code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
_lowerCamelCase : Tuple = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 336 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __UpperCAmelCase :
def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : int = num_channels
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Optional[int] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Tuple = mask_ratio
UpperCAmelCase : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCAmelCase : Tuple = (image_size // patch_size) ** 2
UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : str = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Optional[Any] ):
return ViTMAEConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, )
def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ):
UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A )
UpperCAmelCase : Tuple = model(__A, training=__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ):
UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A )
UpperCAmelCase : int = model(__A, training=__A )
# expected sequence length = num_patches
UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2
UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCAmelCase : Tuple = 1
UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A )
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = model(__A, training=__A )
UpperCAmelCase : Union[str, Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs
UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = TFViTMAEModelTester(self )
UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) )
UpperCAmelCase : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) )
def __magic_name__ ( self : str ):
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Any = model_class(__A )
UpperCAmelCase : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : int = [*signature.parameters.keys()]
UpperCAmelCase : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__A )
def __magic_name__ ( self : int ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : str = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : Dict = model(__A, noise=__A )
UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A )
UpperCAmelCase : Dict = outputs_dict[0].numpy()
UpperCAmelCase : Tuple = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 )
def __magic_name__ ( self : Optional[Any] ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__A : Union[str, Any] ):
UpperCAmelCase : str = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__A ):
UpperCAmelCase : Tuple = v.numpy()
else:
UpperCAmelCase : str = np.array(__A )
return inputs_np_dict
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : Any = self._prepare_for_class(__A, __A )
UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A )
UpperCAmelCase : str = model(__A, noise=__A )
UpperCAmelCase : str = model(**__A, noise=__A )
self.assert_outputs_same(__A, __A )
def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ):
# make masks reproducible
np.random.seed(2 )
UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : int = tf.constant(__A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCAmelCase : List[Any] = tf_noise
super().check_pt_tf_models(__A, __A, __A )
def __magic_name__ ( self : str ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Union[str, Any] = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__A )
if module_member_name.endswith('''MainLayer''' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )]
for module_member in (getattr(__A, __A ),)
if isinstance(__A, __A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__A, '''_keras_serializable''', __A )
}
UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : str = tf.convert_to_tensor(__A )
inputs_dict.update({'''noise''': noise} )
for main_layer_class in tf_main_layer_classes:
UpperCAmelCase : Tuple = main_layer_class(__A )
UpperCAmelCase : int = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) )
UpperCAmelCase : List[Any] = model(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' )
model.save(__A )
UpperCAmelCase : List[str] = tf.keras.models.load_model(
__A, custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__A, tf.keras.Model )
UpperCAmelCase : Tuple = model(__A )
self.assert_outputs_same(__A, __A )
@slow
def __magic_name__ ( self : Dict ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(__A )
UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A )
UpperCAmelCase : Union[str, Any] = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy()
UpperCAmelCase : Union[str, Any] = 0
else:
UpperCAmelCase : Optional[int] = outputs.logits.numpy()
UpperCAmelCase : int = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A, saved_model=__A )
UpperCAmelCase : Dict = model_class.from_pretrained(__A )
UpperCAmelCase : str = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy()
UpperCAmelCase : Dict = 0
else:
UpperCAmelCase : Any = after_outputs['''logits'''].numpy()
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__A, 1E-5 )
def __magic_name__ ( self : Optional[Any] ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : List[Any] = model(__A, noise=__A )
UpperCAmelCase : str = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__A )
UpperCAmelCase : int = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
UpperCAmelCase : str = model_class.from_config(model.config )
UpperCAmelCase : List[str] = new_model(__A ) # Build model
new_model.set_weights(model.get_weights() )
UpperCAmelCase : Tuple = new_model(__A, noise=__A )
self.assert_outputs_same(__A, __A )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def __magic_name__ ( self : Tuple ):
pass
@slow
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__A )
def a__ ( ) -> Dict:
UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[str] ):
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def __magic_name__ ( self : str ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' )
UpperCAmelCase : List[str] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCAmelCase : Optional[int] = ViTMAEConfig()
UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) )
# forward pass
UpperCAmelCase : Optional[int] = model(**__A, noise=__A )
# verify the logits
UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : List[str] = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
| 336 | 1 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple=False ) -> List[Any]:
try:
UpperCAmelCase : Tuple = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
UpperCAmelCase : Optional[Any] = default
else:
# KEY is set, convert it to True or False.
try:
UpperCAmelCase : Optional[Any] = strtobool(UpperCAmelCase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''' )
return _value
_lowerCamelCase : List[str] = parse_flag_from_env("RUN_SLOW", default=False)
_lowerCamelCase : str = parse_flag_from_env("RUN_REMOTE", default=False)
_lowerCamelCase : int = parse_flag_from_env("RUN_LOCAL", default=True)
_lowerCamelCase : Optional[Any] = parse_flag_from_env("RUN_PACKAGED", default=True)
# Compression
_lowerCamelCase : Union[str, Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4")
_lowerCamelCase : Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr")
_lowerCamelCase : int = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard")
# Audio
_lowerCamelCase : Tuple = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"),
reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ",
)
# Beam
_lowerCamelCase : List[str] = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"),
reason="test requires apache-beam and a compatible dill version",
)
# Dill-cloudpickle compatibility
_lowerCamelCase : Optional[Any] = pytest.mark.skipif(
config.DILL_VERSION <= version.parse("0.3.2"),
reason="test requires dill>0.3.2 for cloudpickle compatibility",
)
# Windows
_lowerCamelCase : Optional[Any] = pytest.mark.skipif(
sys.platform == "win32",
reason="test should not be run on Windows",
)
def a__ ( UpperCAmelCase : Tuple ) -> List[Any]:
try:
import faiss # noqa
except ImportError:
UpperCAmelCase : List[str] = unittest.skip('''test requires faiss''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : Optional[Any] ) -> Any:
try:
import regex # noqa
except ImportError:
UpperCAmelCase : List[str] = unittest.skip('''test requires regex''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : int ) -> List[Any]:
try:
import elasticsearch # noqa
except ImportError:
UpperCAmelCase : Optional[Any] = unittest.skip('''test requires elasticsearch''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : int ) -> Any:
try:
import sqlalchemy # noqa
except ImportError:
UpperCAmelCase : List[Any] = unittest.skip('''test requires sqlalchemy''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : Optional[int] ) -> Any:
if not config.TORCH_AVAILABLE:
UpperCAmelCase : int = unittest.skip('''test requires PyTorch''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : Optional[int] ) -> int:
if not config.TF_AVAILABLE:
UpperCAmelCase : Optional[Any] = unittest.skip('''test requires TensorFlow''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : Dict ) -> Any:
if not config.JAX_AVAILABLE:
UpperCAmelCase : Optional[int] = unittest.skip('''test requires JAX''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : Tuple ) -> List[Any]:
if not config.PIL_AVAILABLE:
UpperCAmelCase : Dict = unittest.skip('''test requires Pillow''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any:
try:
import transformers # noqa F401
except ImportError:
return unittest.skip('''test requires transformers''' )(UpperCAmelCase )
else:
return test_case
def a__ ( UpperCAmelCase : Optional[int] ) -> str:
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip('''test requires tiktoken''' )(UpperCAmelCase )
else:
return test_case
def a__ ( UpperCAmelCase : Optional[Any] ) -> Dict:
try:
import spacy # noqa F401
except ImportError:
return unittest.skip('''test requires spacy''' )(UpperCAmelCase )
else:
return test_case
def a__ ( UpperCAmelCase : Any ) -> Optional[Any]:
def _require_spacy_model(UpperCAmelCase : List[str] ):
try:
import spacy # noqa F401
spacy.load(UpperCAmelCase )
except ImportError:
return unittest.skip('''test requires spacy''' )(UpperCAmelCase )
except OSError:
return unittest.skip('''test requires spacy model \'{}\''''.format(UpperCAmelCase ) )(UpperCAmelCase )
else:
return test_case
return _require_spacy_model
def a__ ( UpperCAmelCase : List[Any] ) -> Optional[Any]:
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip('''test requires pyspark''' )(UpperCAmelCase )
else:
return test_case
def a__ ( UpperCAmelCase : Optional[int] ) -> Optional[int]:
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip('''test requires joblibspark''' )(UpperCAmelCase )
else:
return test_case
def a__ ( UpperCAmelCase : List[Any] ) -> Any:
if not _run_slow_tests or _run_slow_tests == 0:
UpperCAmelCase : List[Any] = unittest.skip('''test is slow''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : Dict ) -> List[Any]:
if not _run_local_tests or _run_local_tests == 0:
UpperCAmelCase : Union[str, Any] = unittest.skip('''test is local''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : int ) -> Tuple:
if not _run_packaged_tests or _run_packaged_tests == 0:
UpperCAmelCase : Any = unittest.skip('''test is packaged''' )(UpperCAmelCase )
return test_case
def a__ ( UpperCAmelCase : Optional[int] ) -> Tuple:
if not _run_remote_tests or _run_remote_tests == 0:
UpperCAmelCase : List[str] = unittest.skip('''test requires remote''' )(UpperCAmelCase )
return test_case
def a__ ( *UpperCAmelCase : str ) -> Tuple:
def decorate(cls : List[Any] ):
for name, fn in cls.__dict__.items():
if callable(UpperCAmelCase ) and name.startswith('''test''' ):
for decorator in decorators:
UpperCAmelCase : List[Any] = decorator(UpperCAmelCase )
setattr(cls , UpperCAmelCase , UpperCAmelCase )
return cls
return decorate
class __UpperCAmelCase ( lowerCamelCase__ ):
pass
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = 0
UpperCamelCase = 1
UpperCamelCase = 2
@contextmanager
def a__ ( UpperCAmelCase : List[Any]=OfflineSimulationMode.CONNECTION_FAILS , UpperCAmelCase : int=1E-16 ) -> Any:
UpperCAmelCase : Tuple = requests.Session().request
def timeout_request(UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ):
# Change the url to an invalid url so that the connection hangs
UpperCAmelCase : Tuple = '''https://10.255.255.1'''
if kwargs.get('''timeout''' ) is None:
raise RequestWouldHangIndefinitelyError(
f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' )
UpperCAmelCase : Union[str, Any] = timeout
try:
return online_request(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
UpperCAmelCase : int = url
UpperCAmelCase : Optional[Any] = e.args[0]
UpperCAmelCase : Tuple = (max_retry_error.args[0].replace('''10.255.255.1''' , f'''OfflineMock[{url}]''' ),)
UpperCAmelCase : int = (max_retry_error,)
raise
def raise_connection_error(UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ):
raise requests.ConnectionError('''Offline mode is enabled.''' , request=UpperCAmelCase )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch('''requests.Session.send''' , UpperCAmelCase ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch('''requests.Session.request''' , UpperCAmelCase ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch('''datasets.config.HF_DATASETS_OFFLINE''' , UpperCAmelCase ):
yield
else:
raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' )
@contextmanager
def a__ ( *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> int:
UpperCAmelCase : Optional[int] = str(Path().resolve() )
with tempfile.TemporaryDirectory(*UpperCAmelCase , **UpperCAmelCase ) as tmp_dir:
try:
os.chdir(UpperCAmelCase )
yield
finally:
os.chdir(UpperCAmelCase )
@contextmanager
def a__ ( ) -> List[str]:
import gc
gc.collect()
UpperCAmelCase : str = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def a__ ( ) -> Union[str, Any]:
import gc
gc.collect()
UpperCAmelCase : Union[str, Any] = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def a__ ( UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
return deepcopy(UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(UpperCAmelCase ).integers(0 , 100 , 10 ).tolist()
def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
import decorator
from requests.exceptions import HTTPError
def _wrapper(UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ):
try:
return func(*UpperCAmelCase , **UpperCAmelCase )
except HTTPError as err:
if str(UpperCAmelCase ).startswith('''500''' ) or str(UpperCAmelCase ).startswith('''502''' ):
pytest.xfail(str(UpperCAmelCase ) )
raise err
return decorator.decorator(_wrapper , UpperCAmelCase )
class __UpperCAmelCase :
def __init__( self : Optional[int], __A : Tuple, __A : List[str], __A : Union[str, Any] ):
UpperCAmelCase : Dict = returncode
UpperCAmelCase : int = stdout
UpperCAmelCase : Any = stderr
async def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ) -> str:
while True:
UpperCAmelCase : List[Any] = await stream.readline()
if line:
callback(UpperCAmelCase )
else:
break
async def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Tuple=False ) -> _RunOutput:
if echo:
print('''\nRunning: ''' , ''' '''.join(UpperCAmelCase ) )
UpperCAmelCase : Union[str, Any] = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCAmelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : Union[str, Any] = []
def tee(UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]="" ):
UpperCAmelCase : str = line.decode('''utf-8''' ).rstrip()
sink.append(UpperCAmelCase )
if not quiet:
print(UpperCAmelCase , UpperCAmelCase , file=UpperCAmelCase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda UpperCAmelCase : tee(UpperCAmelCase , UpperCAmelCase , sys.stdout , label='''stdout:''' ) ),
_read_stream(p.stderr , lambda UpperCAmelCase : tee(UpperCAmelCase , UpperCAmelCase , sys.stderr , label='''stderr:''' ) ),
] , timeout=UpperCAmelCase , )
return _RunOutput(await p.wait() , UpperCAmelCase , UpperCAmelCase )
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[Any]=180 , UpperCAmelCase : List[str]=False , UpperCAmelCase : str=True ) -> _RunOutput:
UpperCAmelCase : List[str] = asyncio.get_event_loop()
UpperCAmelCase : Union[str, Any] = loop.run_until_complete(
_stream_subprocess(UpperCAmelCase , env=UpperCAmelCase , stdin=UpperCAmelCase , timeout=UpperCAmelCase , quiet=UpperCAmelCase , echo=UpperCAmelCase ) )
UpperCAmelCase : Dict = ''' '''.join(UpperCAmelCase )
if result.returncode > 0:
UpperCAmelCase : Optional[Any] = '''\n'''.join(result.stderr )
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' )
return result
def a__ ( ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' )
UpperCAmelCase : Union[str, Any] = re.sub(r'''^gw''' , '''''' , UpperCAmelCase , 0 , re.M )
return int(UpperCAmelCase )
def a__ ( ) -> int:
UpperCAmelCase : List[str] = 29_500
UpperCAmelCase : List[str] = pytest_xdist_worker_id()
return port + uniq_delta
| 336 |
def a__ ( UpperCAmelCase : int ) -> int:
UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
UpperCAmelCase : Optional[Any] = 1
for n in range(m + 1 ):
for k in range(1 , UpperCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
_lowerCamelCase : List[Any] = int(input("Enter a number: ").strip())
print(partition(n))
except ValueError:
print("Please enter a number.")
else:
try:
_lowerCamelCase : str = int(sys.argv[1])
print(partition(n))
except ValueError:
print("Please pass a number.")
