choices SCREAMING_SNAKE_CASE__ : Optional[int] =summary_type SCREAMING_SNAKE_CASE__ : Any =use_proj SCREAMING_SNAKE_CASE__ : Optional[Any] =scope SCREAMING_SNAKE_CASE__ : Dict =bos_token_id def __magic_name__ ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : str =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Any =None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ : Optional[Any] =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ : str =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ : int =None SCREAMING_SNAKE_CASE__ : Optional[int] =None SCREAMING_SNAKE_CASE__ : Optional[int] =None if self.use_labels: SCREAMING_SNAKE_CASE__ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Optional[int] =ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ : str =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Dict =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self : int , __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : int , __lowercase : int , __lowercase : List[str] , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[str] =XLMModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Any =model(__lowercase , lengths=__lowercase , langs=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =model(__lowercase , langs=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Any , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Dict , ) -> int: SCREAMING_SNAKE_CASE__ : str =XLMWithLMHeadModel(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Any , __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : str , __lowercase : Dict , ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =XLMForQuestionAnsweringSimple(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : str =model(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =model(__lowercase , start_positions=__lowercase , end_positions=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : List[str] , __lowercase : Dict , __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : Optional[Any] , __lowercase : str , __lowercase : List[str] , __lowercase : List[Any] , __lowercase : Any , __lowercase : Optional[int] , ) -> Tuple: SCREAMING_SNAKE_CASE__ : Union[str, Any] =XLMForQuestionAnswering(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] =model(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =model( __lowercase , start_positions=__lowercase , end_positions=__lowercase , cls_index=__lowercase , is_impossible=__lowercase , p_mask=__lowercase , ) SCREAMING_SNAKE_CASE__ : Any =model( __lowercase , start_positions=__lowercase , end_positions=__lowercase , cls_index=__lowercase , is_impossible=__lowercase , ) (SCREAMING_SNAKE_CASE__ ) : List[str] =result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase , start_positions=__lowercase , end_positions=__lowercase ) (SCREAMING_SNAKE_CASE__ ) : List[Any] =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self : Dict , __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : Any , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : List[str] , ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =XLMForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] =model(__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : Optional[Any] , __lowercase : str , __lowercase : int , __lowercase : str , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : Dict , __lowercase : Union[str, Any] , ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.num_labels SCREAMING_SNAKE_CASE__ : Tuple =XLMForTokenClassification(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] =model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : str , __lowercase : Tuple , __lowercase : str , __lowercase : Any , __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : List[str] , __lowercase : List[Any] , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] =self.num_choices SCREAMING_SNAKE_CASE__ : Optional[Any] =XLMForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : List[str] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Dict =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Any =model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE__ ) : Union[str, Any] =config_and_inputs SCREAMING_SNAKE_CASE__ : Any ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): snake_case_ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) snake_case_ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case_ = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self : Any , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : str , __lowercase : str , __lowercase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self : Any , __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Tuple=False ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[Any] =super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": SCREAMING_SNAKE_CASE__ : str =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def __magic_name__ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : int =XLMModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] =ConfigTester(self , config_class=__lowercase , emb_dim=37 ) def __magic_name__ ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__lowercase ) def __magic_name__ ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__lowercase ) def __magic_name__ ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__lowercase ) def __magic_name__ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__lowercase ) def __magic_name__ ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__lowercase ) def __magic_name__ ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__lowercase ) def __magic_name__ ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : int , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : Optional[int]=False , __lowercase : Dict=1 ) -> Dict: self.assertIsInstance(__lowercase , __lowercase ) self.assertListEqual( [isinstance(__lowercase , __lowercase ) for iter_attentions in attentions] , [True] * len(__lowercase ) ) self.assertEqual(len(__lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__lowercase ): # adds PAD dummy token SCREAMING_SNAKE_CASE__ : int =min_length + idx + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =min_length + idx + 1 SCREAMING_SNAKE_CASE__ : Any =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__lowercase ) ) def __magic_name__ ( self : Dict , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : Optional[Any] , __lowercase : str=False , __lowercase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(__lowercase , __lowercase ) self.assertListEqual( [isinstance(__lowercase , __lowercase ) for iter_hidden_states in hidden_states] , [True] * len(__lowercase ) , ) self.assertEqual(len(__lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__lowercase ): # adds PAD dummy token SCREAMING_SNAKE_CASE__ : Any =min_length + idx + 1 SCREAMING_SNAKE_CASE__ : str =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__lowercase ) , ) pass @slow def __magic_name__ ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[Any] =XLMModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __magic_name__ ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=__lowercase ) # the president SCREAMING_SNAKE_CASE__ : Union[str, Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference SCREAMING_SNAKE_CASE__ : str =model.generate(__lowercase , do_sample=__lowercase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __lowercase )
152
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] SCREAMING_SNAKE_CASE = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] SCREAMING_SNAKE_CASE = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE = False @property def _lowerCAmelCase( self ) -> Tuple: return 32 @property def _lowerCAmelCase( self ) -> Union[str, Any]: return 32 @property def _lowerCAmelCase( self ) -> Union[str, Any]: return self.time_input_dim @property def _lowerCAmelCase( self ) -> List[Any]: return self.time_input_dim * 4 @property def _lowerCAmelCase( self ) -> Dict: return 100 @property def _lowerCAmelCase( self ) -> int: torch.manual_seed(0 ) lowercase__ : Union[str, Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowercase__ : str = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def _lowerCAmelCase( self ) -> Tuple: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase( self ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase( self ) -> Tuple: lowercase__ : int = self.dummy_unet lowercase__ : Optional[Any] = self.dummy_movq lowercase__ : str = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowercase__ : Optional[int] = DDIMScheduler(**__lowerCAmelCase ) lowercase__ : int = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> List[str]: lowercase__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) # create init_image lowercase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : Dict = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : List[Any] = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : List[str] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _lowerCAmelCase( self ) -> Dict: lowercase__ : int = 'cpu' lowercase__ : List[str] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**__lowerCAmelCase ) lowercase__ : str = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase__ : Dict = output.images lowercase__ : str = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase__ : Optional[int] = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : int = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ : Tuple = init_image.resize((512, 512) ) lowercase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase__ : Dict = torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 2_5_5.0 lowercase__ : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase__ : Dict = 'A robot, 4k photo' lowercase__ : Union[str, Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase__ : int = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : Union[str, Any] = pipe_prior( __lowerCAmelCase , image=__lowerCAmelCase , strength=0.8_5 , generator=__lowerCAmelCase , negative_prompt='''''' , ).to_tuple() lowercase__ : Any = pipeline( image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) lowercase__ : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
198
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): with open(lowerCamelCase__ ) as metadata_file: lowerCamelCase_ = json.load(lowerCamelCase__ ) lowerCamelCase_ = LukeConfig(use_entity_aware_attention=lowerCamelCase__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" ) # Load the entity vocab file lowerCamelCase_ = load_entity_vocab(lowerCamelCase__ ) lowerCamelCase_ = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase_ = AddedToken("<ent>" , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) lowerCamelCase_ = AddedToken("<ent2>" , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = LukeTokenizer.from_pretrained(lowerCamelCase__ ) # Initialize the embeddings of the special tokens lowerCamelCase_ = state_dict['embeddings.word_embeddings.weight'] lowerCamelCase_ = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) lowerCamelCase_ = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) lowerCamelCase_ = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase_ = F'encoder.layer.{layer_index}.attention.self.' lowerCamelCase_ = state_dict[prefix + matrix_name] lowerCamelCase_ = state_dict[prefix + matrix_name] lowerCamelCase_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase_ = state_dict['entity_embeddings.entity_embeddings.weight'] lowerCamelCase_ = entity_emb[entity_vocab['[MASK]']] lowerCamelCase_ = LukeModel(config=lowerCamelCase__ ).eval() lowerCamelCase_ = model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) if not (len(lowerCamelCase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(lowerCamelCase__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs lowerCamelCase_ = LukeTokenizer.from_pretrained(lowerCamelCase__ , task="entity_classification" ) lowerCamelCase_ = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) lowerCamelCase_ = (3_9, 4_2) lowerCamelCase_ = tokenizer(lowerCamelCase__ , entity_spans=[span] , add_prefix_space=lowerCamelCase__ , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) # Verify word hidden states if model_size == "large": lowerCamelCase_ = torch.Size((1, 4_2, 1_0_2_4) ) lowerCamelCase_ = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base lowerCamelCase_ = torch.Size((1, 4_2, 7_6_8) ) lowerCamelCase_ = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": lowerCamelCase_ = torch.Size((1, 1, 1_0_2_4) ) lowerCamelCase_ = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base lowerCamelCase_ = torch.Size((1, 1, 7_6_8) ) lowerCamelCase_ = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowerCamelCase__ ) ) model.save_pretrained(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = {} with open(lowerCamelCase__ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(lowerCamelCase__ ): lowerCamelCase_ = line.rstrip().split("\t" ) lowerCamelCase_ = index return entity_vocab if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __A =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