| 336 | 1 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __UpperCAmelCase :
UpperCamelCase = BlenderbotConfig
UpperCamelCase = {}
UpperCamelCase = """gelu"""
def __init__( self : Tuple, __A : Optional[Any], __A : Dict=1_3, __A : List[str]=7, __A : Optional[int]=True, __A : List[Any]=False, __A : Union[str, Any]=9_9, __A : int=3_2, __A : Union[str, Any]=2, __A : Optional[int]=4, __A : int=3_7, __A : List[Any]=0.1, __A : Dict=0.1, __A : Union[str, Any]=2_0, __A : Optional[Any]=2, __A : List[Any]=1, __A : Union[str, Any]=0, ):
UpperCAmelCase : str = parent
UpperCAmelCase : Optional[Any] = batch_size
UpperCAmelCase : Dict = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[Any] = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Any = hidden_size
UpperCAmelCase : List[Any] = num_hidden_layers
UpperCAmelCase : str = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Optional[Any] = hidden_dropout_prob
UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : Any = eos_token_id
UpperCAmelCase : Union[str, Any] = pad_token_id
UpperCAmelCase : List[str] = bos_token_id
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size )
UpperCAmelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 )
UpperCAmelCase : Any = tf.concat([input_ids, eos_tensor], axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : int = self.config_cls(
vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, )
UpperCAmelCase : List[Any] = prepare_blenderbot_inputs_dict(__A, __A, __A )
return config, inputs_dict
def __magic_name__ ( self : Tuple, __A : int, __A : List[str] ):
UpperCAmelCase : Union[str, Any] = TFBlenderbotModel(config=__A ).get_decoder()
UpperCAmelCase : Union[str, Any] = inputs_dict['''input_ids''']
UpperCAmelCase : List[str] = input_ids[:1, :]
UpperCAmelCase : Any = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict['''head_mask''']
UpperCAmelCase : Tuple = 1
# first forward pass
UpperCAmelCase : Optional[int] = model(__A, attention_mask=__A, head_mask=__A, use_cache=__A )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3), config.vocab_size )
UpperCAmelCase : List[Any] = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta )
# append to next input_ids and
UpperCAmelCase : List[str] = tf.concat([input_ids, next_tokens], axis=-1 )
UpperCAmelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask], axis=-1 )
UpperCAmelCase : List[Any] = model(__A, attention_mask=__A )[0]
UpperCAmelCase : str = model(__A, attention_mask=__A, past_key_values=__A )[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] )
# select random slice
UpperCAmelCase : int = int(ids_tensor((1,), output_from_past.shape[-1] ) )
UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__A, __A, rtol=1E-3 )
def a__ ( UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[int]=None , ) -> Any:
if attention_mask is None:
UpperCAmelCase : Optional[int] = tf.cast(tf.math.not_equal(UpperCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : Tuple = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
UpperCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
UpperCamelCase = (
{
"""conversational""": TFBlenderbotForConditionalGeneration,
"""feature-extraction""": TFBlenderbotModel,
"""summarization""": TFBlenderbotForConditionalGeneration,
"""text2text-generation""": TFBlenderbotForConditionalGeneration,
"""translation""": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCamelCase = True
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Any ):
UpperCAmelCase : Tuple = TFBlenderbotModelTester(self )
UpperCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__A )
def __magic_name__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__A )
@require_tokenizers
@require_tf
class __UpperCAmelCase ( unittest.TestCase ):
UpperCamelCase = ["""My friends are cool but they eat too many carbs."""]
UpperCamelCase = """facebook/blenderbot-400M-distill"""
@cached_property
def __magic_name__ ( self : str ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def __magic_name__ ( self : Dict ):
UpperCAmelCase : int = self.tokenizer(self.src_text, return_tensors='''tf''' )
UpperCAmelCase : str = self.model.generate(
model_inputs.input_ids, )
UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=__A )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 336 |
from __future__ import annotations
def a__ ( UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase )
# We need to create solution object to save path.
UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )]
UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase )
if solved:
print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) )
else:
print('''No solution exists!''' )
return solved
def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Dict = len(UpperCAmelCase )
# Final check point.
if i == j == (size - 1):
UpperCAmelCase : Dict = 1
return True
UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds
UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
UpperCAmelCase : str = 1
# check for directions
if (
run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase )
or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase )
):
return True
UpperCAmelCase : Any = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 1 |
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> bool:
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(UpperCAmelCase ) )
def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> bool:
# Base Case
if index == len(UpperCAmelCase ):
return True
# Recursive Step
for i in range(UpperCAmelCase ):
if valid_coloring(graph[index] , UpperCAmelCase , UpperCAmelCase ):
# Color current vertex
UpperCAmelCase : List[str] = i
# Validate coloring
if util_color(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , index + 1 ):
return True
# Backtrack
UpperCAmelCase : Any = -1
return False
def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int ) -> list[int]:
UpperCAmelCase : Optional[Any] = [-1] * len(UpperCAmelCase )
if util_color(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , 0 ):
return colored_vertices
return []
| 336 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __UpperCAmelCase :
def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Any = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Optional[Any] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : str = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = scope
UpperCAmelCase : List[str] = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
UpperCAmelCase : str = (self.image_size // 3_2) ** 2
UpperCAmelCase : List[str] = num_patches + 1
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : str = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Any ):
UpperCAmelCase : Dict = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [4, 8, 1_6, 3_2],
'''num_groups''': 2,
}
return ViTHybridConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, )
def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ):
UpperCAmelCase : int = ViTHybridModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Tuple = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ):
UpperCAmelCase : str = self.type_sequence_label_size
UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self : int ):
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs
UpperCAmelCase : int = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = ViTHybridModelTester(self )
UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : int ):
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
UpperCAmelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, nn.Linear ) )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[Any] = model_class(__A )
UpperCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : str = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = _config_zero_init(__A )
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(config=__A )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', )
@slow
def __magic_name__ ( self : List[str] ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> Tuple:
UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : str ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__A )
UpperCAmelCase : Tuple = self.default_image_processor
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**__A )
# verify the logits
UpperCAmelCase : str = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
@require_accelerate
def __magic_name__ ( self : Dict ):
UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' )
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' )
UpperCAmelCase : Tuple = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' )
UpperCAmelCase : Dict = model(**__A )
UpperCAmelCase : Any = outputs.logits
# model predicts one of the 1000 ImageNet classes
UpperCAmelCase : Dict = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
| 336 | 1 |
_lowerCamelCase : List[str] = "0.21.0"
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 336 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def a__ ( ) -> tuple[list[int], int]:
UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )]
UpperCAmelCase : Any = randint(-5_000 , 5_000 )
return (arr, r)
_lowerCamelCase : Any = make_dataset()
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]:
for triplet in permutations(UpperCAmelCase , 3 ):
if sum(UpperCAmelCase ) == target:
return tuple(sorted(UpperCAmelCase ) )
return (0, 0, 0)
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]:
arr.sort()
UpperCAmelCase : Tuple = len(UpperCAmelCase )
for i in range(n - 1 ):
UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def a__ ( ) -> tuple[float, float]:
UpperCAmelCase : Union[str, Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
UpperCAmelCase : Tuple = '''
triplet_sum1(*dataset)
'''
UpperCAmelCase : List[str] = '''
triplet_sum2(*dataset)
'''
UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
return (min(UpperCAmelCase ), min(UpperCAmelCase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCamelCase : int = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 336 | 1 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def a__ ( ) -> tuple[list[int], int]:
UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )]
UpperCAmelCase : Any = randint(-5_000 , 5_000 )
return (arr, r)
_lowerCamelCase : Any = make_dataset()
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]:
for triplet in permutations(UpperCAmelCase , 3 ):
if sum(UpperCAmelCase ) == target:
return tuple(sorted(UpperCAmelCase ) )
return (0, 0, 0)
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]:
arr.sort()
UpperCAmelCase : Tuple = len(UpperCAmelCase )
for i in range(n - 1 ):
UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def a__ ( ) -> tuple[float, float]:
UpperCAmelCase : Union[str, Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
UpperCAmelCase : Tuple = '''
triplet_sum1(*dataset)
'''
UpperCAmelCase : List[str] = '''
triplet_sum2(*dataset)
'''
UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
return (min(UpperCAmelCase ), min(UpperCAmelCase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCamelCase : int = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 336 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class __UpperCAmelCase :
def __magic_name__ ( self : int, __A : Dict ):
raise NotImplementedError()
def __magic_name__ ( self : int ):
raise NotImplementedError()
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ):
UpperCAmelCase : List[str] = tokenizer
UpperCAmelCase : str = skip_prompt
UpperCAmelCase : List[str] = decode_kwargs
# variables used in the streaming process
UpperCAmelCase : Dict = []
UpperCAmelCase : List[str] = 0
UpperCAmelCase : Union[str, Any] = True
def __magic_name__ ( self : Dict, __A : Optional[int] ):
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('''TextStreamer only supports batch size 1''' )
elif len(value.shape ) > 1:
UpperCAmelCase : Union[str, Any] = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
UpperCAmelCase : Optional[int] = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('''\n''' ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
# If the last token is a CJK character, we print the characters.
elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
self.print_len += len(__A )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1]
self.print_len += len(__A )
self.on_finalized_text(__A )
def __magic_name__ ( self : str ):
# Flush the cache, if it exists
if len(self.token_cache ) > 0:
UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
UpperCAmelCase : Dict = text[self.print_len :]
UpperCAmelCase : List[Any] = []
UpperCAmelCase : List[Any] = 0
else:
UpperCAmelCase : Dict = ''''''
UpperCAmelCase : str = True
self.on_finalized_text(__A, stream_end=__A )
def __magic_name__ ( self : List[str], __A : str, __A : bool = False ):
print(__A, flush=__A, end='''''' if not stream_end else None )
def __magic_name__ ( self : List[Any], __A : Optional[int] ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ):
super().__init__(__A, __A, **__A )
UpperCAmelCase : Dict = Queue()
UpperCAmelCase : Any = None
UpperCAmelCase : Any = timeout
def __magic_name__ ( self : Dict, __A : str, __A : bool = False ):
self.text_queue.put(__A, timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal, timeout=self.timeout )
def __iter__( self : int ):
return self
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 336 | 1 |
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowerCamelCase : int = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Union[tf.Tensor, np.ndarray] ) -> List[int]:
if isinstance(UpperCAmelCase , np.ndarray ):
return list(tensor.shape )
UpperCAmelCase : int = tf.shape(UpperCAmelCase )
if tensor.shape == tf.TensorShape(UpperCAmelCase ):
return dynamic
UpperCAmelCase : Optional[Any] = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )]
def a__ ( UpperCAmelCase : tf.Tensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[str] = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase )
def a__ ( UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=1E-5 , UpperCAmelCase : int=-1 ) -> Optional[int]:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
UpperCAmelCase , UpperCAmelCase : Any = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
UpperCAmelCase : Any = [1] * inputs.shape.rank
UpperCAmelCase : List[Any] = shape_list(UpperCAmelCase )[axis]
UpperCAmelCase : int = tf.reshape(UpperCAmelCase , UpperCAmelCase )
UpperCAmelCase : Optional[int] = tf.reshape(UpperCAmelCase , UpperCAmelCase )
# Compute layer normalization using the batch_normalization
# function.
UpperCAmelCase : List[Any] = tf.nn.batch_normalization(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , )
return outputs
def a__ ( UpperCAmelCase : int , UpperCAmelCase : List[str]=0 , UpperCAmelCase : List[Any]=-1 ) -> Union[str, Any]:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
UpperCAmelCase : List[str] = tf.shape(UpperCAmelCase )
UpperCAmelCase : Tuple = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
UpperCAmelCase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(UpperCAmelCase , UpperCAmelCase )
def a__ ( UpperCAmelCase : tf.Tensor ) -> tf.Tensor:
if not isinstance(UpperCAmelCase , tf.Tensor ):
UpperCAmelCase : Any = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
UpperCAmelCase : Any = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
UpperCAmelCase : Dict = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
UpperCAmelCase : Dict = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def a__ ( UpperCAmelCase : tf.Tensor , UpperCAmelCase : int , UpperCAmelCase : str = "input_ids" ) -> None:
tf.debugging.assert_less(
UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=(
f'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding '''
f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple ) -> List[Any]:
UpperCAmelCase : Optional[Any] = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
UpperCAmelCase : Optional[int] = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
f'''bytes: {bad_attributes}''' )
UpperCAmelCase : str = np.asarray(UpperCAmelCase )
UpperCAmelCase : Union[str, Any] = 1
UpperCAmelCase : Any = np.array_split(UpperCAmelCase , UpperCAmelCase )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
UpperCAmelCase : Optional[Any] = np.array_split(UpperCAmelCase , UpperCAmelCase )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(UpperCAmelCase ):
UpperCAmelCase : Tuple = chunk_data
else:
UpperCAmelCase : Dict = data
def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Dict ) -> List[Any]:
if name in group.attrs:
UpperCAmelCase : Tuple = [n.decode('''utf8''' ) if hasattr(UpperCAmelCase , '''decode''' ) else n for n in group.attrs[name]]
else:
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : List[str] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(UpperCAmelCase , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def a__ ( UpperCAmelCase : Dict ) -> List[Any]:
def _expand_single_ad_tensor(UpperCAmelCase : Any ):
if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(UpperCAmelCase , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
| 336 |
import numpy
# List of input, output pairs
_lowerCamelCase : Dict = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
_lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
_lowerCamelCase : Dict = [2, 4, 1, 5]
_lowerCamelCase : Dict = len(train_data)
_lowerCamelCase : int = 0.0_0_9
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict:
return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output(
UpperCAmelCase , UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Any:
UpperCAmelCase : str = 0
for i in range(len(UpperCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict:
UpperCAmelCase : Optional[int] = 0
for i in range(UpperCAmelCase ):
if index == -1:
summation_value += _error(UpperCAmelCase )
else:
summation_value += _error(UpperCAmelCase ) * train_data[i][0][index]
return summation_value
def a__ ( UpperCAmelCase : Dict ) -> Dict:
UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m
return cost_derivative_value
def a__ ( ) -> List[Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase : List[str] = 0.000002
UpperCAmelCase : Any = 0
UpperCAmelCase : Dict = 0
while True:
j += 1
UpperCAmelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase ) ):
UpperCAmelCase : List[str] = get_cost_derivative(i - 1 )
UpperCAmelCase : Tuple = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ):
break
UpperCAmelCase : int = temp_parameter_vector
print(('''Number of iterations:''', j) )
def a__ ( ) -> List[Any]:
for i in range(len(UpperCAmelCase ) ):
print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 336 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : Dict = {
"configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[int] = [
"PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST",
"PegasusXForConditionalGeneration",
"PegasusXModel",
"PegasusXPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 336 |
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
UpperCAmelCase : Optional[Any] = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
UpperCAmelCase : Any = left
UpperCAmelCase : List[str] = point
elif point > right:
UpperCAmelCase : Any = right
UpperCAmelCase : List[str] = point
else:
if item < current_item:
UpperCAmelCase : Optional[int] = point - 1
else:
UpperCAmelCase : str = point + 1
return None
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
elif point > right:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 )
else:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> int:
if collection != sorted(UpperCAmelCase ):
raise ValueError('''Collection must be ascending sorted''' )
return True
if __name__ == "__main__":
import sys
_lowerCamelCase : Optional[int] = 0
if debug == 1:
_lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
_lowerCamelCase : List[Any] = 6_7
_lowerCamelCase : Optional[Any] = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 336 | 1 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : str, __A : int, __A : List[Any], __A : Tuple ):
UpperCAmelCase : Any = dataset
UpperCAmelCase : Any = process
UpperCAmelCase : Union[str, Any] = params
def __len__( self : int ):
return len(self.dataset )
def __getitem__( self : List[Any], __A : Tuple ):
UpperCAmelCase : Union[str, Any] = self.dataset[i]
UpperCAmelCase : Optional[Any] = self.process(__A, **self.params )
return processed
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Any, __A : int, __A : List[str], __A : Optional[int], __A : Union[str, Any]=None ):
UpperCAmelCase : Any = loader
UpperCAmelCase : str = infer
UpperCAmelCase : Dict = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
UpperCAmelCase : List[Any] = None
UpperCAmelCase : Dict = loader_batch_size
# Internal bookkeeping
UpperCAmelCase : List[str] = None
UpperCAmelCase : Optional[int] = None
def __len__( self : Optional[int] ):
return len(self.loader )
def __iter__( self : int ):
UpperCAmelCase : Dict = iter(self.loader )
return self
def __magic_name__ ( self : Dict ):
if isinstance(self._loader_batch_data, torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
UpperCAmelCase : Optional[int] = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
UpperCAmelCase : Union[str, Any] = {}
for k, element in self._loader_batch_data.items():
if isinstance(__A, __A ):
# Convert ModelOutput to tuple first
UpperCAmelCase : str = element.to_tuple()
if isinstance(element[0], torch.Tensor ):
UpperCAmelCase : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0], np.ndarray ):
UpperCAmelCase : str = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__A, __A ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0], torch.Tensor ):
UpperCAmelCase : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0], np.ndarray ):
UpperCAmelCase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
UpperCAmelCase : Tuple = None
elif isinstance(element[self._loader_batch_index], torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCAmelCase : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index], np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCAmelCase : str = np.expand_dims(element[self._loader_batch_index], 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
UpperCAmelCase : int = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
UpperCAmelCase : Tuple = self._loader_batch_data.__class__(__A )
self._loader_batch_index += 1
return result
def __magic_name__ ( self : List[Any] ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
UpperCAmelCase : List[Any] = next(self.iterator )
UpperCAmelCase : List[Any] = self.infer(__A, **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(__A, torch.Tensor ):
UpperCAmelCase : Dict = processed
else:
UpperCAmelCase : Optional[Any] = list(processed.keys() )[0]
UpperCAmelCase : Union[str, Any] = processed[key]
if isinstance(__A, __A ):
UpperCAmelCase : int = len(__A )
else:
UpperCAmelCase : Tuple = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCAmelCase : Union[str, Any] = observed_batch_size
# Setting internal index to unwrap the batch
UpperCAmelCase : Dict = processed
UpperCAmelCase : str = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Optional[Any], __A : Optional[int], __A : str, __A : str, __A : Tuple=None ):
super().__init__(__A, __A, __A )
def __iter__( self : List[str] ):
UpperCAmelCase : List[str] = iter(self.loader )
UpperCAmelCase : int = None
return self
def __magic_name__ ( self : Tuple ):
if self.subiterator is None:
UpperCAmelCase : Dict = self.infer(next(self.iterator ), **self.params )
try:
# Try to return next item
UpperCAmelCase : Tuple = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
UpperCAmelCase : Dict = self.infer(next(self.iterator ), **self.params )
UpperCAmelCase : Tuple = next(self.subiterator )
return processed
class __UpperCAmelCase ( lowerCamelCase__ ):
def __iter__( self : Union[str, Any] ):
UpperCAmelCase : Union[str, Any] = iter(self.loader )
return self
def __magic_name__ ( self : int ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
UpperCAmelCase : Tuple = False
UpperCAmelCase : Union[str, Any] = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
UpperCAmelCase : Optional[Any] = self.loader_batch_item()
UpperCAmelCase : Dict = item.pop('''is_last''' )
accumulator.append(__A )
if is_last:
return accumulator
while not is_last:
UpperCAmelCase : List[Any] = self.infer(next(self.iterator ), **self.params )
if self.loader_batch_size is not None:
if isinstance(__A, torch.Tensor ):
UpperCAmelCase : int = processed
else:
UpperCAmelCase : List[str] = list(processed.keys() )[0]
UpperCAmelCase : Optional[int] = processed[key]
if isinstance(__A, __A ):
UpperCAmelCase : Optional[int] = len(__A )
else:
UpperCAmelCase : Optional[int] = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCAmelCase : Optional[Any] = observed_batch_size
UpperCAmelCase : Optional[Any] = processed
UpperCAmelCase : Any = 0
while self._loader_batch_index < self.loader_batch_size:
UpperCAmelCase : List[Any] = self.loader_batch_item()
UpperCAmelCase : Dict = item.pop('''is_last''' )
accumulator.append(__A )
if is_last:
return accumulator
else:
UpperCAmelCase : Dict = processed
UpperCAmelCase : Optional[Any] = item.pop('''is_last''' )
accumulator.append(__A )
return accumulator
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : List[Any], __A : Dataset, __A : str ):
UpperCAmelCase : Optional[Any] = dataset
UpperCAmelCase : List[Any] = key
def __len__( self : str ):
return len(self.dataset )
def __getitem__( self : Any, __A : List[str] ):
return self.dataset[i][self.key]
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Optional[Any], __A : Dataset, __A : str, __A : str ):
UpperCAmelCase : int = dataset
UpperCAmelCase : Optional[Any] = keya
UpperCAmelCase : Optional[Any] = keya
def __len__( self : List[Any] ):
return len(self.dataset )
def __getitem__( self : Optional[int], __A : int ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 336 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Any = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else ''''''
UpperCAmelCase : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''),
(f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''),
(f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''),
(f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any:
for i in range(config.num_hidden_layers ):
UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' )
UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' )
UpperCAmelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase : str = q_bias
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : int = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' )
UpperCAmelCase : str = gamma_a
UpperCAmelCase : Dict = gamma_a
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : str = val
def a__ ( ) -> Optional[int]:
UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]:
UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True
UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
UpperCAmelCase : List[Any] = 1_024
UpperCAmelCase : Optional[Any] = 4_096
UpperCAmelCase : Any = 24
UpperCAmelCase : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 16
UpperCAmelCase : List[Any] = '''huggingface/label-files'''
UpperCAmelCase : Any = '''rvlcdip-id2label.json'''
UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = idalabel
UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model''']
UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase )
for src, dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase )
# load HuggingFace model
UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase )
model.eval()
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image
UpperCAmelCase : Dict = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase )
UpperCAmelCase : List[str] = prepare_img()
UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' )
UpperCAmelCase : str = encoding['''pixel_values''']
UpperCAmelCase : Any = model(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify logits
UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected"
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if push_to_hub:
if has_lm_head:
UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , )
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 336 | 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = LEDTokenizer
UpperCamelCase = LEDTokenizerFast
UpperCamelCase = True
def __magic_name__ ( self : int ):
super().setUp()
UpperCAmelCase : List[str] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
UpperCAmelCase : Tuple = dict(zip(__A, range(len(__A ) ) ) )
UpperCAmelCase : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCAmelCase : Any = {'''unk_token''': '''<unk>'''}
UpperCAmelCase : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__A ) + '''\n''' )
with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__A ) )
def __magic_name__ ( self : Any, **__A : List[Any] ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname, **__A )
def __magic_name__ ( self : Tuple, **__A : Dict ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **__A )
def __magic_name__ ( self : int, __A : Tuple ):
return "lower newer", "lower newer"
@cached_property
def __magic_name__ ( self : List[Any] ):
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def __magic_name__ ( self : Any ):
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
UpperCAmelCase : int = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase : List[str] = tokenizer(__A, max_length=len(__A ), padding=__A, return_tensors='''pt''' )
self.assertIsInstance(__A, __A )
self.assertEqual((2, 9), batch.input_ids.shape )
self.assertEqual((2, 9), batch.attention_mask.shape )
UpperCAmelCase : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__A, __A )
@require_torch
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase : List[str] = tokenizer(__A, padding=__A, return_tensors='''pt''' )
self.assertIn('''input_ids''', __A )
self.assertIn('''attention_mask''', __A )
self.assertNotIn('''labels''', __A )
self.assertNotIn('''decoder_attention_mask''', __A )
@require_torch
def __magic_name__ ( self : int ):
UpperCAmelCase : Optional[int] = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase : List[Any] = tokenizer(text_target=__A, max_length=3_2, padding='''max_length''', return_tensors='''pt''' )
self.assertEqual(3_2, targets['''input_ids'''].shape[1] )
@require_torch
def __magic_name__ ( self : Optional[int] ):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase : List[Any] = tokenizer(
['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''], padding=__A, truncation=__A, return_tensors='''pt''' )
self.assertIsInstance(__A, __A )
self.assertEqual(batch.input_ids.shape, (2, 5_1_2_2) )
@require_torch
def __magic_name__ ( self : int ):
UpperCAmelCase : Any = ['''A long paragraph for summarization.''']
UpperCAmelCase : str = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase : Dict = tokenizer(__A, return_tensors='''pt''' )
UpperCAmelCase : str = tokenizer(text_target=__A, return_tensors='''pt''' )
UpperCAmelCase : Optional[Any] = inputs['''input_ids''']
UpperCAmelCase : Optional[Any] = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def __magic_name__ ( self : int ):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase : str = ['''Summary of the text.''', '''Another summary.''']
UpperCAmelCase : Optional[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase : Union[str, Any] = tokenizer(__A, padding=__A )
UpperCAmelCase : Dict = [[0] * len(__A ) for x in encoded_output['''input_ids''']]
UpperCAmelCase : List[Any] = tokenizer.pad(__A )
self.assertSequenceEqual(outputs['''global_attention_mask'''], __A )
def __magic_name__ ( self : str ):
pass
def __magic_name__ ( self : List[Any] ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(__A, **__A )
UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(__A, **__A )
UpperCAmelCase : List[Any] = '''A, <mask> AllenNLP sentence.'''