19
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
from __future__ import annotations _lowerCAmelCase : Optional[int] = "Muhammad Umer Farooq" _lowerCAmelCase : List[Any] = "MIT" _lowerCAmelCase : str = "1.0.0" _lowerCAmelCase : List[Any] = "Muhammad Umer Farooq" _lowerCAmelCase : Optional[int] = "[email protected]" _lowerCAmelCase : List[Any] = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class _UpperCamelCase ( snake_case__ ): def __init__( self :List[Any] , lowerCamelCase :str ) -> None: super().__init__() UpperCAmelCase__ = [] UpperCAmelCase__ = domain def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :str , lowerCamelCase :list[tuple[str, str | None]] ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: UpperCAmelCase__ = parse.urljoin(self.domain , lowerCamelCase ) self.urls.append(lowerCamelCase ) def lowerCAmelCase ( _lowerCAmelCase : str ): """simple docstring""" return ".".join(get_sub_domain_name(_lowerCAmelCase ).split("." )[-2:] ) def lowerCAmelCase ( _lowerCAmelCase : str ): """simple docstring""" return parse.urlparse(_lowerCAmelCase ).netloc def lowerCAmelCase ( _lowerCAmelCase : str = "https://github.com" ): """simple docstring""" UpperCAmelCase__ = get_domain_name(_lowerCAmelCase ) # Initialize the parser UpperCAmelCase__ = Parser(_lowerCAmelCase ) try: # Open URL UpperCAmelCase__ = requests.get(_lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through UpperCAmelCase__ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: UpperCAmelCase__ = requests.get(_lowerCAmelCase ) # Get the valid email. UpperCAmelCase__ = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = emails_from_url("https://github.com") print(F'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
169
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): def update_area_of_max_square(__lowerCamelCase, __lowerCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 SCREAMING_SNAKE_CASE_ = update_area_of_max_square(__lowerCamelCase, col + 1 ) SCREAMING_SNAKE_CASE_ = update_area_of_max_square(row + 1, col + 1 ) SCREAMING_SNAKE_CASE_ = update_area_of_max_square(row + 1, __lowerCamelCase ) if mat[row][col]: SCREAMING_SNAKE_CASE_ = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE_ = max(largest_square_area[0], __lowerCamelCase ) return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE_ = [0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): def update_area_of_max_square_using_dp_array( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] SCREAMING_SNAKE_CASE_ = update_area_of_max_square_using_dp_array(__lowerCamelCase, col + 1, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = update_area_of_max_square_using_dp_array(row + 1, col + 1, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = update_area_of_max_square_using_dp_array(row + 1, __lowerCamelCase, __lowerCamelCase ) if mat[row][col]: SCREAMING_SNAKE_CASE_ = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE_ = max(largest_square_area[0], __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = sub_problem_sol return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE_ = [0] SCREAMING_SNAKE_CASE_ = [[-1] * cols for _ in range(__lowerCamelCase )] update_area_of_max_square_using_dp_array(0, 0, __lowerCamelCase ) return largest_square_area[0] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [[0] * (cols + 1) for _ in range(rows + 1 )] SCREAMING_SNAKE_CASE_ = 0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): SCREAMING_SNAKE_CASE_ = dp_array[row][col + 1] SCREAMING_SNAKE_CASE_ = dp_array[row + 1][col + 1] SCREAMING_SNAKE_CASE_ = dp_array[row + 1][col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE_ = 1 + min(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = max(dp_array[row][col], __lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = 0 return largest_square_area def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [0] * (cols + 1) SCREAMING_SNAKE_CASE_ = [0] * (cols + 1) SCREAMING_SNAKE_CASE_ = 0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): SCREAMING_SNAKE_CASE_ = current_row[col + 1] SCREAMING_SNAKE_CASE_ = next_row[col + 1] SCREAMING_SNAKE_CASE_ = next_row[col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE_ = 1 + min(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = max(current_row[col], __lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
299
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def snake_case_ (_a : List[str] ): UpperCAmelCase = [] for line in lines: UpperCAmelCase = re.sub(R'''#.*''' , '''''' , _a ) # remove comments if line: filtered_lines.append(_a ) UpperCAmelCase = '\n'.join(_a ) # Make a hash from all this code UpperCAmelCase = full_str.encode('''utf-8''' ) return shaaaa(_a ).hexdigest() # get importable module names and hash for caching A ={ 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions A ={ '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) A ={'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name A ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
34
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowerCamelCase_ : """simple docstring""" def __init__( self : List[Any] ) -> List[str]: __lowerCamelCase : Dict = {} def _lowercase ( self : Tuple , _a : str ) -> None: __lowerCamelCase : Optional[Any] = {} def _lowercase ( self : Tuple , _a : str , _a : str , _a : float ) -> None: if nodea not in self.connections: self.add_node(_a ) if nodea not in self.connections: self.add_node(_a ) __lowerCamelCase : List[Any] = probability def _lowercase ( self : List[str] ) -> list[str]: return list(self.connections ) def _lowercase ( self : Optional[int] , _a : str ) -> str: __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> dict[str, int]: __lowerCamelCase : Tuple = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : int = Counter(graph.get_nodes() ) __lowerCamelCase : Any = start for _ in range(_lowerCAmelCase ): __lowerCamelCase : Tuple = graph.transition(_lowerCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
208
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( snake_case__ ): """simple docstring""" lowerCAmelCase_ = 'new-model' if is_tf_available(): class __UpperCamelCase ( snake_case__ ): """simple docstring""" lowerCAmelCase_ = NewModelConfig @require_tf class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 'bert-base-cased' __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'bert-base-cased' __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForCausalLM.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : str = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForMaskedLM.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : int = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : Any = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 1_4410 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 1_4410 ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) __SCREAMING_SNAKE_CASE : str = copy.deepcopy(model.config ) __SCREAMING_SNAKE_CASE : int = ['FunnelBaseModel'] __SCREAMING_SNAKE_CASE : Union[str, Any] = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : Any = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register('''new-model''' , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API __SCREAMING_SNAKE_CASE : Optional[int] = BertModelTester(self ).get_config() __SCREAMING_SNAKE_CASE : Union[str, Any] = NewModelConfig(**tiny_config.to_dict() ) __SCREAMING_SNAKE_CASE : int = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE : Tuple = TFAutoModel.from_pretrained('''bert-base''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( _A , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE : Any = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __SCREAMING_SNAKE_CASE : Dict = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): __SCREAMING_SNAKE_CASE : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __SCREAMING_SNAKE_CASE : str = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
303
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
"""simple docstring""" import pytest snake_case_ = """__dummy_dataset1__""" snake_case_ = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def _lowerCAmelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _lowerCAmelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = dataset_loading_script_name UpperCAmelCase = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=lowercase_ ) UpperCAmelCase = script_dir / F"""{script_name}.py""" with open(lowercase_ , 'w' ) as f: f.write(lowercase_ ) return str(lowercase_ )
78
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
import re def a__ ( A_ ): '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""", str_ )] def a__ ( A_ ): '''simple docstring''' __magic_name__ = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a__ ( A_, A_, A_ ): '''simple docstring''' try: __magic_name__ = split_input(A_ ) if upper: __magic_name__ = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __magic_name__ = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a__ ( A_ ): '''simple docstring''' return to_simple_case(A_ ) def a__ ( A_ ): '''simple docstring''' try: __magic_name__ = to_simple_case(A_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a__ ( A_, A_ ): '''simple docstring''' return to_complex_case(A_, A_, """_""" ) def a__ ( A_, A_ ): '''simple docstring''' return to_complex_case(A_, A_, """-""" ) if __name__ == "__main__": __import__('doctest').testmod()
88
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
'''simple docstring''' from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Sequence[float] ,_UpperCAmelCase : float ) -> float: return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Sequence[float] ,_UpperCAmelCase : float ) -> float: _a : str =0.0 for coeff in reversed(_UpperCAmelCase ): _a : Dict =result * x + coeff return result if __name__ == "__main__": A__: List[Any] = (0.0, 0.0, 5.0, 9.3, 7.0) A__: Union[str, Any] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
276
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp a_ = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } a_ = { 'RUCAIBox/mvp': 1_0_2_4, } class __SCREAMING_SNAKE_CASE ( snake_case__ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['input_ids', 'attention_mask'] snake_case_ = MvpTokenizer def __init__( self : Optional[Any] , __lowercase : List[str]=None , __lowercase : Optional[int]=None , __lowercase : List[Any]=None , __lowercase : Any="replace" , __lowercase : List[Any]="<s>" , __lowercase : Dict="</s>" , __lowercase : Optional[Any]="</s>" , __lowercase : Tuple="<s>" , __lowercase : List[Any]="<unk>" , __lowercase : Union[str, Any]="<pad>" , __lowercase : List[Any]="<mask>" , __lowercase : Dict=False , __lowercase : Tuple=True , **__lowercase : Tuple , ) -> List[Any]: super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE__ : Any =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE__ : str =getattr(__lowercase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ : int =add_prefix_space SCREAMING_SNAKE_CASE__ : Union[str, Any] =pre_tok_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE__ : Dict ='post_processor' SCREAMING_SNAKE_CASE__ : List[Any] =getattr(self.backend_tokenizer , __lowercase , __lowercase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE__ : Union[str, Any] =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE__ : int =tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE__ : str =tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE__ : List[Any] =False if state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE__ : str =add_prefix_space SCREAMING_SNAKE_CASE__ : Tuple =True if state.get('''trim_offsets''' , __lowercase ) != trim_offsets: SCREAMING_SNAKE_CASE__ : Optional[Any] =trim_offsets SCREAMING_SNAKE_CASE__ : List[str] =True if changes_to_apply: SCREAMING_SNAKE_CASE__ : Union[str, Any] =getattr(__lowercase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ : Optional[int] =component_class(**__lowercase ) setattr(self.backend_tokenizer , __lowercase , __lowercase ) @property def __magic_name__ ( self : int ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __magic_name__ ( self : Dict , __lowercase : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ : List[str] =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else value SCREAMING_SNAKE_CASE__ : str =value def __magic_name__ ( self : Optional[Any] , *__lowercase : Any , **__lowercase : int ) -> BatchEncoding: SCREAMING_SNAKE_CASE__ : List[Any] =kwargs.get('''is_split_into_words''' , __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def __magic_name__ ( self : Dict , *__lowercase : int , **__lowercase : Any ) -> BatchEncoding: SCREAMING_SNAKE_CASE__ : Any =kwargs.get('''is_split_into_words''' , __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__lowercase , **__lowercase ) def __magic_name__ ( self : List[Any] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ : str =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def __magic_name__ ( self : Dict , __lowercase : List[str] , __lowercase : Optional[int]=None ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Optional[int] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ : Tuple =[self.sep_token_id] SCREAMING_SNAKE_CASE__ : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