UpperCAmelCase : List[str] = tokenizer_r.encode_plus(__A, add_special_tokens=__A, return_token_type_ids=__A )
UpperCAmelCase : Union[str, Any] = tokenizer_p.encode_plus(__A, add_special_tokens=__A, return_token_type_ids=__A )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ), sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ), sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ), )
UpperCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''], [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''], [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
__A, ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
__A, ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 336 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ):
UpperCAmelCase : Any = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Any = seq_length
UpperCAmelCase : Tuple = is_training
UpperCAmelCase : str = use_attention_mask
UpperCAmelCase : List[str] = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : Any = num_choices
def __magic_name__ ( self : str ):
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : List[Any] = None
if self.use_attention_mask:
UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Any = None
if self.use_token_type_ids:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = RobertaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def __magic_name__ ( self : int ):
UpperCAmelCase : Any = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs
UpperCAmelCase : Any = True
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = True
UpperCamelCase = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Dict = FlaxRobertaModelTester(self )
@slow
def __magic_name__ ( self : Any ):
for model_class_name in self.all_model_classes:
UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A )
UpperCAmelCase : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__A )
| 336 | 1 |
import random
def a__ ( UpperCAmelCase : int , UpperCAmelCase : float , UpperCAmelCase : bool = False ) -> dict:
UpperCAmelCase : dict = {i: [] for i in range(UpperCAmelCase )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(UpperCAmelCase )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(UpperCAmelCase ):
for j in range(i + 1 , UpperCAmelCase ):
if random.random() < probability:
graph[i].append(UpperCAmelCase )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(UpperCAmelCase )
return graph
def a__ ( UpperCAmelCase : int ) -> dict:
return {
i: [j for j in range(UpperCAmelCase ) if i != j] for i in range(UpperCAmelCase )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : Dict = {"vocab_file": "vocab.txt"}
_lowerCamelCase : List[str] = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase : List[Any] = {
"facebook/esm2_t6_8M_UR50D": 1_0_2_4,
"facebook/esm2_t12_35M_UR50D": 1_0_2_4,
}
def a__ ( UpperCAmelCase : List[str] ) -> Any:
with open(UpperCAmelCase , '''r''' ) as f:
UpperCAmelCase : Dict = f.read().splitlines()
return [l.strip() for l in lines]
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ):
super().__init__(**__A )
UpperCAmelCase : Tuple = load_vocab_file(__A )
UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) )
UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase : Union[str, Any] = unk_token
UpperCAmelCase : Optional[Any] = cls_token
UpperCAmelCase : Optional[int] = pad_token
UpperCAmelCase : Optional[int] = mask_token
UpperCAmelCase : List[str] = eos_token
UpperCAmelCase : Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __magic_name__ ( self : Tuple, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : List[Any], __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ):
return text.split()
def __magic_name__ ( self : Optional[int], __A : Dict=False ):
return len(self._id_to_token )
def __magic_name__ ( self : int ):
return {token: i for i, token in enumerate(self.all_tokens )}
def __magic_name__ ( self : Tuple, __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ):
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
mask += [0] * len(__A ) + [1]
return mask
def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ):
UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(__A, '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __magic_name__ ( self : Dict ):
return self.get_vocab_size(with_added_tokens=__A )
def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ):
return super()._add_tokens(__A, special_tokens=__A )
| 336 | 1 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class __UpperCAmelCase ( lowerCamelCase__ ):
def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
UpperCAmelCase : str = '''__cached_''' + self.fget.__name__
UpperCAmelCase : int = getattr(__A, __A, __A )
if cached is None:
UpperCAmelCase : Any = self.fget(__A )
setattr(__A, __A, __A )
return cached
def a__ ( UpperCAmelCase : Optional[Any] ) -> Any:
UpperCAmelCase : Any = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'''invalid truth value {val!r}''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_torch_fx_proxy(UpperCAmelCase ):
return True
if is_torch_available():
import torch
if isinstance(UpperCAmelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(UpperCAmelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]:
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : str ) -> Tuple:
return _is_numpy(UpperCAmelCase )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
import torch
return isinstance(UpperCAmelCase , torch.Tensor )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
return False if not is_torch_available() else _is_torch(UpperCAmelCase )
def a__ ( UpperCAmelCase : Tuple ) -> List[str]:
import torch
return isinstance(UpperCAmelCase , torch.device )
def a__ ( UpperCAmelCase : Any ) -> Any:
return False if not is_torch_available() else _is_torch_device(UpperCAmelCase )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
import torch
if isinstance(UpperCAmelCase , UpperCAmelCase ):
if hasattr(UpperCAmelCase , UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase )
else:
return False
return isinstance(UpperCAmelCase , torch.dtype )
def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase )
def a__ ( UpperCAmelCase : Any ) -> str:
import tensorflow as tf
return isinstance(UpperCAmelCase , tf.Tensor )
def a__ ( UpperCAmelCase : int ) -> Union[str, Any]:
return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[str] ) -> Tuple:
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(UpperCAmelCase )
return type(UpperCAmelCase ) == tf.Tensor
def a__ ( UpperCAmelCase : int ) -> List[Any]:
return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[Any] ) -> Dict:
import jax.numpy as jnp # noqa: F811
return isinstance(UpperCAmelCase , jnp.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]:
return False if not is_flax_available() else _is_jax(UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Tuple:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return [to_py_obj(UpperCAmelCase ) for o in obj]
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase ).tolist()
elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def a__ ( UpperCAmelCase : Any ) -> List[str]:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return np.array(UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase )
else:
return obj
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Optional[Any] = fields(self )
# Safety and consistency checks
if not len(__A ):
raise ValueError(F'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' )
UpperCAmelCase : int = getattr(self, class_fields[0].name )
UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__A ):
if isinstance(__A, __A ):
UpperCAmelCase : Tuple = first_field.items()
UpperCAmelCase : Any = True
else:
try:
UpperCAmelCase : Optional[Any] = iter(__A )
UpperCAmelCase : Optional[Any] = True
except TypeError:
UpperCAmelCase : Optional[int] = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__A ):
if (
not isinstance(__A, (list, tuple) )
or not len(__A ) == 2
or not isinstance(element[0], __A )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
UpperCAmelCase : Any = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self, element[0], element[1] )
if element[1] is not None:
UpperCAmelCase : Union[str, Any] = element[1]
elif first_field is not None:
UpperCAmelCase : Union[str, Any] = first_field
else:
for field in class_fields:
UpperCAmelCase : Optional[Any] = getattr(self, field.name )
if v is not None:
UpperCAmelCase : Optional[int] = v
def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ):
raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ):
raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Any, *__A : Dict, **__A : str ):
raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ):
raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self : List[str], __A : List[str] ):
if isinstance(__A, __A ):
UpperCAmelCase : int = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__A, __A )
super().__setattr__(__A, __A )
def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ):
# Will raise a KeyException if needed
super().__setitem__(__A, __A )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__A, __A )
def __magic_name__ ( self : List[str] ):
return tuple(self[k] for k in self.keys() )
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@classmethod
def __magic_name__ ( cls : List[Any], __A : Tuple ):
raise ValueError(
F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """longest"""
UpperCamelCase = """max_length"""
UpperCamelCase = """do_not_pad"""
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """pt"""
UpperCamelCase = """tf"""
UpperCamelCase = """np"""
UpperCamelCase = """jax"""
class __UpperCAmelCase :
def __init__( self : Any, __A : List[ContextManager] ):
UpperCAmelCase : Tuple = context_managers
UpperCAmelCase : Tuple = ExitStack()
def __enter__( self : Any ):
for context_manager in self.context_managers:
self.stack.enter_context(__A )
def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ):
self.stack.__exit__(*__A, **__A )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> str:
UpperCAmelCase : int = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def a__ ( UpperCAmelCase : Dict ) -> Any:
UpperCAmelCase : List[Any] = model_class.__name__
UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]:
def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ):
for k, v in d.items():
UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k
if v and isinstance(UpperCAmelCase , UpperCAmelCase ):
yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items()
else:
yield key, v
return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) )
@contextmanager
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]:
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]:
if is_numpy_array(UpperCAmelCase ):
return np.transpose(UpperCAmelCase , axes=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.T if axes is None else array.permute(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.reshape(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.reshape(UpperCAmelCase , UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any:
if is_numpy_array(UpperCAmelCase ):
return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str:
if is_numpy_array(UpperCAmelCase ):
return np.expand_dims(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.unsqueeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.size(UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.numel()
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.size(UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return array.size
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict:
for key, value in auto_map.items():
if isinstance(UpperCAmelCase , (tuple, list) ):
UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
UpperCAmelCase : List[Any] = f'''{repo_id}--{value}'''
return auto_map
def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]:
for base_class in inspect.getmro(UpperCAmelCase ):
UpperCAmelCase : Any = base_class.__module__
UpperCAmelCase : Dict = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'''Could not infer framework from class {model_class}.''' )
| 336 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : str = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) )
self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) )
class __UpperCAmelCase :
def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ):
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : List[str] = num_channels
UpperCAmelCase : str = image_size
UpperCAmelCase : Optional[int] = depth_multiplier
UpperCAmelCase : Union[str, Any] = depth_divisible_by
UpperCAmelCase : Optional[Any] = min_depth
UpperCAmelCase : List[str] = expand_ratio
UpperCAmelCase : Dict = tf_padding
UpperCAmelCase : str = output_stride
UpperCAmelCase : Union[str, Any] = first_layer_is_expansion
UpperCAmelCase : List[Any] = finegrained_output
UpperCAmelCase : Optional[Any] = hidden_act
UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
UpperCAmelCase : Optional[Any] = classifier_dropout_prob
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : List[str] = is_training
UpperCAmelCase : Tuple = num_labels
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Any = scope
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Dict = None
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels )
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def __magic_name__ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ):
UpperCAmelCase : Any = MobileNetVaModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[Any] = model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
self.parent.assertEqual(
result.pooler_output.shape, (self.batch_size, self.last_hidden_size), )
def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ):
UpperCAmelCase : Optional[int] = self.num_labels
UpperCAmelCase : Any = MobileNetVaForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[int] = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ):
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCAmelCase : Optional[Any] = model(__A, labels=__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs
UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
"""feature-extraction""": MobileNetVaModel,
"""image-classification""": MobileNetVaForImageClassification,
"""image-segmentation""": MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = MobileNetVaModelTester(self )
UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A )
def __magic_name__ ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' )
def __magic_name__ ( self : Tuple ):
pass
@unittest.skip(reason='''MobileNetV2 does not output attentions''' )
def __magic_name__ ( self : Any ):
pass
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(__A )
UpperCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase : Any = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : int ):
def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ):
UpperCAmelCase : Union[str, Any] = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Optional[Any] = outputs.hidden_states
UpperCAmelCase : List[Any] = 1_6
self.assertEqual(len(__A ), __A )
UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : int ):
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__A )
@slow
def __magic_name__ ( self : Dict ):
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> int:
UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[Any] ):
return (
MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None
)
@slow
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A )
UpperCAmelCase : Optional[int] = self.default_image_processor
UpperCAmelCase : Optional[Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : str = model(**__A )
# verify the logits
UpperCAmelCase : int = torch.Size((1, 1_0_0_1) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = model.to(__A )
UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = prepare_img()
UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(**__A )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify the logits
UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) )
self.assertEqual(logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor(
[
[[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]],
[[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]],
[[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]],
], device=__A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
| 336 | 1 |
from __future__ import annotations
_lowerCamelCase : Dict = [True] * 1_0_0_0_0_0_1
_lowerCamelCase : List[Any] = 2
while i * i <= 1_0_0_0_0_0_0:
if seive[i]:
for j in range(i * i, 1_0_0_0_0_0_1, i):
_lowerCamelCase : List[Any] = False
i += 1
def a__ ( UpperCAmelCase : int ) -> bool:
return seive[n]
def a__ ( UpperCAmelCase : int ) -> bool:
return any(digit in '''02468''' for digit in str(UpperCAmelCase ) )
def a__ ( UpperCAmelCase : int = 1_000_000 ) -> list[int]:
UpperCAmelCase : List[Any] = [2] # result already includes the number 2.
for num in range(3 , limit + 1 , 2 ):
if is_prime(UpperCAmelCase ) and not contains_an_even_digit(UpperCAmelCase ):
UpperCAmelCase : Any = str(UpperCAmelCase )
UpperCAmelCase : str = [int(str_num[j:] + str_num[:j] ) for j in range(len(UpperCAmelCase ) )]
if all(is_prime(UpperCAmelCase ) for i in list_nums ):
result.append(UpperCAmelCase )
return result
def a__ ( ) -> int:
return len(find_circular_primes() )
if __name__ == "__main__":
print(f"""{len(find_circular_primes()) = }""")
| 336 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_lowerCamelCase : str = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """codegen"""
UpperCamelCase = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ):
UpperCAmelCase : int = vocab_size
UpperCAmelCase : Tuple = n_ctx
UpperCAmelCase : Tuple = n_positions
UpperCAmelCase : Optional[int] = n_embd
UpperCAmelCase : Union[str, Any] = n_layer
UpperCAmelCase : List[str] = n_head
UpperCAmelCase : Tuple = n_inner
UpperCAmelCase : int = rotary_dim
UpperCAmelCase : List[Any] = activation_function
UpperCAmelCase : List[str] = resid_pdrop
UpperCAmelCase : Optional[Any] = embd_pdrop
UpperCAmelCase : str = attn_pdrop
UpperCAmelCase : Tuple = layer_norm_epsilon
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Union[str, Any] = use_cache
UpperCAmelCase : Any = bos_token_id
UpperCAmelCase : List[str] = eos_token_id
super().__init__(
bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A )
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ):
super().__init__(__A, task=__A, patching_specs=__A, use_past=__A )
if not getattr(self._config, '''pad_token_id''', __A ):
# TODO: how to do that better?
UpperCAmelCase : Union[str, Any] = 0
@property
def __magic_name__ ( self : str ):
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__A, direction='''inputs''' )
UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __magic_name__ ( self : Dict ):
return self._config.n_layer
@property
def __magic_name__ ( self : List[str] ):
return self._config.n_head
def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ):
UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs(
__A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A )
# We need to order the input in the way they appears in the forward()
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase : str = seqlen + 2
UpperCAmelCase : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
UpperCAmelCase : Optional[int] = [
(torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers )
]
UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask''']
if self.use_past:
UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype
UpperCAmelCase : Dict = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 )
return ordered_inputs
@property
def __magic_name__ ( self : Tuple ):
return 1_3
| 336 | 1 |
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: ")))
print("Googling.....")
_lowerCamelCase : Any = f"""https://www.google.com/search?q={query}&num=100"""
_lowerCamelCase : List[Any] = requests.get(
url,
headers={"User-Agent": str(UserAgent().random)},
)
try:
_lowerCamelCase : List[Any] = (
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "yuRUbf"})
.find("a")
.get("href")
)
except AttributeError:
_lowerCamelCase : Union[str, Any] = parse_qs(
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "kCrYT"})
.find("a")
.get("href")
)["url"][0]
webbrowser.open(link)
| 336 |
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 336 | 1 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
_lowerCamelCase : int = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, Iterable[int]] , UpperCAmelCase : bool , UpperCAmelCase : int ) -> Tuple[int, int]:
def constraint_to_multiple_of(UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str=0 , UpperCAmelCase : Any=None ):
UpperCAmelCase : List[str] = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
UpperCAmelCase : List[Any] = math.floor(val / multiple ) * multiple
if x < min_val:
UpperCAmelCase : str = math.ceil(val / multiple ) * multiple
return x
UpperCAmelCase : Tuple = (output_size, output_size) if isinstance(UpperCAmelCase , UpperCAmelCase ) else output_size
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = get_image_size(UpperCAmelCase )
UpperCAmelCase , UpperCAmelCase : int = output_size
# determine new height and width
UpperCAmelCase : int = output_height / input_height
UpperCAmelCase : Optional[int] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
UpperCAmelCase : Optional[int] = scale_width
else:
# fit height
UpperCAmelCase : Any = scale_height
UpperCAmelCase : Union[str, Any] = constraint_to_multiple_of(scale_height * input_height , multiple=UpperCAmelCase )
UpperCAmelCase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=UpperCAmelCase )
return (new_height, new_width)
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = ["""pixel_values"""]
def __init__( self : Tuple, __A : bool = True, __A : Dict[str, int] = None, __A : PILImageResampling = PILImageResampling.BILINEAR, __A : bool = False, __A : int = 1, __A : bool = True, __A : Union[int, float] = 1 / 2_5_5, __A : bool = True, __A : Optional[Union[float, List[float]]] = None, __A : Optional[Union[float, List[float]]] = None, **__A : Dict, ):
super().__init__(**__A )
UpperCAmelCase : Dict = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4}
UpperCAmelCase : Optional[int] = get_size_dict(__A )
UpperCAmelCase : Union[str, Any] = do_resize
UpperCAmelCase : Optional[int] = size
UpperCAmelCase : Tuple = keep_aspect_ratio
UpperCAmelCase : int = ensure_multiple_of
UpperCAmelCase : int = resample
UpperCAmelCase : Dict = do_rescale
UpperCAmelCase : Any = rescale_factor
UpperCAmelCase : Optional[Any] = do_normalize
UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __magic_name__ ( self : Optional[int], __A : np.ndarray, __A : Dict[str, int], __A : bool = False, __A : int = 1, __A : PILImageResampling = PILImageResampling.BICUBIC, __A : Optional[Union[str, ChannelDimension]] = None, **__A : Union[str, Any], ):
UpperCAmelCase : Tuple = get_size_dict(__A )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
UpperCAmelCase : Optional[Any] = get_resize_output_image_size(
__A, output_size=(size['''height'''], size['''width''']), keep_aspect_ratio=__A, multiple=__A, )
return resize(__A, size=__A, resample=__A, data_format=__A, **__A )
def __magic_name__ ( self : int, __A : np.ndarray, __A : Union[int, float], __A : Optional[Union[str, ChannelDimension]] = None, **__A : Tuple, ):
return rescale(__A, scale=__A, data_format=__A, **__A )
def __magic_name__ ( self : Dict, __A : np.ndarray, __A : Union[float, List[float]], __A : Union[float, List[float]], __A : Optional[Union[str, ChannelDimension]] = None, **__A : Union[str, Any], ):
return normalize(__A, mean=__A, std=__A, data_format=__A, **__A )
def __magic_name__ ( self : List[Any], __A : ImageInput, __A : bool = None, __A : int = None, __A : bool = None, __A : int = None, __A : PILImageResampling = None, __A : bool = None, __A : float = None, __A : bool = None, __A : Optional[Union[float, List[float]]] = None, __A : Optional[Union[float, List[float]]] = None, __A : Optional[Union[str, TensorType]] = None, __A : ChannelDimension = ChannelDimension.FIRST, **__A : Optional[int], ):
UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase : int = size if size is not None else self.size
UpperCAmelCase : int = get_size_dict(__A )
UpperCAmelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
UpperCAmelCase : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
UpperCAmelCase : List[str] = resample if resample is not None else self.resample
UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase : str = image_std if image_std is not None else self.image_std
UpperCAmelCase : List[Any] = make_list_of_images(__A )
if not valid_images(__A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase : str = [to_numpy_array(__A ) for image in images]
if do_resize:
UpperCAmelCase : Any = [self.resize(image=__A, size=__A, resample=__A ) for image in images]
if do_rescale:
UpperCAmelCase : Tuple = [self.rescale(image=__A, scale=__A ) for image in images]
if do_normalize:
UpperCAmelCase : Tuple = [self.normalize(image=__A, mean=__A, std=__A ) for image in images]
UpperCAmelCase : Optional[int] = [to_channel_dimension_format(__A, __A ) for image in images]
UpperCAmelCase : Tuple = {'''pixel_values''': images}
return BatchFeature(data=__A, tensor_type=__A )
def __magic_name__ ( self : str, __A : Optional[Any], __A : List[Tuple] = None ):
UpperCAmelCase : str = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__A ) != len(__A ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(__A ):
UpperCAmelCase : Union[str, Any] = target_sizes.numpy()
UpperCAmelCase : Dict = []
for idx in range(len(__A ) ):
UpperCAmelCase : Any = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode='''bilinear''', align_corners=__A )
UpperCAmelCase : Tuple = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__A )
else:
UpperCAmelCase : Dict = logits.argmax(dim=1 )
UpperCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 336 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class __UpperCAmelCase :
# setable values
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None # sigma(t_i)
@classmethod
def __magic_name__ ( cls : Any ):
return cls()
@dataclass
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = 42
UpperCamelCase = 42
UpperCamelCase = 42
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@property
def __magic_name__ ( self : Optional[int] ):
return True
@register_to_config
def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ):
pass
def __magic_name__ ( self : Optional[Any] ):
return KarrasVeSchedulerState.create()
def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ):
UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy()
UpperCAmelCase : Union[str, Any] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, )
def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ):
if self.config.s_min <= sigma <= self.config.s_max:
UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 )
else:
UpperCAmelCase : Optional[int] = 0
# sample eps ~ N(0, S_noise^2 * I)
UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 )
UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape )
UpperCAmelCase : Tuple = sigma + gamma * sigma
UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ):
UpperCAmelCase : int = sample_hat + sigma_hat * model_output
UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat
UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A )
def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ):
UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output
UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev
UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A )
def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ):
raise NotImplementedError()
| 336 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
_lowerCamelCase : Tuple = "▁"
_lowerCamelCase : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model"}
_lowerCamelCase : str = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model"
),
}
}
_lowerCamelCase : Optional[int] = {
"facebook/nllb-200-distilled-600M": 1_0_2_4,
}
# fmt: off
_lowerCamelCase : Dict = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = ["""input_ids""", """attention_mask"""]
UpperCamelCase = []
UpperCamelCase = []
def __init__( self : List[str], __A : Optional[int], __A : List[str]="<s>", __A : Union[str, Any]="</s>", __A : Union[str, Any]="</s>", __A : str="<s>", __A : int="<unk>", __A : List[str]="<pad>", __A : Optional[Any]="<mask>", __A : Optional[int]=None, __A : Optional[Any]=None, __A : Union[str, Any]=None, __A : Optional[Dict[str, Any]] = None, __A : Dict=None, __A : Union[str, Any]=False, **__A : List[Any], ):
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : Optional[Any] = AddedToken(__A, lstrip=__A, rstrip=__A ) if isinstance(__A, __A ) else mask_token
UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
UpperCAmelCase : Optional[Any] = legacy_behaviour
super().__init__(
bos_token=__A, eos_token=__A, unk_token=__A, sep_token=__A, cls_token=__A, pad_token=__A, mask_token=__A, tokenizer_file=__A, src_lang=__A, tgt_lang=__A, additional_special_tokens=__A, sp_model_kwargs=self.sp_model_kwargs, legacy_behaviour=__A, **__A, )
UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__A ) )
UpperCAmelCase : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCAmelCase : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCAmelCase : Optional[Any] = 1
UpperCAmelCase : str = len(self.sp_model )
UpperCAmelCase : Dict = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__A )
}
UpperCAmelCase : Tuple = {v: k for k, v in self.lang_code_to_id.items()}
UpperCAmelCase : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
UpperCAmelCase : Union[str, Any] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
UpperCAmelCase : str = src_lang if src_lang is not None else '''eng_Latn'''
UpperCAmelCase : str = self.lang_code_to_id[self._src_lang]
UpperCAmelCase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Dict ):
UpperCAmelCase : List[str] = self.__dict__.copy()
UpperCAmelCase : List[Any] = None
UpperCAmelCase : Tuple = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[Any], __A : str ):
UpperCAmelCase : List[str] = d
# for backward compatibility
if not hasattr(self, '''sp_model_kwargs''' ):
UpperCAmelCase : Any = {}
UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def __magic_name__ ( self : Union[str, Any] ):
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __magic_name__ ( self : Optional[int] ):
return self._src_lang
@src_lang.setter
def __magic_name__ ( self : Optional[Any], __A : str ):
UpperCAmelCase : Optional[Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __magic_name__ ( self : str, __A : List[int], __A : Optional[List[int]] = None, __A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A, token_ids_a=__A, already_has_special_tokens=__A )
UpperCAmelCase : Union[str, Any] = [1] * len(self.prefix_tokens )
UpperCAmelCase : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__A )) + suffix_ones
return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones
def __magic_name__ ( self : int, __A : List[int], __A : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __magic_name__ ( self : int, __A : List[int], __A : Optional[List[int]] = None ):
UpperCAmelCase : Dict = [self.sep_token_id]
UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self : Dict, __A : Tuple, __A : str, __A : Optional[str], __A : Optional[str], **__A : Dict ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
UpperCAmelCase : Any = src_lang
UpperCAmelCase : Optional[int] = self(__A, add_special_tokens=__A, return_tensors=__A, **__A )
UpperCAmelCase : List[str] = self.convert_tokens_to_ids(__A )
UpperCAmelCase : str = tgt_lang_id
return inputs
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Dict = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __magic_name__ ( self : List[Any], __A : str ):
return self.sp_model.encode(__A, out_type=__A )
def __magic_name__ ( self : List[Any], __A : Tuple ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(__A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __magic_name__ ( self : List[str], __A : Optional[Any] ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __magic_name__ ( self : str, __A : Any ):
UpperCAmelCase : List[Any] = ''''''.join(__A ).replace(__A, ''' ''' ).strip()
return out_string
def __magic_name__ ( self : Any, __A : str, __A : Optional[str] = None ):
if not os.path.isdir(__A ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : List[Any] = os.path.join(
__A, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, __A )
elif not os.path.isfile(self.vocab_file ):
with open(__A, '''wb''' ) as fi:
UpperCAmelCase : List[Any] = self.sp_model.serialized_model_proto()
fi.write(__A )
return (out_vocab_file,)
def __magic_name__ ( self : Union[str, Any], __A : List[str], __A : str = "eng_Latn", __A : Optional[List[str]] = None, __A : str = "fra_Latn", **__A : Any, ):
UpperCAmelCase : List[Any] = src_lang
UpperCAmelCase : Optional[Any] = tgt_lang
return super().prepare_seqaseq_batch(__A, __A, **__A )
def __magic_name__ ( self : int ):
return self.set_src_lang_special_tokens(self.src_lang )
def __magic_name__ ( self : List[str] ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __magic_name__ ( self : Dict, __A : Union[str, Any] ):
UpperCAmelCase : Dict = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
UpperCAmelCase : Dict = [self.cur_lang_code]
UpperCAmelCase : Union[str, Any] = [self.eos_token_id]
def __magic_name__ ( self : Tuple, __A : str ):
UpperCAmelCase : List[str] = self.lang_code_to_id[lang]
if self.legacy_behaviour:
UpperCAmelCase : int = []
UpperCAmelCase : Any = [self.eos_token_id, self.cur_lang_code]
else:
UpperCAmelCase : Optional[Any] = [self.cur_lang_code]
UpperCAmelCase : List[str] = [self.eos_token_id]
| 336 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __UpperCAmelCase ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def a__ ( ) -> Dict:
if os.name == "nt":
UpperCAmelCase : List[str] = CursorInfo()
UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Dict = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25l''' )
sys.stdout.flush()
def a__ ( ) -> Optional[int]:
if os.name == "nt":
UpperCAmelCase : int = CursorInfo()
UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Any = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25h''' )
sys.stdout.flush()
@contextmanager
def a__ ( ) -> Optional[Any]:
try:
hide_cursor()
yield
finally:
show_cursor()
| 336 | 1 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __UpperCAmelCase ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def a__ ( ) -> Dict:
if os.name == "nt":
UpperCAmelCase : List[str] = CursorInfo()
UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Dict = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25l''' )
sys.stdout.flush()
def a__ ( ) -> Optional[int]:
if os.name == "nt":
UpperCAmelCase : int = CursorInfo()
UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Any = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25h''' )
sys.stdout.flush()
@contextmanager
def a__ ( ) -> Optional[Any]:
try:
hide_cursor()
yield
finally:
show_cursor()
| 336 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowerCamelCase : Tuple = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 336 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase : List[str] = logging.get_logger(__name__)
_lowerCamelCase : Any = {
"Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json",
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """instructblip_vision_model"""
def __init__( self : Union[str, Any], __A : List[Any]=1_4_0_8, __A : Any=6_1_4_4, __A : Tuple=3_9, __A : Any=1_6, __A : Optional[Any]=2_2_4, __A : List[Any]=1_4, __A : Dict="gelu", __A : int=1E-6, __A : Any=0.0, __A : Any=1E-10, __A : List[Any]=True, **__A : Optional[int], ):
super().__init__(**__A )
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : str = patch_size
UpperCAmelCase : str = image_size
UpperCAmelCase : List[Any] = initializer_range
UpperCAmelCase : str = attention_dropout
UpperCAmelCase : List[Any] = layer_norm_eps
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : List[str] = qkv_bias
@classmethod
def __magic_name__ ( cls : Dict, __A : Union[str, os.PathLike], **__A : List[Any] ):
cls._set_token_in_kwargs(__A )
UpperCAmelCase , UpperCAmelCase : Optional[int] = cls.get_config_dict(__A, **__A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('''model_type''' ) == "instructblip":
UpperCAmelCase : int = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A, **__A )
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """instructblip_qformer"""
def __init__( self : Tuple, __A : str=3_0_5_2_2, __A : str=7_6_8, __A : List[Any]=1_2, __A : List[Any]=1_2, __A : List[Any]=3_0_7_2, __A : Any="gelu", __A : List[Any]=0.1, __A : Tuple=0.1, __A : Optional[Any]=5_1_2, __A : Optional[int]=0.0_2, __A : Tuple=1E-12, __A : Union[str, Any]=0, __A : List[str]="absolute", __A : Dict=2, __A : List[str]=1_4_0_8, **__A : Optional[Any], ):
super().__init__(pad_token_id=__A, **__A )
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : int = hidden_size
UpperCAmelCase : List[str] = num_hidden_layers
UpperCAmelCase : Optional[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : Dict = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : Optional[int] = initializer_range
UpperCAmelCase : List[Any] = layer_norm_eps
UpperCAmelCase : Any = position_embedding_type
UpperCAmelCase : Tuple = cross_attention_frequency
UpperCAmelCase : List[str] = encoder_hidden_size
@classmethod
def __magic_name__ ( cls : Union[str, Any], __A : Union[str, os.PathLike], **__A : str ):
cls._set_token_in_kwargs(__A )
UpperCAmelCase , UpperCAmelCase : Optional[int] = cls.get_config_dict(__A, **__A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('''model_type''' ) == "instructblip":
UpperCAmelCase : Any = config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A, **__A )
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """instructblip"""
UpperCamelCase = True
def __init__( self : List[Any], __A : Dict=None, __A : Dict=None, __A : Any=None, __A : Dict=3_2, **__A : Tuple ):
super().__init__(**__A )
if vision_config is None:
UpperCAmelCase : Any = {}
logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' )
if qformer_config is None:
UpperCAmelCase : Any = {}
logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' )
if text_config is None:
UpperCAmelCase : List[str] = {}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' )
UpperCAmelCase : Dict = InstructBlipVisionConfig(**__A )
UpperCAmelCase : List[str] = InstructBlipQFormerConfig(**__A )
UpperCAmelCase : List[str] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
UpperCAmelCase : List[str] = CONFIG_MAPPING[text_model_type](**__A )
UpperCAmelCase : Tuple = self.text_config.tie_word_embeddings
UpperCAmelCase : Tuple = self.text_config.is_encoder_decoder
UpperCAmelCase : List[Any] = num_query_tokens
UpperCAmelCase : Any = self.vision_config.hidden_size
UpperCAmelCase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
UpperCAmelCase : Any = 1.0
UpperCAmelCase : List[Any] = 0.0_2
@classmethod
def __magic_name__ ( cls : List[str], __A : InstructBlipVisionConfig, __A : InstructBlipQFormerConfig, __A : PretrainedConfig, **__A : int, ):
return cls(
vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **__A, )
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
UpperCAmelCase : Tuple = self.vision_config.to_dict()
UpperCAmelCase : str = self.qformer_config.to_dict()
UpperCAmelCase : Union[str, Any] = self.text_config.to_dict()
UpperCAmelCase : Any = self.__class__.model_type
return output
| 336 |
from __future__ import annotations
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]:
if partitions <= 0:
raise ValueError('''partitions must be a positive number!''' )
if partitions > number_of_bytes:
raise ValueError('''partitions can not > number_of_bytes!''' )
UpperCAmelCase : str = number_of_bytes // partitions
UpperCAmelCase : Dict = []
for i in range(UpperCAmelCase ):
UpperCAmelCase : int = i * bytes_per_partition + 1
UpperCAmelCase : Optional[int] = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 1 |
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
"stable diffusion controlnet",
"0.22.0",
"Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.",
standard_warn=False,
stacklevel=3,
)
| 336 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
_lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]:
if subparsers is not None:
UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description )
else:
UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description )
# Core arguments
UpperCAmelCase : Optional[int] = parser.add_argument_group(
'''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' )
config_args.add_argument(
'''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , )
config_args.add_argument(
'''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , )
config_args.add_argument(
'''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , )
UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' )
pod_args.add_argument(
'''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , )
pod_args.add_argument(
'''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , )
pod_args.add_argument(
'''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , )
pod_args.add_argument(
'''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , )
pod_args.add_argument(
'''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , )
pod_args.add_argument(
'''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' )
if subparsers is not None:
parser.set_defaults(func=UpperCAmelCase )
return parser
def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCAmelCase : List[Any] = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCAmelCase : List[str] = defaults.commands
if not args.tpu_name:
UpperCAmelCase : Tuple = defaults.tpu_name
if not args.tpu_zone:
UpperCAmelCase : int = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
UpperCAmelCase : Dict = '''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ):
UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}'''
if not args.command_file and not args.command:
raise ValueError('''You must specify either a command file or a command to run on the pod.''' )
if args.command_file:
with open(args.command_file , '''r''' ) as f:
UpperCAmelCase : int = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , UpperCAmelCase ):
UpperCAmelCase : int = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCAmelCase : Optional[int] = ['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [f'''pip install {args.accelerate_version}''']
new_cmd += args.command
UpperCAmelCase : int = '''; '''.join(UpperCAmelCase )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCAmelCase : Any = ['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(f'''Running {" ".join(UpperCAmelCase )}''' )
return
subprocess.run(UpperCAmelCase )
print('''Successfully setup pod.''' )
def a__ ( ) -> Any:
UpperCAmelCase : Any = tpu_command_parser()
UpperCAmelCase : Tuple = parser.parse_args()
tpu_command_launcher(UpperCAmelCase )
| 336 | 1 |
def a__ ( UpperCAmelCase : str ) -> list:
UpperCAmelCase : Optional[int] = [0] * len(UpperCAmelCase )
for i in range(1 , len(UpperCAmelCase ) ):
# use last results for better performance - dynamic programming
UpperCAmelCase : List[Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
UpperCAmelCase : Any = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
UpperCAmelCase : List[Any] = j
return prefix_result
def a__ ( UpperCAmelCase : str ) -> int:
return max(prefix_function(UpperCAmelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Optional[int] = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
print('''Loading config file...''' )
def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ):
UpperCAmelCase : List[str] = []
for k, v in d.items():
UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k
if isinstance(UpperCAmelCase , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() )
else:
items.append((new_key, v) )
return dict(UpperCAmelCase )
UpperCAmelCase : List[str] = argparse.Namespace()
with open(UpperCAmelCase , '''r''' ) as yaml_file:
try:
UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader )
UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase )
for k, v in flat_cfg.items():
setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) )
return config
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]:
UpperCAmelCase : int = MobileViTVaConfig()
UpperCAmelCase : str = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase : Any = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase : Any = 384
else:
UpperCAmelCase : Tuple = 256
UpperCAmelCase : int = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase : Optional[Any] = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase : str = 384
else:
UpperCAmelCase : Dict = 256
UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase : Optional[Any] = 151
UpperCAmelCase : Tuple = 512
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Tuple = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase : Dict = 21
UpperCAmelCase : str = 512
UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json'''
UpperCAmelCase : Dict = True
# orig_config
UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase )
assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase : Union[str, Any] = '''huggingface/label-files'''
UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : int = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : List[str] = val
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]:
if base_model:
UpperCAmelCase : Dict = ''''''
else:
UpperCAmelCase : Dict = '''mobilevitv2.'''