152
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' import math import qiskit def __UpperCamelCase ( UpperCAmelCase = 1 , UpperCAmelCase = 1 , UpperCAmelCase = 1 ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) or isinstance(UpperCAmelCase , UpperCAmelCase ) or isinstance(UpperCAmelCase , UpperCAmelCase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(UpperCAmelCase ) != input_a) or (math.floor(UpperCAmelCase ) != input_a) or (math.floor(UpperCAmelCase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers lowercase__ : Union[str, Any] = qiskit.QuantumRegister(4 , '''qr''' ) lowercase__ : List[Any] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries lowercase__ : Any = [input_a, input_a, carry_in] lowercase__ : List[str] = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(UpperCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(UpperCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(UpperCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , UpperCAmelCase ) # measure the last two qbits lowercase__ : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) lowercase__ : List[Any] = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1000 ) return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
198
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
import gc import threading import time import psutil import torch class _SCREAMING_SNAKE_CASE : def __init__( self ) -> Tuple: lowerCamelCase_ = psutil.Process() lowerCamelCase_ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = -1 while True: lowerCamelCase_ = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = True lowerCamelCase_ = threading.Thread(target=self.peak_monitor ) lowerCamelCase_ = True self.thread.start() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = False self.thread.join() return self.cpu_memory_peak __A =PeakCPUMemory() def lowerCamelCase_ ( ): lowerCamelCase_ = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase_ = torch.cuda.memory_allocated(lowerCamelCase__ ) torch.cuda.reset_peak_memory_stats() return measures def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase_ = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**2_0 lowerCamelCase_ = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase_ = (torch.cuda.memory_allocated(lowerCamelCase__ ) - start_measures[str(lowerCamelCase__ )]) / 2**2_0 lowerCamelCase_ = (torch.cuda.max_memory_allocated(lowerCamelCase__ ) - start_measures[str(lowerCamelCase__ )]) / 2**2_0 return measures def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowerCamelCase__ )]:.2f}MiB' ) lowerCamelCase_ = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
19
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = F'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCAmelCase ) if number < 0: return False UpperCAmelCase__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
169
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
0
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [0] * len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCamelCase ) ): if indegree[i] == 0: queue.append(__lowerCamelCase ) while queue: SCREAMING_SNAKE_CASE_ = queue.pop(0 ) cnt += 1 topo.append(__lowerCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__lowerCamelCase ) if cnt != len(__lowerCamelCase ): print('''Cycle exists''' ) else: print(__lowerCamelCase ) # Adjacency List of Graph __UpperCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
299
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase = cst_fwd.get(_a , np.inf ) UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase = new_cost_f UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ): UpperCAmelCase = -1 UpperCAmelCase = set() UpperCAmelCase = set() UpperCAmelCase = {source: 0} UpperCAmelCase = {destination: 0} UpperCAmelCase = {source: None} UpperCAmelCase = {destination: None} UpperCAmelCase = PriorityQueue() UpperCAmelCase = PriorityQueue() UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase = queue_forward.get() visited_forward.add(_a ) UpperCAmelCase = queue_backward.get() visited_backward.add(_a ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase = shortest_distance return shortest_path_distance A ={ 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } A ={ 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
34
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
'''simple docstring''' def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Dict: if index == r: for j in range(_lowerCAmelCase ): print(data[j] ,end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __lowerCamelCase : Tuple = arr[i] combination_util(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,index + 1 ,_lowerCAmelCase ,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,0 ,_lowerCAmelCase ,0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
208
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowercase_ = 8 def a__ ( snake_case , snake_case=BITS ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = x.device __SCREAMING_SNAKE_CASE : List[Any] = (x * 255).int().clamp(0 , 255 ) __SCREAMING_SNAKE_CASE : Dict = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rearrange(snake_case , '''d -> d 1 1''' ) __SCREAMING_SNAKE_CASE : Any = rearrange(snake_case , '''b c h w -> b c 1 h w''' ) __SCREAMING_SNAKE_CASE : List[Any] = ((x & mask) != 0).float() __SCREAMING_SNAKE_CASE : Any = rearrange(snake_case , '''b c d h w -> b (c d) h w''' ) __SCREAMING_SNAKE_CASE : str = bits * 2 - 1 return bits def a__ ( snake_case , snake_case=BITS ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = x.device __SCREAMING_SNAKE_CASE : List[str] = (x > 0).int() __SCREAMING_SNAKE_CASE : List[str] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case , dtype=torch.intaa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rearrange(snake_case , '''d -> d 1 1''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rearrange(snake_case , '''b (c d) h w -> b c d h w''' , d=8 ) __SCREAMING_SNAKE_CASE : Optional[Any] = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def a__ ( self , snake_case , snake_case , snake_case , snake_case = 0.0 , snake_case = True , snake_case=None , snake_case = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __SCREAMING_SNAKE_CASE : List[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __SCREAMING_SNAKE_CASE : Optional[Any] = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __SCREAMING_SNAKE_CASE : List[str] = self.bit_scale if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Tuple = torch.clamp(snake_case , -scale , snake_case ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_variance(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : str = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __SCREAMING_SNAKE_CASE : str = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __SCREAMING_SNAKE_CASE : Optional[int] = model_output.device if torch.is_tensor(snake_case ) else 'cpu' __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case ).to(snake_case ) __SCREAMING_SNAKE_CASE : Dict = self._get_variance(snake_case , snake_case ) ** 0.5 * eta * noise __SCREAMING_SNAKE_CASE : Optional[Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case , pred_original_sample=snake_case ) def a__ ( self , snake_case , snake_case , snake_case , snake_case="epsilon" , snake_case=None , snake_case = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __SCREAMING_SNAKE_CASE : Optional[Any] = torch.split(snake_case , sample.shape[1] , dim=1 ) else: __SCREAMING_SNAKE_CASE : Any = None # 1. compute alphas, betas __SCREAMING_SNAKE_CASE : List[str] = self.alphas_cumprod[t] __SCREAMING_SNAKE_CASE : Optional[int] = self.alphas_cumprod[t - 1] if t > 0 else self.one __SCREAMING_SNAKE_CASE : Optional[Any] = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __SCREAMING_SNAKE_CASE : Optional[Any] = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.bit_scale if self.config.clip_sample: __SCREAMING_SNAKE_CASE : int = torch.clamp(snake_case , -scale , snake_case ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE : Optional[int] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __SCREAMING_SNAKE_CASE : Optional[Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 if t > 0: __SCREAMING_SNAKE_CASE : List[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case ).to(model_output.device ) __SCREAMING_SNAKE_CASE : Optional[Any] = (self._get_variance(snake_case , predicted_variance=snake_case ) ** 0.5) * noise __SCREAMING_SNAKE_CASE : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case , pred_original_sample=snake_case ) class __UpperCamelCase ( snake_case__ ): """simple docstring""" def __init__( self : Optional[int] , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, DDPMScheduler] , _A : Optional[float] = 1.0 , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : List[str] = bit_scale __SCREAMING_SNAKE_CASE : str = ( ddim_bit_scheduler_step if isinstance(_A , _A ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : int , _A : Optional[int] = 256 , _A : Optional[int] = 256 , _A : Optional[int] = 50 , _A : Optional[torch.Generator] = None , _A : Optional[int] = 1 , _A : Optional[str] = "pil" , _A : bool = True , **_A : str , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_A , ) __SCREAMING_SNAKE_CASE : str = decimal_to_bits(_A ) * self.bit_scale __SCREAMING_SNAKE_CASE : str = latents.to(self.device ) self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __SCREAMING_SNAKE_CASE : Any = self.unet(_A , _A ).sample # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : Tuple = bits_to_decimal(_A ) if output_type == "pil": __SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
303
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __lowerCAmelCase: int = 0 __lowerCAmelCase: Tuple = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase: Tuple = i + 1 else: __lowerCAmelCase: List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
322
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A_ ( snake_case__ ): """simple docstring""" __UpperCamelCase = 'Wav2Vec2FeatureExtractor' __UpperCamelCase = 'AutoTokenizer' def __init__( self :Tuple , lowercase_ :Any , lowercase_ :List[Any] ) -> Optional[int]: super().__init__(lowercase_ , lowercase_ ) UpperCAmelCase = self.feature_extractor UpperCAmelCase = False @classmethod def UpperCAmelCase__ ( cls :Optional[Any] , lowercase_ :Optional[Any] , **lowercase_ :Optional[int] ) -> List[Any]: try: return super().from_pretrained(lowercase_ , **lowercase_ ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , lowercase_ , ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase = WavaVecaCTCTokenizer.from_pretrained(lowercase_ , **lowercase_ ) return cls(feature_extractor=lowercase_ , tokenizer=lowercase_ ) def __call__( self :Union[str, Any] , *lowercase_ :Tuple , **lowercase_ :str ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) UpperCAmelCase = kwargs.pop('raw_speech' ) else: UpperCAmelCase = kwargs.pop('audio' , lowercase_ ) UpperCAmelCase = kwargs.pop('sampling_rate' , lowercase_ ) UpperCAmelCase = kwargs.pop('text' , lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase = args[0] UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: UpperCAmelCase = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase = encodings['input_ids'] return inputs def UpperCAmelCase__ ( self :Any , *lowercase_ :Tuple , **lowercase_ :Dict ) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase_ , **lowercase_ ) UpperCAmelCase = kwargs.pop('input_features' , lowercase_ ) UpperCAmelCase = kwargs.pop('labels' , lowercase_ ) if len(lowercase_ ) > 0: UpperCAmelCase = args[0] UpperCAmelCase = args[1:] if input_features is not None: UpperCAmelCase = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) if labels is not None: UpperCAmelCase = self.tokenizer.pad(lowercase_ , **lowercase_ ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase = labels['input_ids'] return input_features def UpperCAmelCase__ ( self :int , *lowercase_ :int , **lowercase_ :Union[str, Any] ) -> str: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :List[Any] , *lowercase_ :str , **lowercase_ :str ) -> Any: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @contextmanager def UpperCAmelCase__ ( self :Dict ) -> Union[str, Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) UpperCAmelCase = True UpperCAmelCase = self.tokenizer yield UpperCAmelCase = self.feature_extractor UpperCAmelCase = False
78
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) class UpperCAmelCase_ ( snake_case__ ): '''simple docstring''' a__ = ['input_features', 'attention_mask'] def __init__( self : str , UpperCamelCase__ : List[Any]=80 , UpperCamelCase__ : List[Any]=1_6000 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=10 , UpperCamelCase__ : str=25 , UpperCamelCase__ : Dict="hamming_window" , UpperCamelCase__ : Optional[int]=32768.0 , UpperCamelCase__ : Tuple=0.97 , UpperCamelCase__ : Any=1.0 , UpperCamelCase__ : Any=True , UpperCamelCase__ : int=True , UpperCamelCase__ : List[str]=False , **UpperCamelCase__ : List[str] , ) -> int: """simple docstring""" super().__init__(feature_size=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , padding_value=UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = feature_size __magic_name__ = sampling_rate __magic_name__ = padding_value __magic_name__ = hop_length __magic_name__ = win_length __magic_name__ = frame_signal_scale __magic_name__ = preemphasis_coeff __magic_name__ = mel_floor __magic_name__ = normalize_means __magic_name__ = normalize_vars __magic_name__ = win_function __magic_name__ = return_attention_mask __magic_name__ = win_length * sampling_rate // 1000 __magic_name__ = hop_length * sampling_rate // 1000 __magic_name__ = optimal_fft_length(self.sample_size ) __magic_name__ = (self.n_fft // 2) + 1 def _lowercase ( self : int , UpperCamelCase__ : np.array ) -> np.ndarray: """simple docstring""" if self.win_function == "hamming_window": __magic_name__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCamelCase__ ) else: __magic_name__ = window_function(window_length=self.sample_size , name=self.win_function ) __magic_name__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __magic_name__ = spectrogram( one_waveform * self.frame_signal_scale , window=UpperCamelCase__ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=UpperCamelCase__ , preemphasis=self.preemphasis_coeff , mel_filters=UpperCamelCase__ , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def _lowercase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ) -> int: """simple docstring""" if self.normalize_means: __magic_name__ = x[:input_length].mean(axis=0 ) __magic_name__ = np.subtract(UpperCamelCase__ , UpperCamelCase__ ) if self.normalize_vars: __magic_name__ = x[:input_length].std(axis=0 ) __magic_name__ = np.divide(UpperCamelCase__ , UpperCamelCase__ ) if input_length < x.shape[0]: __magic_name__ = padding_value # make sure array is in float32 __magic_name__ = x.astype(np.floataa ) return x def _lowercase ( self : List[str] , UpperCamelCase__ : List[np.ndarray] , UpperCamelCase__ : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" __magic_name__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(UpperCamelCase__ , UpperCamelCase__ , self.padding_value ) for x, n in zip(UpperCamelCase__ , UpperCamelCase__ )] def __call__( self : str , UpperCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : Any , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __magic_name__ = isinstance(UpperCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) __magic_name__ = is_batched_numpy or ( isinstance(UpperCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__ = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase__ , np.ndarray ): __magic_name__ = np.asarray(UpperCamelCase__ , dtype=np.floataa ) elif isinstance(UpperCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __magic_name__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __magic_name__ = [raw_speech] # extract fbank features __magic_name__ = [self._extract_mfsc_features(UpperCamelCase__ ) for one_waveform in raw_speech] # convert into correct format for padding __magic_name__ = BatchFeature({"""input_features""": features} ) __magic_name__ = self.pad( UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) # make sure list is in array format __magic_name__ = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , UpperCamelCase__ ): __magic_name__ = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for feature in input_features] __magic_name__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __magic_name__ = [np.asarray(UpperCamelCase__ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __magic_name__ = ( np.array(UpperCamelCase__ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase__ , max_length=UpperCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __magic_name__ = self.normalize( padded_inputs["""input_features"""] , attention_mask=UpperCamelCase__ ) if return_tensors is not None: __magic_name__ = padded_inputs.convert_to_tensors(UpperCamelCase__ ) return padded_inputs
88
_a = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> list[str]: """simple docstring""" __lowerCAmelCase: int = set() # keep track of all the paths to be checked __lowerCAmelCase: str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase: str = queue.pop(0 ) # get the last node from the path __lowerCAmelCase: Union[str, Any] = path[-1] if node not in explored: __lowerCAmelCase: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase: Dict = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase: Optional[int] = [start] __lowerCAmelCase: Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowerCAmelCase: Optional[int] = {start: 0, target: -1} while queue: __lowerCAmelCase: Any = queue.pop(0 ) if node == target: __lowerCAmelCase: Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
322
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig A__: str = logging.get_logger(__name__) # General docstring A__: Any = '''RegNetConfig''' # Base docstring A__: int = '''facebook/regnet-y-040''' A__: int = [1, 1088, 7, 7] # Image classification docstring A__: str = '''facebook/regnet-y-040''' A__: Union[str, Any] = '''tabby, tabby cat''' A__: List[str] = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( tf.keras.layers.Layer ): def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :int = 1 , SCREAMING_SNAKE_CASE :int = 1 , SCREAMING_SNAKE_CASE :Optional[str] = "relu" , **SCREAMING_SNAKE_CASE :Tuple , ) -> List[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _a : List[str] =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _a : List[str] =tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE , kernel_size=SCREAMING_SNAKE_CASE , strides=SCREAMING_SNAKE_CASE , padding="""VALID""" , groups=SCREAMING_SNAKE_CASE , use_bias=SCREAMING_SNAKE_CASE , name="""convolution""" , ) _a : Tuple =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) _a : str =ACTaFN[activation] if activation is not None else tf.identity def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :List[Any] ) -> List[str]: '''simple docstring''' _a : Dict =self.convolution(self.padding(SCREAMING_SNAKE_CASE ) ) _a : List[str] =self.normalization(SCREAMING_SNAKE_CASE ) _a : Tuple =self.activation(SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( tf.keras.layers.Layer ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :RegNetConfig , **SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Any =config.num_channels _a : Tuple =TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]: '''simple docstring''' _a : int =shape_list(SCREAMING_SNAKE_CASE )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _a : str =tf.transpose(SCREAMING_SNAKE_CASE , perm=(0, 2, 3, 1) ) _a : Tuple =self.embedder(SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( tf.keras.layers.Layer ): def __init__( self :Any , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int = 2 , **SCREAMING_SNAKE_CASE :Dict ) -> Optional[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE , kernel_size=1 , strides=SCREAMING_SNAKE_CASE , use_bias=SCREAMING_SNAKE_CASE , name="""convolution""" ) _a : Optional[int] =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :tf.Tensor , SCREAMING_SNAKE_CASE :bool = False ) -> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) class A__ ( tf.keras.layers.Layer ): def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , **SCREAMING_SNAKE_CASE :Any ) -> Tuple: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Tuple =tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE , name="""pooler""" ) _a : Any =[ tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Any: '''simple docstring''' # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _a : Optional[int] =self.pooler(SCREAMING_SNAKE_CASE ) for layer_module in self.attention: _a : Tuple =layer_module(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =hidden_state * pooled return hidden_state class A__ ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :RegNetConfig , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int = 1 , **SCREAMING_SNAKE_CASE :int ) -> Union[str, Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Any =in_channels != out_channels or stride != 1 _a : Any =max(1 , out_channels // config.groups_width ) _a : int =( TFRegNetShortCut(SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _a : Dict =[ TFRegNetConvLayer(SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , groups=SCREAMING_SNAKE_CASE , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE , kernel_size=1 , activation=SCREAMING_SNAKE_CASE , name="""layer.2""" ), ] _a : Union[str, Any] =ACTaFN[config.hidden_act] def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' _a : Any =hidden_state for layer_module in self.layers: _a : str =layer_module(SCREAMING_SNAKE_CASE ) _a : List[str] =self.shortcut(SCREAMING_SNAKE_CASE ) hidden_state += residual _a : Tuple =self.activation(SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( tf.keras.layers.Layer ): def __init__( self :str , SCREAMING_SNAKE_CASE :RegNetConfig , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int = 1 , **SCREAMING_SNAKE_CASE :Any ) -> Optional[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Tuple =in_channels != out_channels or stride != 1 _a : Any =max(1 , out_channels // config.groups_width ) _a : str =( TFRegNetShortCut(SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) _a : List[str] =[ TFRegNetConvLayer(SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , groups=SCREAMING_SNAKE_CASE , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE , kernel_size=1 , activation=SCREAMING_SNAKE_CASE , name="""layer.3""" ), ] _a : int =ACTaFN[config.hidden_act] def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[str] ) -> Tuple: '''simple docstring''' _a : List[Any] =hidden_state for layer_module in self.layers: _a : Dict =layer_module(SCREAMING_SNAKE_CASE ) _a : int =self.shortcut(SCREAMING_SNAKE_CASE ) hidden_state += residual _a : Union[str, Any] =self.activation(SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( tf.keras.layers.Layer ): def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :RegNetConfig , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :int = 2 , **SCREAMING_SNAKE_CASE :str ) -> Union[str, Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : int =TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer _a : List[Any] =[ # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , name="""layers.0""" ), *[layer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , name=f"layers.{i+1}" ) for i in range(depth - 1 )], ] def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[int] ) -> List[str]: '''simple docstring''' for layer_module in self.layers: _a : Any =layer_module(SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( tf.keras.layers.Layer ): def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :RegNetConfig , **SCREAMING_SNAKE_CASE :Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =[] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) _a : int =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(SCREAMING_SNAKE_CASE , config.depths[1:] ) ): self.stages.append(TFRegNetStage(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , depth=SCREAMING_SNAKE_CASE , name=f"stages.