UpperCAmelCase : Optional[int] = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase : List[str] = k[8:]
else:
UpperCAmelCase : Dict = k
if ".block." in k:
UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase : Dict = [0, 1]
elif i == 4:
UpperCAmelCase : Dict = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase : int = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
UpperCAmelCase : Optional[Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
UpperCAmelCase : Any = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any:
UpperCAmelCase : str = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(UpperCAmelCase )
for k in keys_to_ignore:
state_dict.pop(UpperCAmelCase , UpperCAmelCase )
def a__ ( ) -> Union[str, Any]:
UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase )
# load original state_dict
UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval()
UpperCAmelCase : str = False
else:
UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval()
UpperCAmelCase : Any = False
# remove and rename some keys of load the original model
UpperCAmelCase : Optional[Any] = checkpoint
remove_unused_keys(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# load modified state_dict
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase : Optional[Any] = outputs.logits
UpperCAmelCase : int = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] )
assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 )
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if __name__ == "__main__":
_lowerCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 336 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_lowerCamelCase : Dict = {
"configuration_rag": ["RagConfig"],
"retrieval_rag": ["RagRetriever"],
"tokenization_rag": ["RagTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Any = [
"RagModel",
"RagPreTrainedModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[int] = [
"TFRagModel",
"TFRagPreTrainedModel",
"TFRagSequenceForGeneration",
"TFRagTokenForGeneration",
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
_lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 336 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class __UpperCAmelCase ( lowerCamelCase__ ):
def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
UpperCAmelCase : str = '''__cached_''' + self.fget.__name__
UpperCAmelCase : int = getattr(__A, __A, __A )
if cached is None:
UpperCAmelCase : Any = self.fget(__A )
setattr(__A, __A, __A )
return cached
def a__ ( UpperCAmelCase : Optional[Any] ) -> Any:
UpperCAmelCase : Any = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'''invalid truth value {val!r}''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_torch_fx_proxy(UpperCAmelCase ):
return True
if is_torch_available():
import torch
if isinstance(UpperCAmelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(UpperCAmelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]:
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : str ) -> Tuple:
return _is_numpy(UpperCAmelCase )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
import torch
return isinstance(UpperCAmelCase , torch.Tensor )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
return False if not is_torch_available() else _is_torch(UpperCAmelCase )
def a__ ( UpperCAmelCase : Tuple ) -> List[str]:
import torch
return isinstance(UpperCAmelCase , torch.device )
def a__ ( UpperCAmelCase : Any ) -> Any:
return False if not is_torch_available() else _is_torch_device(UpperCAmelCase )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
import torch
if isinstance(UpperCAmelCase , UpperCAmelCase ):
if hasattr(UpperCAmelCase , UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase )
else:
return False
return isinstance(UpperCAmelCase , torch.dtype )
def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase )
def a__ ( UpperCAmelCase : Any ) -> str:
import tensorflow as tf
return isinstance(UpperCAmelCase , tf.Tensor )
def a__ ( UpperCAmelCase : int ) -> Union[str, Any]:
return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[str] ) -> Tuple:
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(UpperCAmelCase )
return type(UpperCAmelCase ) == tf.Tensor
def a__ ( UpperCAmelCase : int ) -> List[Any]:
return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[Any] ) -> Dict:
import jax.numpy as jnp # noqa: F811
return isinstance(UpperCAmelCase , jnp.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]:
return False if not is_flax_available() else _is_jax(UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Tuple:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return [to_py_obj(UpperCAmelCase ) for o in obj]
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase ).tolist()
elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def a__ ( UpperCAmelCase : Any ) -> List[str]:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return np.array(UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase )
else:
return obj
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Optional[Any] = fields(self )
# Safety and consistency checks
if not len(__A ):
raise ValueError(F'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' )
UpperCAmelCase : int = getattr(self, class_fields[0].name )
UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__A ):
if isinstance(__A, __A ):
UpperCAmelCase : Tuple = first_field.items()
UpperCAmelCase : Any = True
else:
try:
UpperCAmelCase : Optional[Any] = iter(__A )
UpperCAmelCase : Optional[Any] = True
except TypeError:
UpperCAmelCase : Optional[int] = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__A ):
if (
not isinstance(__A, (list, tuple) )
or not len(__A ) == 2
or not isinstance(element[0], __A )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
UpperCAmelCase : Any = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self, element[0], element[1] )
if element[1] is not None:
UpperCAmelCase : Union[str, Any] = element[1]
elif first_field is not None:
UpperCAmelCase : Union[str, Any] = first_field
else:
for field in class_fields:
UpperCAmelCase : Optional[Any] = getattr(self, field.name )
if v is not None:
UpperCAmelCase : Optional[int] = v
def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ):
raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ):
raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Any, *__A : Dict, **__A : str ):
raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ):
raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self : List[str], __A : List[str] ):
if isinstance(__A, __A ):
UpperCAmelCase : int = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__A, __A )
super().__setattr__(__A, __A )
def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ):
# Will raise a KeyException if needed
super().__setitem__(__A, __A )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__A, __A )
def __magic_name__ ( self : List[str] ):
return tuple(self[k] for k in self.keys() )
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@classmethod
def __magic_name__ ( cls : List[Any], __A : Tuple ):
raise ValueError(
F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """longest"""
UpperCamelCase = """max_length"""
UpperCamelCase = """do_not_pad"""
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """pt"""
UpperCamelCase = """tf"""
UpperCamelCase = """np"""
UpperCamelCase = """jax"""
class __UpperCAmelCase :
def __init__( self : Any, __A : List[ContextManager] ):
UpperCAmelCase : Tuple = context_managers
UpperCAmelCase : Tuple = ExitStack()
def __enter__( self : Any ):
for context_manager in self.context_managers:
self.stack.enter_context(__A )
def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ):
self.stack.__exit__(*__A, **__A )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> str:
UpperCAmelCase : int = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def a__ ( UpperCAmelCase : Dict ) -> Any:
UpperCAmelCase : List[Any] = model_class.__name__
UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]:
def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ):
for k, v in d.items():
UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k
if v and isinstance(UpperCAmelCase , UpperCAmelCase ):
yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items()
else:
yield key, v
return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) )
@contextmanager
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]:
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]:
if is_numpy_array(UpperCAmelCase ):
return np.transpose(UpperCAmelCase , axes=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.T if axes is None else array.permute(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.reshape(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.reshape(UpperCAmelCase , UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any:
if is_numpy_array(UpperCAmelCase ):
return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str:
if is_numpy_array(UpperCAmelCase ):
return np.expand_dims(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.unsqueeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.size(UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.numel()
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.size(UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return array.size
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict:
for key, value in auto_map.items():
if isinstance(UpperCAmelCase , (tuple, list) ):
UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
UpperCAmelCase : List[Any] = f'''{repo_id}--{value}'''
return auto_map
def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]:
for base_class in inspect.getmro(UpperCAmelCase ):
UpperCAmelCase : Any = base_class.__module__
UpperCAmelCase : Dict = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'''Could not infer framework from class {model_class}.''' )
| 336 | 1 |
def a__ ( UpperCAmelCase : int , UpperCAmelCase : Any ) -> Optional[Any]:
print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' )
for i in range(UpperCAmelCase ):
for j in range(UpperCAmelCase ):
if dist[i][j] != float('''inf''' ):
print(int(dist[i][j] ) , end='''\t''' )
else:
print('''INF''' , end='''\t''' )
print()
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : int ) -> Optional[int]:
UpperCAmelCase : Any = [[float('''inf''' ) for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )]
for i in range(UpperCAmelCase ):
for j in range(UpperCAmelCase ):
UpperCAmelCase : Any = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(UpperCAmelCase ):
# looping through rows of graph array
for i in range(UpperCAmelCase ):
# looping through columns of graph array
for j in range(UpperCAmelCase ):
if (
dist[i][k] != float('''inf''' )
and dist[k][j] != float('''inf''' )
and dist[i][k] + dist[k][j] < dist[i][j]
):
UpperCAmelCase : Tuple = dist[i][k] + dist[k][j]
_print_dist(UpperCAmelCase , UpperCAmelCase )
return dist, v
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = int(input("Enter number of vertices: "))
_lowerCamelCase : List[Any] = int(input("Enter number of edges: "))
_lowerCamelCase : Optional[int] = [[float("inf") for i in range(v)] for j in range(v)]
for i in range(v):
_lowerCamelCase : Optional[int] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print("\nEdge ", i + 1)
_lowerCamelCase : Dict = int(input("Enter source:"))
_lowerCamelCase : Tuple = int(input("Enter destination:"))
_lowerCamelCase : Union[str, Any] = float(input("Enter weight:"))
_lowerCamelCase : str = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 336 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = LayoutLMTokenizer
UpperCamelCase = LayoutLMTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
def __magic_name__ ( self : Any ):
super().setUp()
UpperCAmelCase : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __magic_name__ ( self : Union[str, Any], **__A : List[str] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A )
def __magic_name__ ( self : Optional[int], __A : int ):
UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running'''
UpperCAmelCase : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __magic_name__ ( self : Any ):
UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file )
UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] )
def __magic_name__ ( self : Optional[int] ):
pass
| 336 | 1 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
_lowerCamelCase : Optional[int] = datasets.utils.logging.get_logger(__name__)
class __UpperCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ):
UpperCamelCase = None
UpperCamelCase = None
class __UpperCAmelCase ( folder_based_builder.FolderBasedBuilder ):
UpperCamelCase = datasets.Audio()
UpperCamelCase = """audio"""
UpperCamelCase = AudioFolderConfig
UpperCamelCase = 42 # definition at the bottom of the script
UpperCamelCase = AudioClassification(audio_column="""audio""" , label_column="""label""" )
_lowerCamelCase : List[Any] = [
".aiff",
".au",
".avr",
".caf",
".flac",
".htk",
".svx",
".mat4",
".mat5",
".mpc2k",
".ogg",
".paf",
".pvf",
".raw",
".rf64",
".sd2",
".sds",
".ircam",
".voc",
".w64",
".wav",
".nist",
".wavex",
".wve",
".xi",
".mp3",
".opus",
]
_lowerCamelCase : Tuple = AUDIO_EXTENSIONS
| 336 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __UpperCAmelCase :
def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : int = num_channels
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Optional[int] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Tuple = mask_ratio
UpperCAmelCase : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCAmelCase : Tuple = (image_size // patch_size) ** 2
UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : str = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Optional[Any] ):
return ViTMAEConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, )
def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ):
UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A )
UpperCAmelCase : Tuple = model(__A, training=__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ):
UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A )
UpperCAmelCase : int = model(__A, training=__A )
# expected sequence length = num_patches
UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2
UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCAmelCase : Tuple = 1
UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A )
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = model(__A, training=__A )
UpperCAmelCase : Union[str, Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs
UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = TFViTMAEModelTester(self )
UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) )
UpperCAmelCase : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) )
def __magic_name__ ( self : str ):
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Any = model_class(__A )
UpperCAmelCase : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : int = [*signature.parameters.keys()]
UpperCAmelCase : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__A )
def __magic_name__ ( self : int ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : str = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : Dict = model(__A, noise=__A )
UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A )
UpperCAmelCase : Dict = outputs_dict[0].numpy()
UpperCAmelCase : Tuple = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 )
def __magic_name__ ( self : Optional[Any] ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__A : Union[str, Any] ):
UpperCAmelCase : str = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__A ):
UpperCAmelCase : Tuple = v.numpy()
else:
UpperCAmelCase : str = np.array(__A )
return inputs_np_dict
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : Any = self._prepare_for_class(__A, __A )
UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A )
UpperCAmelCase : str = model(__A, noise=__A )
UpperCAmelCase : str = model(**__A, noise=__A )
self.assert_outputs_same(__A, __A )
def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ):
# make masks reproducible
np.random.seed(2 )
UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : int = tf.constant(__A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCAmelCase : List[Any] = tf_noise
super().check_pt_tf_models(__A, __A, __A )
def __magic_name__ ( self : str ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Union[str, Any] = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__A )
if module_member_name.endswith('''MainLayer''' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )]
for module_member in (getattr(__A, __A ),)
if isinstance(__A, __A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__A, '''_keras_serializable''', __A )
}
UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : str = tf.convert_to_tensor(__A )
inputs_dict.update({'''noise''': noise} )
for main_layer_class in tf_main_layer_classes:
UpperCAmelCase : Tuple = main_layer_class(__A )
UpperCAmelCase : int = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) )
UpperCAmelCase : List[Any] = model(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' )
model.save(__A )
UpperCAmelCase : List[str] = tf.keras.models.load_model(
__A, custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__A, tf.keras.Model )
UpperCAmelCase : Tuple = model(__A )
self.assert_outputs_same(__A, __A )
@slow
def __magic_name__ ( self : Dict ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(__A )
UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A )
UpperCAmelCase : Union[str, Any] = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy()
UpperCAmelCase : Union[str, Any] = 0
else:
UpperCAmelCase : Optional[int] = outputs.logits.numpy()
UpperCAmelCase : int = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A, saved_model=__A )
UpperCAmelCase : Dict = model_class.from_pretrained(__A )
UpperCAmelCase : str = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy()
UpperCAmelCase : Dict = 0
else:
UpperCAmelCase : Any = after_outputs['''logits'''].numpy()
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__A, 1E-5 )
def __magic_name__ ( self : Optional[Any] ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : List[Any] = model(__A, noise=__A )
UpperCAmelCase : str = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__A )
UpperCAmelCase : int = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
UpperCAmelCase : str = model_class.from_config(model.config )
UpperCAmelCase : List[str] = new_model(__A ) # Build model
new_model.set_weights(model.get_weights() )
UpperCAmelCase : Tuple = new_model(__A, noise=__A )
self.assert_outputs_same(__A, __A )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def __magic_name__ ( self : Tuple ):
pass
@slow
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__A )
def a__ ( ) -> Dict:
UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[str] ):
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def __magic_name__ ( self : str ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' )
UpperCAmelCase : List[str] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCAmelCase : Optional[int] = ViTMAEConfig()
UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) )
# forward pass
UpperCAmelCase : Optional[int] = model(**__A, noise=__A )
# verify the logits
UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : List[str] = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
| 336 | 1 |
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class __UpperCAmelCase :