{i+1}" ) ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :tf.Tensor , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :bool = True ) -> TFBaseModelOutputWithNoAttention: '''simple docstring''' _a : Dict =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : Optional[Any] =hidden_states + (hidden_state,) _a : str =stage_module(SCREAMING_SNAKE_CASE ) if output_hidden_states: _a : List[Any] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE , hidden_states=SCREAMING_SNAKE_CASE ) @keras_serializable class A__ ( tf.keras.layers.Layer ): __UpperCamelCase : Dict = RegNetConfig def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :int , **SCREAMING_SNAKE_CASE :List[Any] ) -> Dict: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =config _a : Union[str, Any] =TFRegNetEmbeddings(SCREAMING_SNAKE_CASE , name="""embedder""" ) _a : Tuple =TFRegNetEncoder(SCREAMING_SNAKE_CASE , name="""encoder""" ) _a : Tuple =tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE , name="""pooler""" ) @unpack_inputs def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :tf.Tensor , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _a : Dict =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Optional[Any] =return_dict if return_dict is not None else self.config.use_return_dict _a : Dict =self.embedder(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) _a : List[str] =self.encoder( SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) _a : List[Any] =encoder_outputs[0] _a : List[Any] =self.pooler(SCREAMING_SNAKE_CASE ) # Change to NCHW output format have uniformity in the modules _a : int =tf.transpose(SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) _a : Optional[int] =tf.transpose(SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _a : int =tuple([tf.transpose(SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE , pooler_output=SCREAMING_SNAKE_CASE , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A__ ( snake_case__ ): __UpperCamelCase : Optional[int] = RegNetConfig __UpperCamelCase : Any = 'regnet' __UpperCamelCase : Any = 'pixel_values' @property def __UpperCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} A__: int = R''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' A__: str = R''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , snake_case__ , ) class A__ ( snake_case__ ): def __init__( self :Any , SCREAMING_SNAKE_CASE :RegNetConfig , *SCREAMING_SNAKE_CASE :Any , **SCREAMING_SNAKE_CASE :Any ) -> Dict: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) _a : Dict =TFRegNetMainLayer(SCREAMING_SNAKE_CASE , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :tf.Tensor , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[int]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _a : Optional[int] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : List[str] =return_dict if return_dict is not None else self.config.use_return_dict _a : Dict =self.regnet( pixel_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , snake_case__ , ) class A__ ( snake_case__ , snake_case__ ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :RegNetConfig , *SCREAMING_SNAKE_CASE :List[str] , **SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) _a : Dict =config.num_labels _a : Any =TFRegNetMainLayer(SCREAMING_SNAKE_CASE , name="""regnet""" ) # classification head _a : List[Any] =[ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :tf.Tensor = None , SCREAMING_SNAKE_CASE :tf.Tensor = None , SCREAMING_SNAKE_CASE :bool = None , SCREAMING_SNAKE_CASE :bool = None , SCREAMING_SNAKE_CASE :List[str]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _a : Optional[int] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict _a : int =self.regnet( SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) _a : List[Any] =outputs.pooler_output if return_dict else outputs[1] _a : Dict =self.classifier[0](SCREAMING_SNAKE_CASE ) _a : Optional[Any] =self.classifier[1](SCREAMING_SNAKE_CASE ) _a : Optional[int] =None if labels is None else self.hf_compute_loss(labels=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) if not return_dict: _a : Any =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states )
276
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[str] ): # noqa: E741 '''simple docstring''' while r - l > 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] =(l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE__ : List[Any] =m else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =m # noqa: E741 return r def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if len(UpperCamelCase__ ) == 0: return 0 SCREAMING_SNAKE_CASE__ : List[Any] =[0] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =1 SCREAMING_SNAKE_CASE__ : Optional[int] =v[0] for i in range(1, len(UpperCamelCase__ ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE__ : Tuple =v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE__ : Tuple =v[i] length += 1 else: SCREAMING_SNAKE_CASE__ : List[Any] =v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
152
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __a: Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={"help": "The column name of the images in the files."} ) SCREAMING_SNAKE_CASE = field(default=snake_case__ , metadata={"help": "A folder containing the training data."} ) SCREAMING_SNAKE_CASE = field(default=snake_case__ , metadata={"help": "A folder containing the validation data."} ) SCREAMING_SNAKE_CASE = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCAmelCase( self ) -> str: lowercase__ : int = {} if self.train_dir is not None: lowercase__ : str = self.train_dir if self.validation_dir is not None: lowercase__ : Dict = self.validation_dir lowercase__ : Any = data_files if data_files else None @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch." ) } , ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE = field(default=snake_case__ , metadata={"help": "Name or path of preprocessor config."} ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) SCREAMING_SNAKE_CASE = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) SCREAMING_SNAKE_CASE = field( default=snake_case__ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class UpperCAmelCase ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def __UpperCamelCase ( ): lowercase__ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , UpperCAmelCase , UpperCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase ) transformers.utils.logging.set_verbosity(UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ : Any = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase ) and data_args.train_val_split > 0.0: lowercase__ : Optional[int] = ds['train'].train_test_split(data_args.train_val_split ) lowercase__ : Optional[Any] = split['train'] lowercase__ : Dict = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : Any = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase__ : Any = ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowercase__ : Tuple = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: lowercase__ : Any = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase__ : Optional[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowercase__ : str = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: lowercase__ : Any = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase__ : List[str] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ : Tuple = ViTMAEForPreTraining(UpperCAmelCase ) if training_args.do_train: lowercase__ : Tuple = ds['train'].column_names else: lowercase__ : Dict = ds['validation'].column_names if data_args.image_column_name is not None: lowercase__ : Union[str, Any] = data_args.image_column_name elif "image" in column_names: lowercase__ : Optional[int] = 'image' elif "img" in column_names: lowercase__ : List[str] = 'img' else: lowercase__ : Optional[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase__ : Any = image_processor.size['shortest_edge'] else: lowercase__ : Optional[int] = (image_processor.size['height'], image_processor.size['width']) lowercase__ : int = Compose( [ Lambda(lambda UpperCAmelCase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCAmelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCAmelCase ): lowercase__ : str = [transforms(UpperCAmelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ : List[str] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ : Dict = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase ) # Compute absolute learning rate lowercase__ : Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase__ : str = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowercase__ : List[str] = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: lowercase__ : Dict = None if training_args.resume_from_checkpoint is not None: lowercase__ : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : Union[str, Any] = last_checkpoint lowercase__ : List[Any] = trainer.train(resume_from_checkpoint=UpperCAmelCase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ : int = trainer.evaluate() trainer.log_metrics('''eval''' , UpperCAmelCase ) trainer.save_metrics('''eval''' , UpperCAmelCase ) # Write model card and (optionally) push to hub lowercase__ : str = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase ) else: trainer.create_model_card(**UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): main() if __name__ == "__main__": main()
198
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
0
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return x if y == 0 else greatest_common_divisor(lowerCamelCase__ , x % y ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return (x * y) // greatest_common_divisor(lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ = 2_0 ): lowerCamelCase_ = 1 for i in range(1 , n + 1 ): lowerCamelCase_ = lcm(lowerCamelCase__ , lowerCamelCase__ ) return g if __name__ == "__main__": print(F"""{solution() = }""")
19
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[int] = SavedModel() __lowerCAmelCase: str = [] with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCAmelCase: List[str] = json.load(SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCAmelCase: Optional[int] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCAmelCase: List[str] = sorted(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(SCREAMING_SNAKE_CASE ) if strict and len(SCREAMING_SNAKE_CASE ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(SCREAMING_SNAKE_CASE ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*SCREAMING_SNAKE_CASE , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=1_2, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _a = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
322
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowerCAmelCase : str = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCamelCase ( snake_case__ ): UpperCAmelCase_ = ['pixel_values'] def __init__( self :int , lowerCamelCase :bool = True , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase :bool = True , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :bool = True , lowerCamelCase :Union[int, float] = 1 / 255 , lowerCamelCase :bool = True , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :bool = True , **lowerCamelCase :Any , ) -> None: super().__init__(**lowerCamelCase ) UpperCAmelCase__ = size if size is not None else {'shortest_edge': 224} UpperCAmelCase__ = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) UpperCAmelCase__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCAmelCase__ = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase , param_name="crop_size" ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase__ = do_convert_rgb def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :np.ndarray , lowerCamelCase :Dict[str, int] , lowerCamelCase :PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Optional[int] , ) -> np.ndarray: UpperCAmelCase__ = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase__ = get_resize_output_image_size(lowerCamelCase , size=size["shortest_edge"] , default_to_square=lowerCamelCase ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Dict , lowerCamelCase :np.ndarray , lowerCamelCase :Dict[str, int] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Any , ) -> np.ndarray: UpperCAmelCase__ = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Dict , lowerCamelCase :np.ndarray , lowerCamelCase :Union[int, float] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Optional[Any] , ) -> str: return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :np.ndarray , lowerCamelCase :Union[float, List[float]] , lowerCamelCase :Union[float, List[float]] , lowerCamelCase :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase :Union[str, Any] , ) -> np.ndarray: return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :ImageInput , lowerCamelCase :bool = None , lowerCamelCase :Dict[str, int] = None , lowerCamelCase :PILImageResampling = None , lowerCamelCase :bool = None , lowerCamelCase :int = None , lowerCamelCase :bool = None , lowerCamelCase :float = None , lowerCamelCase :bool = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :Optional[Union[float, List[float]]] = None , lowerCamelCase :bool = None , lowerCamelCase :Optional[Union[str, TensorType]] = None , lowerCamelCase :Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase :int , ) -> PIL.Image.Image: UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(lowerCamelCase , param_name="size" , default_to_square=lowerCamelCase ) UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ = get_size_dict(lowerCamelCase , param_name="crop_size" , default_to_square=lowerCamelCase ) UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase__ = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase__ = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: UpperCAmelCase__ = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_center_crop: UpperCAmelCase__ = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: UpperCAmelCase__ = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] UpperCAmelCase__ = {'pixel_values': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
169
import math import qiskit def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' ) __lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __lowerCAmelCase: Any = [input_a, input_a, carry_in] __lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' ) __lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
322
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class UpperCamelCase__ ( snake_case__ ): """simple docstring""" UpperCAmelCase_ ='encodec' def __init__( self , _A=[1.5, 3.0, 6.0, 12.0, 24.0] , _A=24000 , _A=1 , _A=False , _A=None , _A=None , _A=128 , _A=32 , _A=1 , _A=[8, 5, 4, 2] , _A="weight_norm" , _A=7 , _A=7 , _A=3 , _A=2 , _A=True , _A="reflect" , _A=2 , _A=2 , _A=1.0 , _A=1024 , _A=None , _A=True , **_A , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = target_bandwidths SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = audio_channels SCREAMING_SNAKE_CASE_ = normalize SCREAMING_SNAKE_CASE_ = chunk_length_s SCREAMING_SNAKE_CASE_ = overlap SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_filters SCREAMING_SNAKE_CASE_ = num_residual_layers SCREAMING_SNAKE_CASE_ = upsampling_ratios SCREAMING_SNAKE_CASE_ = norm_type SCREAMING_SNAKE_CASE_ = kernel_size SCREAMING_SNAKE_CASE_ = last_kernel_size SCREAMING_SNAKE_CASE_ = residual_kernel_size SCREAMING_SNAKE_CASE_ = dilation_growth_rate SCREAMING_SNAKE_CASE_ = use_causal_conv SCREAMING_SNAKE_CASE_ = pad_mode SCREAMING_SNAKE_CASE_ = compress SCREAMING_SNAKE_CASE_ = num_lstm_layers SCREAMING_SNAKE_CASE_ = trim_right_ratio SCREAMING_SNAKE_CASE_ = codebook_size SCREAMING_SNAKE_CASE_ = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE_ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_A ) @property def _UpperCamelCase ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCamelCase ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _UpperCamelCase ( self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
299
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _a ( snake_case__ ): def __init__( self : List[Any] , lowercase : str=0.01 , lowercase : Tuple=1_000 ): '''simple docstring''' UpperCAmelCase = p_stop UpperCAmelCase = max_length def __iter__( self : Any ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase = random.random() < self.p_stop class _a ( unittest.TestCase ): def A ( self : Optional[Any] , lowercase : List[str] , lowercase : str , lowercase : Any=False , lowercase : Union[str, Any]=True ): '''simple docstring''' UpperCAmelCase = [ BatchSamplerShard(lowercase , 2 , lowercase , split_batches=lowercase , even_batches=lowercase ) for i in range(2 ) ] UpperCAmelCase = [list(lowercase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase ) for shard in batch_sampler_shards] , [len(lowercase ) for e in expected] ) self.assertListEqual(lowercase , lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is very small. UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase ) UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is very small. UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) UpperCAmelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase = [BatchSamplerShard(lowercase , 2 , lowercase , even_batches=lowercase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A ( self : List[str] , lowercase : Tuple , lowercase : int , lowercase : List[str] , lowercase : Dict=False , lowercase : Union[str, Any]=2 , lowercase : Union[str, Any]=False ): '''simple docstring''' random.seed(lowercase ) UpperCAmelCase = list(lowercase ) UpperCAmelCase = [ IterableDatasetShard( lowercase , batch_size=lowercase , drop_last=lowercase , num_processes=lowercase , process_index=lowercase , split_batches=lowercase , ) for i in range(lowercase ) ] UpperCAmelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase ) iterable_dataset_lists.append(list(lowercase ) ) UpperCAmelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase ) , len(lowercase ) ) self.assertTrue(len(lowercase ) % shard_batch_size == 0 ) UpperCAmelCase = [] for idx in range(0 , len(lowercase ) , lowercase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase ) < len(lowercase ): reference += reference self.assertListEqual(lowercase , reference[: len(lowercase )] ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = 42 UpperCAmelCase = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) # Edge case with a very small dataset UpperCAmelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowercase ) UpperCAmelCase = SkipBatchSampler(lowercase , 2 ) self.assertListEqual(list(lowercase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase = skip_first_batches(lowercase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A ( self : Optional[int] ): '''simple docstring''' Accelerator() UpperCAmelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
34
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' from __future__ import annotations import math def a_ ( _lowerCAmelCase ) -> list[int]: if num <= 0: __lowerCamelCase : Any = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = [True] * (num + 1) __lowerCamelCase : List[str] = [] __lowerCamelCase : Tuple = 2 __lowerCamelCase : str = int(math.sqrt(_lowerCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowerCAmelCase ) # Set multiples of start be False for i in range(start * start ,num + 1 ,_lowerCAmelCase ): if sieve[i] is True: __lowerCamelCase : List[str] = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(_lowerCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
208
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _a = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls : Dict ) -> List[str]: __lowerCAmelCase: str = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls : str ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCAmelCase: str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='test-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCAmelCase: Dict = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCAmelCase: int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: CustomConfig.register_for_auto_class() __lowerCAmelCase: Any = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCAmelCase: int = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCAmelCase: Union[str, Any] = c.n_embd + 1 # int __lowerCAmelCase: str = c.resid_pdrop + 1.0 # float __lowerCAmelCase: List[Any] = not c.scale_attn_weights # bool __lowerCAmelCase: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: str = PretrainedConfig() __lowerCAmelCase: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCAmelCase: int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCAmelCase )}.''' ) def UpperCAmelCase ( self : int ) -> Optional[Any]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCAmelCase: List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __lowerCAmelCase: Union[str, Any] = mock.Mock() __lowerCAmelCase: str = 5_0_0 __lowerCAmelCase: Optional[Any] = {} __lowerCAmelCase: Optional[int] = HTTPError __lowerCAmelCase: List[Any] = {} # Download this model to make sure it's in the cache. __lowerCAmelCase: Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase ) as mock_head: __lowerCAmelCase: Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Any ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCAmelCase ( self : Dict ) -> str: __lowerCAmelCase: Optional[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) __lowerCAmelCase: Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCAmelCase: Dict = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCAmelCase: Dict = ['config.42.0.0.json'] __lowerCAmelCase: Optional[int] = 7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(UpperCAmelCase , 'config.42.0.0.json' ) ) __lowerCAmelCase: int = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCAmelCase: Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCAmelCase: List[Any] = 'v4.0.0' __lowerCAmelCase , __lowerCAmelCase: Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCAmelCase: List[Any] = 'v3.0.0' __lowerCAmelCase: Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
322
0
from timeit import timeit lowercase_ = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Any = len(snake_case ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = len(snake_case ) // 2 __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(snake_case ) ) def a__ ( snake_case ): """simple docstring""" if len(snake_case ) <= 2: return True if s[0] == s[len(snake_case ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def a__ ( snake_case ): """simple docstring""" return s == s[::-1] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = F'''all({name}(key) is value for key, value in test_data.items())''' __SCREAMING_SNAKE_CASE : List[Any] = F'''from __main__ import test_data, {name}''' __SCREAMING_SNAKE_CASE : List[str] = 500_000 __SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(stmt=snake_case , setup=snake_case , number=snake_case ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
303
_a = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _a ( SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 1_0_0_0_0_0_0_0 _a = True _a = False def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase: int = chain(next_number(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Tuple = number_chain while number < 10_00_00_00: __lowerCAmelCase: Dict = number_chain number *= 10 return number_chain def _a ( SCREAMING_SNAKE_CASE : int = 10_00_00_00 ) -> int: """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
322
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
def _a ( SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False __lowerCAmelCase: str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
322
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Optional[Any] = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: __lowerCAmelCase : Tuple = json.load(f) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : str , UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" return FSMTTokenizer.from_pretrained(UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" __magic_name__ = FSMTForConditionalGeneration.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _lowercase ( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = F'''facebook/wmt19-{pair}''' __magic_name__ = self.get_tokenizer(UpperCamelCase__ ) __magic_name__ = self.get_model(UpperCamelCase__ ) __magic_name__ = bleu_data[pair]['src'] __magic_name__ = bleu_data[pair]['tgt'] __magic_name__ = tokenizer(UpperCamelCase__ , return_tensors="""pt""" , truncation=UpperCamelCase__ , padding="""longest""" ).to(UpperCamelCase__ ) __magic_name__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __magic_name__ = tokenizer.batch_decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) __magic_name__ = calculate_bleu(UpperCamelCase__ , UpperCamelCase__ ) print(UpperCamelCase__ ) self.assertGreaterEqual(scores["""bleu"""] , UpperCamelCase__ )
88