def __init__( self : Union[str, Any], __A : int, __A : Optional[Any]=1_3, __A : Optional[int]=7, __A : int=True, __A : Dict=True, __A : str=True, __A : Dict=True, __A : Optional[Any]=9_9, __A : Tuple=3_2, __A : Optional[int]=2, __A : Any=4, __A : Dict=3_7, __A : Optional[int]="gelu", __A : Any=0.1, __A : List[str]=0.1, __A : Tuple=5_1_2, __A : Dict=1_6, __A : List[Any]=2, __A : int=0.0_2, __A : Dict=False, __A : Optional[Any]=True, __A : Tuple="None", __A : Tuple=3, __A : Dict=4, __A : Optional[Any]=None, ):
UpperCAmelCase : List[str] = parent
UpperCAmelCase : Any = batch_size
UpperCAmelCase : Dict = seq_length
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Optional[Any] = use_input_mask
UpperCAmelCase : Dict = use_token_type_ids
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : List[str] = vocab_size
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : Optional[int] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : List[str] = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : Any = max_position_embeddings
UpperCAmelCase : Tuple = type_vocab_size
UpperCAmelCase : Tuple = type_sequence_label_size
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Union[str, Any] = num_labels
UpperCAmelCase : str = num_choices
UpperCAmelCase : Optional[Any] = relative_attention
UpperCAmelCase : List[Any] = position_biased_input
UpperCAmelCase : int = pos_att_type
UpperCAmelCase : Union[str, Any] = scope
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : Any = None
if self.use_input_mask:
UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : List[Any] = None
if self.use_token_type_ids:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
UpperCAmelCase : List[Any] = None
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : List[str] = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
UpperCAmelCase : str = DebertaVaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=__A, )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __magic_name__ ( self : Any, __A : List[Any], __A : int, __A : List[str], __A : Dict, __A : Optional[int], __A : Dict, __A : Tuple ):
UpperCAmelCase : int = TFDebertaVaModel(config=__A )
UpperCAmelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
UpperCAmelCase : Optional[Any] = [input_ids, input_mask]
UpperCAmelCase : Optional[Any] = model(__A )
UpperCAmelCase : Union[str, Any] = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : str, __A : List[str], __A : List[str], __A : Optional[Any], __A : Tuple, __A : Optional[Any], __A : List[Any], __A : Dict ):
UpperCAmelCase : List[Any] = TFDebertaVaForMaskedLM(config=__A )
UpperCAmelCase : Optional[int] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase : Tuple = model(__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def __magic_name__ ( self : Tuple, __A : Optional[int], __A : str, __A : str, __A : List[Any], __A : Optional[int], __A : Tuple, __A : Any ):
UpperCAmelCase : str = self.num_labels
UpperCAmelCase : List[Any] = TFDebertaVaForSequenceClassification(config=__A )
UpperCAmelCase : Union[str, Any] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase : Tuple = model(__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def __magic_name__ ( self : int, __A : Optional[Any], __A : Optional[Any], __A : Any, __A : Any, __A : Tuple, __A : Union[str, Any], __A : int ):
UpperCAmelCase : Dict = self.num_labels
UpperCAmelCase : Any = TFDebertaVaForTokenClassification(config=__A )
UpperCAmelCase : str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase : Optional[int] = model(__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def __magic_name__ ( self : Optional[int], __A : int, __A : Tuple, __A : int, __A : Any, __A : Dict, __A : List[Any], __A : Optional[Any] ):
UpperCAmelCase : Tuple = TFDebertaVaForQuestionAnswering(config=__A )
UpperCAmelCase : List[Any] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
UpperCAmelCase : Union[str, Any] = model(__A )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
def __magic_name__ ( self : str ):
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : str = config_and_inputs
UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
UpperCamelCase = (
{
"""feature-extraction""": TFDebertaVaModel,
"""fill-mask""": TFDebertaVaForMaskedLM,
"""question-answering""": TFDebertaVaForQuestionAnswering,
"""text-classification""": TFDebertaVaForSequenceClassification,
"""token-classification""": TFDebertaVaForTokenClassification,
"""zero-shot""": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : int = TFDebertaVaModelTester(self )
UpperCAmelCase : Tuple = ConfigTester(self, config_class=__A, hidden_size=3_7 )
def __magic_name__ ( self : Any ):
self.config_tester.run_common_tests()
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__A )
def __magic_name__ ( self : int ):
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__A )
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__A )
@slow
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Optional[int] = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
self.assertIsNotNone(__A )
@require_tf
class __UpperCAmelCase ( unittest.TestCase ):
@unittest.skip(reason='''Model not available yet''' )
def __magic_name__ ( self : Any ):
pass
@slow
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : int = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
UpperCAmelCase : str = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
UpperCAmelCase : int = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
UpperCAmelCase : Optional[int] = model(__A, attention_mask=__A )[0]
UpperCAmelCase : int = tf.constant(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4], __A, atol=1E-4 )
| 336 |
def a__ ( UpperCAmelCase : int ) -> int:
UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
UpperCAmelCase : Optional[Any] = 1
for n in range(m + 1 ):
for k in range(1 , UpperCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
_lowerCamelCase : List[Any] = int(input("Enter a number: ").strip())
print(partition(n))
except ValueError:
print("Please enter a number.")
else:
try:
_lowerCamelCase : str = int(sys.argv[1])
print(partition(n))
except ValueError:
print("Please pass a number.")
| 336 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """speech_to_text_2"""
UpperCamelCase = ["""past_key_values"""]
UpperCamelCase = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : Optional[Any], __A : Optional[Any]=1_0_0_0_0, __A : Tuple=6, __A : Tuple=2_0_4_8, __A : Any=4, __A : Optional[int]=0.0, __A : Optional[Any]=True, __A : Any="relu", __A : Tuple=2_5_6, __A : int=0.1, __A : Optional[Any]=0.0, __A : Tuple=0.0, __A : int=0.0_2, __A : Optional[Any]=2, __A : Tuple=True, __A : str=1, __A : Union[str, Any]=0, __A : Dict=2, __A : str=1_0_2_4, **__A : Union[str, Any], ):
UpperCAmelCase : List[str] = vocab_size
UpperCAmelCase : int = d_model
UpperCAmelCase : Tuple = decoder_ffn_dim
UpperCAmelCase : Tuple = decoder_layers
UpperCAmelCase : List[str] = decoder_attention_heads
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : List[Any] = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : List[Any] = activation_function
UpperCAmelCase : Tuple = init_std
UpperCAmelCase : Union[str, Any] = decoder_layerdrop
UpperCAmelCase : Union[str, Any] = use_cache
UpperCAmelCase : Dict = decoder_layers
UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : str = max_target_positions
super().__init__(
pad_token_id=__A, bos_token_id=__A, eos_token_id=__A, decoder_start_token_id=__A, **__A, )
| 336 |
from __future__ import annotations
def a__ ( UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase )
# We need to create solution object to save path.
UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )]
UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase )
if solved:
print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) )
else:
print('''No solution exists!''' )
return solved
def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Dict = len(UpperCAmelCase )
# Final check point.
if i == j == (size - 1):
UpperCAmelCase : Dict = 1
return True
UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds
UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
UpperCAmelCase : str = 1
# check for directions
if (
run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase )
or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase )
):
return True
UpperCAmelCase : Any = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 1 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = LayoutLMTokenizer
UpperCamelCase = LayoutLMTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
def __magic_name__ ( self : Any ):
super().setUp()
UpperCAmelCase : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __magic_name__ ( self : Union[str, Any], **__A : List[str] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A )
def __magic_name__ ( self : Optional[int], __A : int ):
UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running'''
UpperCAmelCase : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __magic_name__ ( self : Any ):
UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file )
UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] )
def __magic_name__ ( self : Optional[int] ):
pass
| 336 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __UpperCAmelCase :
def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Any = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Optional[Any] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : str = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = scope
UpperCAmelCase : List[str] = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
UpperCAmelCase : str = (self.image_size // 3_2) ** 2
UpperCAmelCase : List[str] = num_patches + 1
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : str = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Any ):
UpperCAmelCase : Dict = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [4, 8, 1_6, 3_2],
'''num_groups''': 2,
}
return ViTHybridConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, )
def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ):
UpperCAmelCase : int = ViTHybridModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Tuple = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ):
UpperCAmelCase : str = self.type_sequence_label_size
UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self : int ):
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs
UpperCAmelCase : int = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = ViTHybridModelTester(self )
UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : int ):
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
UpperCAmelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, nn.Linear ) )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[Any] = model_class(__A )
UpperCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : str = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = _config_zero_init(__A )
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(config=__A )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', )
@slow
def __magic_name__ ( self : List[str] ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> Tuple:
UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : str ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__A )
UpperCAmelCase : Tuple = self.default_image_processor
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**__A )
# verify the logits
UpperCAmelCase : str = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
@require_accelerate
def __magic_name__ ( self : Dict ):
UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' )
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' )
UpperCAmelCase : Tuple = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' )
UpperCAmelCase : Dict = model(**__A )
UpperCAmelCase : Any = outputs.logits
# model predicts one of the 1000 ImageNet classes
UpperCAmelCase : Dict = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
| 336 | 1 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __UpperCAmelCase :
def __init__( self : Tuple, __A : int, __A : List[Any]=1_3, __A : Optional[int]=3_0, __A : int=2, __A : List[str]=3, __A : List[Any]=True, __A : List[Any]=True, __A : Optional[Any]=3_2, __A : Any=2, __A : Tuple=4, __A : Dict=3_7, __A : List[str]="gelu", __A : str=0.1, __A : Dict=0.1, __A : int=1_0, __A : Union[str, Any]=0.0_2, __A : List[Any]=3, __A : Any=None, ):
UpperCAmelCase : Optional[Any] = parent
UpperCAmelCase : Tuple = batch_size
UpperCAmelCase : Union[str, Any] = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : Union[str, Any] = num_channels
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : str = use_labels
UpperCAmelCase : Any = hidden_size
UpperCAmelCase : int = num_hidden_layers
UpperCAmelCase : Optional[Any] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : Optional[int] = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Tuple = type_sequence_label_size
UpperCAmelCase : List[Any] = initializer_range
UpperCAmelCase : Dict = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2
UpperCAmelCase : Optional[Any] = num_patches + 1
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Optional[int] = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : List[Any] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Optional[Any] ):
return ViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, )
def __magic_name__ ( self : Union[str, Any], __A : Union[str, Any], __A : str, __A : int ):
UpperCAmelCase : Dict = TFViTModel(config=__A )
UpperCAmelCase : Optional[int] = model(__A, training=__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase : Any = self.image_size // 2
UpperCAmelCase : Tuple = pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase : Any = model(__A, interpolate_pos_encoding=__A, training=__A )
UpperCAmelCase : List[str] = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, seq_length, self.hidden_size) )
def __magic_name__ ( self : Optional[Any], __A : List[Any], __A : int, __A : int ):
UpperCAmelCase : Union[str, Any] = self.type_sequence_label_size
UpperCAmelCase : Dict = TFViTForImageClassification(__A )
UpperCAmelCase : str = model(__A, labels=__A, training=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase : List[Any] = self.image_size // 2
UpperCAmelCase : List[str] = pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase : Any = model(__A, interpolate_pos_encoding=__A, training=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase : Union[str, Any] = 1
UpperCAmelCase : Union[str, Any] = TFViTForImageClassification(__A )
UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : Optional[int] = model(__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Any = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = config_and_inputs
UpperCAmelCase : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
UpperCamelCase = (
{"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification}
if is_tf_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Dict = TFViTModelTester(self )
UpperCAmelCase : Dict = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __magic_name__ ( self : Tuple ):
pass
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __magic_name__ ( self : Dict ):
pass
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Tuple = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) )
UpperCAmelCase : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[int] = model_class(__A )
UpperCAmelCase : Dict = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Tuple = [*signature.parameters.keys()]
UpperCAmelCase : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : Any ):
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
@slow
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Optional[Any] = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__A )
def a__ ( ) -> Any:
UpperCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : Any ):
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : str = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' )
UpperCAmelCase : int = self.default_image_processor
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Any = image_processor(images=__A, return_tensors='''tf''' )
# forward pass
UpperCAmelCase : Tuple = model(**__A )
# verify the logits
UpperCAmelCase : List[str] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Optional[int] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] )
tf.debugging.assert_near(outputs.logits[0, :3], __A, atol=1E-4 )
| 336 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def a__ ( ) -> tuple[list[int], int]:
UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )]
UpperCAmelCase : Any = randint(-5_000 , 5_000 )
return (arr, r)
_lowerCamelCase : Any = make_dataset()
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]:
for triplet in permutations(UpperCAmelCase , 3 ):
if sum(UpperCAmelCase ) == target:
return tuple(sorted(UpperCAmelCase ) )
return (0, 0, 0)
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]:
arr.sort()
UpperCAmelCase : Tuple = len(UpperCAmelCase )
for i in range(n - 1 ):
UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def a__ ( ) -> tuple[float, float]:
UpperCAmelCase : Union[str, Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
UpperCAmelCase : Tuple = '''
triplet_sum1(*dataset)
'''
UpperCAmelCase : List[str] = '''
triplet_sum2(*dataset)
'''
UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
return (min(UpperCAmelCase ), min(UpperCAmelCase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCamelCase : int = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 336 | 1 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ) -> str:
# Load configuration defined in the metadata file
with open(UpperCAmelCase ) as metadata_file:
UpperCAmelCase : int = json.load(UpperCAmelCase )
UpperCAmelCase : Dict = LukeConfig(use_entity_aware_attention=UpperCAmelCase , **metadata['''model_config'''] )
# Load in the weights from the checkpoint_path
UpperCAmelCase : Dict = torch.load(UpperCAmelCase , map_location='''cpu''' )['''module''']
# Load the entity vocab file
UpperCAmelCase : Optional[Any] = load_original_entity_vocab(UpperCAmelCase )
# add an entry for [MASK2]
UpperCAmelCase : List[Any] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCAmelCase : Optional[int] = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCAmelCase : Tuple = AddedToken('''<ent>''' , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase )
UpperCAmelCase : str = AddedToken('''<ent2>''' , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase )
tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(UpperCAmelCase )
with open(os.path.join(UpperCAmelCase , '''tokenizer_config.json''' ) , '''r''' ) as f:
UpperCAmelCase : Any = json.load(UpperCAmelCase )
UpperCAmelCase : List[Any] = '''MLukeTokenizer'''
with open(os.path.join(UpperCAmelCase , '''tokenizer_config.json''' ) , '''w''' ) as f:
json.dump(UpperCAmelCase , UpperCAmelCase )
with open(os.path.join(UpperCAmelCase , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f:
json.dump(UpperCAmelCase , UpperCAmelCase )
UpperCAmelCase : str = MLukeTokenizer.from_pretrained(UpperCAmelCase )
# Initialize the embeddings of the special tokens
UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(['''@'''] )[0]
UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(['''#'''] )[0]
UpperCAmelCase : Dict = state_dict['''embeddings.word_embeddings.weight''']
UpperCAmelCase : List[Any] = word_emb[ent_init_index].unsqueeze(0 )
UpperCAmelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 )
UpperCAmelCase : Any = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCAmelCase : Optional[Any] = state_dict[bias_name]
UpperCAmelCase : Dict = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCAmelCase : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCAmelCase : List[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCAmelCase : List[str] = f'''encoder.layer.{layer_index}.attention.self.'''