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A__ ( unittest.TestCase ): __UpperCamelCase : Union[str, Any] = MODEL_FOR_MASKED_LM_MAPPING __UpperCamelCase : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def __UpperCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __UpperCAmelCase ( self :str ) -> List[str]: '''simple docstring''' _a : Union[str, Any] =pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _a : str =unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8_0_1_5, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5_5_0_6, """token_str""": """ accuser"""}, ] , ) _a : str =unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8_0_1_5, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5_5_0_6, """token_str""": """ accuser""", }, ] , ) _a : Optional[int] =unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3_6_0_6, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3_4_9_9, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2_9_4_1, """token_str""": """ Te"""}, ] , ) @require_torch def __UpperCAmelCase ( self :int ) -> List[str]: '''simple docstring''' _a : Tuple =pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _a : Optional[int] =unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5_6_7_6, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6_4_1_6, """token_str""": """ELS"""}, ] , ) _a : int =unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5_6_7_6, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6_4_1_6, """token_str""": """ELS"""}, ] , ) _a : Optional[Any] =unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3_4_9_9, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2_9_4_1, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3_6_0_6, """token_str""": """ Clara"""}, ] , ) _a : Any =unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5_6_7_6, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6_4_1_6, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5_6_7_6, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6_4_1_6, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __UpperCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' _a : int =pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _a : Any =pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow @require_torch def __UpperCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(SCREAMING_SNAKE_CASE ) @slow @require_tf def __UpperCAmelCase ( self :List[str] ) -> int: '''simple docstring''' _a : List[str] =pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' _a : Dict =unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 6_1_0, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_5_7_3, """token_str""": """ Chris"""}, ] , ) _a : Optional[int] =unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_2_0_1, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2_7_9_0, """token_str""": """ Lyon""", }, ] , ) _a : Optional[int] =unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_4_9_9, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3_6_0_6, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_9_4_1, """token_str""": """ Te"""}, ] , ) @require_torch def __UpperCAmelCase ( self :Dict ) -> str: '''simple docstring''' _a : Dict =pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _a : List[str] =None _a : List[str] =None self.run_pipeline_test(SCREAMING_SNAKE_CASE , [] ) @require_tf def __UpperCAmelCase ( self :str ) -> Tuple: '''simple docstring''' _a : List[str] =pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _a : Optional[int] =None _a : Optional[Any] =None self.run_pipeline_test(SCREAMING_SNAKE_CASE , [] ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[int] ) -> List[str]: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _a : Dict =FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) _a : Tuple =[ f"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict: '''simple docstring''' _a : Any =fill_masker.tokenizer _a : Union[str, Any] =fill_masker.model _a : Any =fill_masker( f"This is a {tokenizer.mask_token}" , ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) _a : Any =fill_masker([f"This is a {tokenizer.mask_token}"] ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) _a : Optional[Any] =fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."] ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(SCREAMING_SNAKE_CASE ): fill_masker("""This is""" ) self.run_test_top_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.run_test_targets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.run_test_top_k_targets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fill_mask_with_duplicate_targets_and_top_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fill_mask_with_multiple_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :int ) -> int: '''simple docstring''' _a : Any =tokenizer.get_vocab() _a : Dict =sorted(vocab.keys() )[:2] # Pipeline argument _a : Any =FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , targets=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) _a : str ={vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , SCREAMING_SNAKE_CASE ) _a : Tuple =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(SCREAMING_SNAKE_CASE ) ) # Call argument _a : Tuple =FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) _a : Optional[int] =fill_masker(f"This is a {tokenizer.mask_token}" , targets=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) _a : Union[str, Any] ={vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(SCREAMING_SNAKE_CASE ) ) # Score equivalence _a : Tuple =fill_masker(f"This is a {tokenizer.mask_token}" , targets=SCREAMING_SNAKE_CASE ) _a : List[str] =[top_mask['token_str'] for top_mask in outputs] _a : List[str] =[top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(SCREAMING_SNAKE_CASE ) == set(SCREAMING_SNAKE_CASE ): _a : int =fill_masker(f"This is a {tokenizer.mask_token}" , targets=SCREAMING_SNAKE_CASE ) _a : int =[top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) # Raises with invalid with self.assertRaises(SCREAMING_SNAKE_CASE ): _a : Optional[Any] =fill_masker(f"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(SCREAMING_SNAKE_CASE ): _a : Optional[int] =fill_masker(f"This is a {tokenizer.mask_token}" , targets=[""""""] ) with self.assertRaises(SCREAMING_SNAKE_CASE ): _a : str =fill_masker(f"This is a {tokenizer.mask_token}" , targets="""""" ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Union[str, Any]: '''simple docstring''' _a : List[Any] =FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , top_k=2 ) _a : Optional[int] =fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) _a : str =FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) _a : Tuple =fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Dict ) -> Optional[Any]: '''simple docstring''' _a : Union[str, Any] =tokenizer.get_vocab() _a : List[Any] =FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) # top_k=2, ntargets=3 _a : Any =sorted(vocab.keys() )[:3] _a : Dict =fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 , targets=SCREAMING_SNAKE_CASE ) # If we use the most probably targets, and filter differently, we should still # have the same results _a : Tuple =[el['token_str'] for el in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(SCREAMING_SNAKE_CASE ).issubset(SCREAMING_SNAKE_CASE ): _a : int =fill_masker(f"This is a {tokenizer.mask_token}" , top_k=3 , targets=SCREAMING_SNAKE_CASE ) # They should yield exactly the same result self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> Dict: '''simple docstring''' _a : Union[str, Any] =FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) _a : Any =tokenizer.get_vocab() # String duplicates + id duplicates _a : int =sorted(vocab.keys() )[:3] _a : List[str] =[targets[0], targets[1], targets[0], targets[2], targets[1]] _a : Optional[int] =fill_masker(f"My name is {tokenizer.mask_token}" , targets=SCREAMING_SNAKE_CASE , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 3 ) def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Tuple ) -> Dict: '''simple docstring''' _a : Union[str, Any] =FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) _a : int =fill_masker( f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, {"""sequence""": ANY(SCREAMING_SNAKE_CASE ), """score""": ANY(SCREAMING_SNAKE_CASE ), """token""": ANY(SCREAMING_SNAKE_CASE ), """token_str""": ANY(SCREAMING_SNAKE_CASE )}, ], ] , )
276
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( snake_case__ , unittest.TestCase ): snake_case_ = CLIPTokenizer snake_case_ = CLIPTokenizerFast snake_case_ = True snake_case_ = {} snake_case_ = False def __magic_name__ ( self : List[str] ) -> str: super().setUp() # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] =['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE__ : str =dict(zip(__lowercase , range(len(__lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : List[Any] =['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE__ : Optional[Any] ={'unk_token': '<unk>'} SCREAMING_SNAKE_CASE__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def __magic_name__ ( self : Dict , **__lowercase : Union[str, Any] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def __magic_name__ ( self : List[str] , **__lowercase : Optional[Any] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def __magic_name__ ( self : List[str] , __lowercase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : str ='lower newer' SCREAMING_SNAKE_CASE__ : Dict ='lower newer' return input_text, output_text def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ : Optional[Any] ='lower newer' SCREAMING_SNAKE_CASE__ : Dict =['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE__ : Any =tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : int =tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : List[Any] =[10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) @require_ftfy def __magic_name__ ( self : List[Any] ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE__ : int =self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple ='A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer_s.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : int =tokenizer_r.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE__ : Optional[Any] ='xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE__ : Tuple =tokenizer_s.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =tokenizer_r.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE__ : List[str] =[ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer_s.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer_r.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE__ : Optional[int] =[ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE__ : Dict =tokenizer_s.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer_r.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : Optional[Any] ) -> List[str]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE__ : Union[str, Any] ='hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE__ : int =F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE__ : str =self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ) + 1, len(__lowercase ) + 1 + len(__lowercase )) , ) SCREAMING_SNAKE_CASE__ : Any =F" {text}" SCREAMING_SNAKE_CASE__ : Dict =self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowercase ) + 1, 1 + len(__lowercase ) + 1 + len(__lowercase )) , ) def __magic_name__ ( self : Optional[Any] ) -> Dict: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(__lowercase ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def __magic_name__ ( self : Optional[int] ) -> Any: super().test_tokenization_python_rust_equals() def __magic_name__ ( self : Optional[Any] ) -> str: # CLIP always lower cases letters pass
152
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( snake_case__ ): _lowercase : int = (DPMSolverSinglestepScheduler,) _lowercase : Optional[Any] = (('num_inference_steps', 2_5),) def UpperCAmelCase ( self : Dict , **UpperCAmelCase : List[Any] ) -> Optional[Any]: __lowerCAmelCase: Union[str, Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase ( self : str , UpperCAmelCase : List[Any]=0 , **UpperCAmelCase : str ) -> Any: __lowerCAmelCase: Optional[int] = dict(self.forward_default_kwargs ) __lowerCAmelCase: int = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: int = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Union[str, Any] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: Dict = scheduler_class.from_pretrained(UpperCAmelCase ) new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals __lowerCAmelCase: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase: Optional[int] = sample, sample for t in range(UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase: str = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: str = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> str: pass def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Any=0 , **UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: Tuple = dict(self.forward_default_kwargs ) __lowerCAmelCase: Tuple = kwargs.pop('num_inference_steps' , UpperCAmelCase ) __lowerCAmelCase: Tuple = self.dummy_sample __lowerCAmelCase: Union[str, Any] = 0.1 * sample __lowerCAmelCase: Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase: Dict = self.get_scheduler_config() __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase ) __lowerCAmelCase: List[str] = scheduler_class.from_pretrained(UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample __lowerCAmelCase: Dict = new_scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : int , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: if scheduler is None: __lowerCAmelCase: str = self.scheduler_classes[0] __lowerCAmelCase: int = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Any = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.scheduler_classes[0] __lowerCAmelCase: List[str] = self.get_scheduler_config(**UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = 1_0 __lowerCAmelCase: Dict = self.dummy_model() __lowerCAmelCase: Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Dict = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Any = 5_0 __lowerCAmelCase: int = self.dummy_model() __lowerCAmelCase: List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase: List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __lowerCAmelCase: Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase: List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase: Dict = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __lowerCAmelCase: Tuple = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase: Union[str, Any] = self.full_loop(scheduler=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) __lowerCAmelCase: Dict = self.full_loop( solver_order=UpperCAmelCase , solver_type=UpperCAmelCase , prediction_type=UpperCAmelCase , algorithm_type=UpperCAmelCase , ) assert not torch.isnan(UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self : Optional[Any] ) -> str: self.check_over_configs(lower_order_final=UpperCAmelCase ) self.check_over_configs(lower_order_final=UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self : List[Any] ) -> str: self.check_over_configs(variance_type=UpperCAmelCase ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self : Any ) -> int: __lowerCAmelCase: Any = self.full_loop() __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: List[str] = self.full_loop(use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: str = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase: Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCAmelCase: List[str] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase: int = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase ) __lowerCAmelCase: Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase: Any = self.scheduler_classes[0] __lowerCAmelCase: Optional[Any] = self.get_scheduler_config(thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase: List[str] = scheduler_class(**UpperCAmelCase ) __lowerCAmelCase: Optional[int] = 1_0 __lowerCAmelCase: Union[str, Any] = self.dummy_model() __lowerCAmelCase: int = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase: Any = model(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Any = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
322
0
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __a: str = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") __a: str = parser.parse_args() if args.model_type == "roberta": __a: Any = RobertaForMaskedLM.from_pretrained(args.model_name) __a: Dict = """roberta""" elif args.model_type == "gpt2": __a: Tuple = GPTaLMHeadModel.from_pretrained(args.model_name) __a: List[Any] = """transformer""" __a: Optional[int] = model.state_dict() __a: str = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __a: Union[str, Any] = state_dict[F'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __a: int = F'{prefix}.embeddings.{w}.weight' __a: str = state_dict[param_name] for w in ["weight", "bias"]: __a: List[str] = F'{prefix}.embeddings.LayerNorm.{w}' __a: List[Any] = state_dict[param_name] # Transformer Blocks # __a: List[str] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __a: int = state_dict[ F'{prefix}.h.{teacher_idx}.{layer}.{w}' ] __a: int = state_dict[F'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __a: Optional[int] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __a: List[Any] = state_dict[F'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: __a: Union[str, Any] = state_dict[F'lm_head.dense.{w}'] __a: Optional[Any] = state_dict[F'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __a: str = state_dict[F'{prefix}.ln_f.{w}'] __a: Any = state_dict["""lm_head.weight"""] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
198
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = int(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=3_00 ) -> int: """simple docstring""" return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[str] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase: List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A_ : _lowercase : str = 5 _lowercase : str = 0.2 def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase : int = 3_0_0 , ) -> List[Any]: __lowerCAmelCase: List[str] = total __lowerCAmelCase: Optional[int] = '' if prefix is None else prefix __lowerCAmelCase: int = leave __lowerCAmelCase: List[str] = parent __lowerCAmelCase: Optional[Any] = width __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = None __lowerCAmelCase: List[str] = None def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : bool = False , UpperCAmelCase : str = None ) -> Optional[int]: __lowerCAmelCase: int = value if comment is not None: __lowerCAmelCase: Any = comment if self.last_value is None: __lowerCAmelCase: List[Any] = time.time() __lowerCAmelCase: Any = value __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = self.warmup __lowerCAmelCase: List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase: Union[str, Any] = time.time() __lowerCAmelCase: str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase: Dict = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase: int = None if value >= self.total: __lowerCAmelCase: Any = self.total __lowerCAmelCase: str = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase: List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __lowerCAmelCase: Tuple = value __lowerCAmelCase: int = current_time if self.average_time_per_item is None: __lowerCAmelCase: Optional[int] = 1 else: __lowerCAmelCase: Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self : int , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: __lowerCAmelCase: int = ' ' * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase: Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase: str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase: Any = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase: Tuple = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None ) -> Any: super().__init__(UpperCAmelCase ) __lowerCAmelCase: Tuple = None if column_names is None else [column_names] __lowerCAmelCase: Union[str, Any] = None def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase: Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : List[Any] ) -> Dict: if self.inner_table is None: __lowerCAmelCase: List[str] = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase: Any = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __lowerCAmelCase: List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=3_0_0 ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase: Tuple = None self.display() class A_ ( snake_case__ ): def __init__( self : Any ) -> List[str]: __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: str = False def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : Tuple ) -> str: __lowerCAmelCase: Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Any = 0 __lowerCAmelCase: Tuple = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowerCAmelCase: List[Any] = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Any: __lowerCAmelCase: Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase: Any = False def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Dict ) -> List[Any]: if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase: int = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __lowerCAmelCase: List[str] = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ) -> Union[str, Any]: if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase: Any = None def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase: Union[str, Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase: Dict = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple=None , **UpperCAmelCase : int ) -> List[str]: if self.training_tracker is not None: __lowerCAmelCase: Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase: List[str] = log['loss'] break if self.first_column == "Epoch": __lowerCAmelCase: int = int(state.epoch ) else: __lowerCAmelCase: Tuple = state.global_step __lowerCAmelCase: Optional[int] = 'eval' for k in metrics: if k.endswith('_loss' ): __lowerCAmelCase: Union[str, Any] = re.sub(R'\_loss$' , '' , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = metrics.pop('total_flos' , UpperCAmelCase ) __lowerCAmelCase: str = metrics.pop('epoch' , UpperCAmelCase ) __lowerCAmelCase: int = metrics.pop(F'''{metric_key_prefix}_runtime''' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , UpperCAmelCase ) __lowerCAmelCase: List[str] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , UpperCAmelCase ) __lowerCAmelCase: Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , UpperCAmelCase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __lowerCAmelCase: Tuple = v else: __lowerCAmelCase: int = k.split('_' ) __lowerCAmelCase: List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase: List[Any] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase: List[str] = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase: str = True def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Optional[int]: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = None
322
0
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[] ): lowerCamelCase_ = size[0] - overlap_pixels * 2 lowerCamelCase_ = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCamelCase_ = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 lowerCamelCase_ = np.pad(lowerCamelCase__ , mode="linear_ramp" , pad_width=lowerCamelCase__ , end_values=0 ) if "l" in remove_borders: lowerCamelCase_ = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCamelCase_ = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCamelCase_ = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCamelCase_ = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return max(lowerCamelCase__ , min(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = list(lowerCamelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCamelCase_ = clamp_rect(lowerCamelCase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowerCamelCase__ , (original_slice, 0) ) return result def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCamelCase_ = tile.crop(lowerCamelCase__ ) return tile def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = n % d return n - divisor class _SCREAMING_SNAKE_CASE ( snake_case__ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = 350 , ) -> Optional[Any]: super().__init__( vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , low_res_scheduler=lowercase , scheduler=lowercase , max_noise_level=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase ) -> Optional[int]: torch.manual_seed(0 ) lowerCamelCase_ = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCamelCase_ = add_overlap_rect(lowercase , lowercase , image.size ) lowerCamelCase_ = image.crop(lowercase ) lowerCamelCase_ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCamelCase_ = translated_slice_x - (original_image_slice / 2) lowerCamelCase_ = max(0 , lowercase ) lowerCamelCase_ = squeeze_tile(lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = to_input.size lowerCamelCase_ = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCamelCase_ = super(lowercase , self ).__call__(image=lowercase , **lowercase ).images[0] lowerCamelCase_ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCamelCase_ = unsqueeze_tile(lowercase , lowercase ) lowerCamelCase_ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCamelCase_ = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) lowerCamelCase_ = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowercase ) , mode="L" , ) final_image.paste( lowercase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowercase ) @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase = 75 , lowercase = 9.0 , lowercase = 50 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = None , lowercase = 1 , lowercase = 128 , lowercase = 32 , lowercase = 32 , ) -> str: lowerCamelCase_ = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) lowerCamelCase_ = math.ceil(image.size[0] / tile_size ) lowerCamelCase_ = math.ceil(image.size[1] / tile_size ) lowerCamelCase_ = tcx * tcy lowerCamelCase_ = 0 for y in range(lowercase ): for x in range(lowercase ): self._process_tile( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , prompt=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , noise_level=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def lowerCamelCase_ ( ): lowerCamelCase_ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCamelCase_ = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCamelCase__ , revision="fp16" , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to("cuda" ) lowerCamelCase_ = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(lowerCamelCase__ ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save("diffusers_library_progress.jpg" ) lowerCamelCase_ = pipe(image=lowerCamelCase__ , prompt="Black font, white background, vector" , noise_level=4_0 , callback=lowerCamelCase__ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
19
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0