UpperCAmelCase : Optional[int] = state_dict[prefix + matrix_name]
UpperCAmelCase : Tuple = state_dict[prefix + matrix_name]
UpperCAmelCase : Optional[Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCAmelCase : Any = state_dict['''entity_embeddings.entity_embeddings.weight''']
UpperCAmelCase : Tuple = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 )
UpperCAmelCase : Union[str, Any] = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCAmelCase : Optional[Any] = state_dict['''entity_predictions.bias''']
UpperCAmelCase : List[Any] = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 )
UpperCAmelCase : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCAmelCase : int = LukeForMaskedLM(config=UpperCAmelCase ).eval()
state_dict.pop('''entity_predictions.decoder.weight''' )
state_dict.pop('''lm_head.decoder.weight''' )
state_dict.pop('''lm_head.decoder.bias''' )
UpperCAmelCase : List[Any] = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )):
UpperCAmelCase : Tuple = state_dict[key]
else:
UpperCAmelCase : Any = state_dict[key]
UpperCAmelCase , UpperCAmelCase : Dict = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase )
if set(UpperCAmelCase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(UpperCAmelCase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCAmelCase : Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase , task='''entity_classification''' )
UpperCAmelCase : List[str] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'''
UpperCAmelCase : Optional[int] = (0, 9)
UpperCAmelCase : List[Any] = tokenizer(UpperCAmelCase , entity_spans=[span] , return_tensors='''pt''' )
UpperCAmelCase : Dict = model(**UpperCAmelCase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCAmelCase : List[Any] = torch.Size((1, 33, 768) )
UpperCAmelCase : Optional[int] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCAmelCase : Tuple = torch.Size((1, 1, 768) )
UpperCAmelCase : Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
f''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCAmelCase : Any = MLukeTokenizer.from_pretrained(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = '''Tokyo is the capital of <mask>.'''
UpperCAmelCase : List[Any] = (24, 30)
UpperCAmelCase : Optional[int] = tokenizer(UpperCAmelCase , entity_spans=[span] , return_tensors='''pt''' )
UpperCAmelCase : Dict = model(**UpperCAmelCase )
UpperCAmelCase : Union[str, Any] = encoding['''input_ids'''][0].tolist()
UpperCAmelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) )
UpperCAmelCase : Tuple = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(UpperCAmelCase )
UpperCAmelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item()
UpperCAmelCase : str = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('''Saving PyTorch model to {}'''.format(UpperCAmelCase ) )
model.save_pretrained(UpperCAmelCase )
def a__ ( UpperCAmelCase : Optional[int] ) -> str:
UpperCAmelCase : Optional[Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]''']
UpperCAmelCase : Optional[Any] = [json.loads(UpperCAmelCase ) for line in open(UpperCAmelCase )]
UpperCAmelCase : List[Any] = {}
for entry in data:
UpperCAmelCase : List[Any] = entry['''id''']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCAmelCase : str = entity_id
break
UpperCAmelCase : Tuple = f'''{language}:{entity_name}'''
UpperCAmelCase : Any = entity_id
return new_mapping
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
_lowerCamelCase : List[Any] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 336 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class __UpperCAmelCase :
def __magic_name__ ( self : int, __A : Dict ):
raise NotImplementedError()
def __magic_name__ ( self : int ):
raise NotImplementedError()
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ):
UpperCAmelCase : List[str] = tokenizer
UpperCAmelCase : str = skip_prompt
UpperCAmelCase : List[str] = decode_kwargs
# variables used in the streaming process
UpperCAmelCase : Dict = []
UpperCAmelCase : List[str] = 0
UpperCAmelCase : Union[str, Any] = True
def __magic_name__ ( self : Dict, __A : Optional[int] ):
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('''TextStreamer only supports batch size 1''' )
elif len(value.shape ) > 1:
UpperCAmelCase : Union[str, Any] = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
UpperCAmelCase : Optional[int] = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('''\n''' ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
# If the last token is a CJK character, we print the characters.
elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
self.print_len += len(__A )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1]
self.print_len += len(__A )
self.on_finalized_text(__A )
def __magic_name__ ( self : str ):
# Flush the cache, if it exists
if len(self.token_cache ) > 0:
UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
UpperCAmelCase : Dict = text[self.print_len :]
UpperCAmelCase : List[Any] = []
UpperCAmelCase : List[Any] = 0
else:
UpperCAmelCase : Dict = ''''''
UpperCAmelCase : str = True
self.on_finalized_text(__A, stream_end=__A )
def __magic_name__ ( self : List[str], __A : str, __A : bool = False ):
print(__A, flush=__A, end='''''' if not stream_end else None )
def __magic_name__ ( self : List[Any], __A : Optional[int] ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ):
super().__init__(__A, __A, **__A )
UpperCAmelCase : Dict = Queue()
UpperCAmelCase : Any = None
UpperCAmelCase : Any = timeout
def __magic_name__ ( self : Dict, __A : str, __A : bool = False ):
self.text_queue.put(__A, timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal, timeout=self.timeout )
def __iter__( self : int ):
return self
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 336 | 1 |
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> str:
return "\n".join(
f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=1_0))
| 336 |
import numpy
# List of input, output pairs
_lowerCamelCase : Dict = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
_lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
_lowerCamelCase : Dict = [2, 4, 1, 5]
_lowerCamelCase : Dict = len(train_data)
_lowerCamelCase : int = 0.0_0_9
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict:
return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output(
UpperCAmelCase , UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Any:
UpperCAmelCase : str = 0
for i in range(len(UpperCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict:
UpperCAmelCase : Optional[int] = 0
for i in range(UpperCAmelCase ):
if index == -1:
summation_value += _error(UpperCAmelCase )
else:
summation_value += _error(UpperCAmelCase ) * train_data[i][0][index]
return summation_value
def a__ ( UpperCAmelCase : Dict ) -> Dict:
UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m
return cost_derivative_value
def a__ ( ) -> List[Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase : List[str] = 0.000002
UpperCAmelCase : Any = 0
UpperCAmelCase : Dict = 0
while True:
j += 1
UpperCAmelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase ) ):
UpperCAmelCase : List[str] = get_cost_derivative(i - 1 )
UpperCAmelCase : Tuple = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ):
break
UpperCAmelCase : int = temp_parameter_vector
print(('''Number of iterations:''', j) )
def a__ ( ) -> List[Any]:
for i in range(len(UpperCAmelCase ) ):
print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 336 | 1 |
class __UpperCAmelCase :
def __init__( self : List[Any], __A : list ):
UpperCAmelCase : Tuple = set_counts
UpperCAmelCase : Union[str, Any] = max(__A )
UpperCAmelCase : Optional[Any] = len(__A )
UpperCAmelCase : List[Any] = [1] * num_sets
UpperCAmelCase : List[Any] = list(range(__A ) )
def __magic_name__ ( self : List[Any], __A : int, __A : int ):
UpperCAmelCase : Any = self.get_parent(__A )
UpperCAmelCase : Dict = self.get_parent(__A )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
UpperCAmelCase : Optional[int] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
UpperCAmelCase : str = 0
UpperCAmelCase : Optional[Any] = src_parent
UpperCAmelCase : Any = self.set_counts[src_parent]
UpperCAmelCase : Tuple = max(self.max_set, __A )
return True
def __magic_name__ ( self : List[Any], __A : int ):
if self.parents[disj_set] == disj_set:
return disj_set
UpperCAmelCase : List[str] = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 336 |
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
UpperCAmelCase : Optional[Any] = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
UpperCAmelCase : Any = left
UpperCAmelCase : List[str] = point
elif point > right:
UpperCAmelCase : Any = right
UpperCAmelCase : List[str] = point
else:
if item < current_item:
UpperCAmelCase : Optional[int] = point - 1
else:
UpperCAmelCase : str = point + 1
return None
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
elif point > right:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 )
else:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> int:
if collection != sorted(UpperCAmelCase ):
raise ValueError('''Collection must be ascending sorted''' )
return True
if __name__ == "__main__":
import sys
_lowerCamelCase : Optional[int] = 0
if debug == 1:
_lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
_lowerCamelCase : List[Any] = 6_7
_lowerCamelCase : Optional[Any] = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 336 | 1 |
import os
def a__ ( UpperCAmelCase : str = "input.txt" ) -> int:
with open(os.path.join(os.path.dirname(UpperCAmelCase ) , UpperCAmelCase ) ) as input_file:
UpperCAmelCase : Tuple = [
[int(UpperCAmelCase ) for element in line.split(''',''' )]
for line in input_file.readlines()
]
UpperCAmelCase : Tuple = len(UpperCAmelCase )
UpperCAmelCase : Optional[int] = len(matrix[0] )
UpperCAmelCase : Union[str, Any] = [[-1 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )]
for i in range(UpperCAmelCase ):
UpperCAmelCase : int = matrix[i][0]
for j in range(1 , UpperCAmelCase ):
for i in range(UpperCAmelCase ):
UpperCAmelCase : List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , UpperCAmelCase ):
UpperCAmelCase : List[str] = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
UpperCAmelCase : Any = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 336 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Any = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else ''''''
UpperCAmelCase : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''),
(f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''),
(f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''),
(f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any:
for i in range(config.num_hidden_layers ):
UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' )
UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' )
UpperCAmelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase : str = q_bias
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : int = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' )
UpperCAmelCase : str = gamma_a
UpperCAmelCase : Dict = gamma_a
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : str = val
def a__ ( ) -> Optional[int]:
UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]:
UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True
UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
UpperCAmelCase : List[Any] = 1_024
UpperCAmelCase : Optional[Any] = 4_096
UpperCAmelCase : Any = 24
UpperCAmelCase : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 16
UpperCAmelCase : List[Any] = '''huggingface/label-files'''
UpperCAmelCase : Any = '''rvlcdip-id2label.json'''
UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = idalabel
UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model''']
UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase )
for src, dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase )
# load HuggingFace model
UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase )
model.eval()
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image
UpperCAmelCase : Dict = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase )
UpperCAmelCase : List[str] = prepare_img()
UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' )
UpperCAmelCase : str = encoding['''pixel_values''']
UpperCAmelCase : Any = model(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify logits
UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected"
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if push_to_hub:
if has_lm_head:
UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , )
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 336 | 1 |
from abc import ABC, abstractmethod
from typing import List, Optional
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : List[str] ):
# test for the above condition
self.test()
def __magic_name__ ( self : int ):
UpperCAmelCase : Any = 0
UpperCAmelCase : Union[str, Any] = False
while not completed:
if counter == 1:
self.reset()
UpperCAmelCase : str = self.advance()
if not self.does_advance(__A ):
raise Exception(
'''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.update(__A )
counter += 1
if counter > 1_0_0_0_0:
raise Exception('''update() does not fulfill the constraint.''' )
if self.remaining() != 0:
raise Exception('''Custom Constraint is not defined correctly.''' )
@abstractmethod
def __magic_name__ ( self : Dict ):
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __magic_name__ ( self : int, __A : int ):
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __magic_name__ ( self : Dict, __A : int ):
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __magic_name__ ( self : Optional[Any] ):
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __magic_name__ ( self : Any ):
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __magic_name__ ( self : List[Any], __A : int=False ):
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Union[str, Any], __A : List[int] ):
super(__A, self ).__init__()
if not isinstance(__A, __A ) or len(__A ) == 0:
raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(__A, __A ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCAmelCase : List[Any] = token_ids
UpperCAmelCase : List[str] = len(self.token_ids )
UpperCAmelCase : List[str] = -1 # the index of the currently fulfilled step
UpperCAmelCase : Dict = False
def __magic_name__ ( self : str ):
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def __magic_name__ ( self : Union[str, Any], __A : int ):
if not isinstance(__A, __A ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(__A )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def __magic_name__ ( self : str, __A : int ):
if not isinstance(__A, __A ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(__A )}''' )
UpperCAmelCase : int = False
UpperCAmelCase : str = False
UpperCAmelCase : int = False
if self.does_advance(__A ):
self.fulfilled_idx += 1
UpperCAmelCase : Union[str, Any] = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCAmelCase : int = True
UpperCAmelCase : Any = completed
else:
# failed to make progress.
UpperCAmelCase : Optional[int] = True
self.reset()
return stepped, completed, reset
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : List[Any] = False
UpperCAmelCase : List[Any] = 0
def __magic_name__ ( self : Dict ):
return self.seqlen - (self.fulfilled_idx + 1)
def __magic_name__ ( self : Dict, __A : str=False ):
UpperCAmelCase : Optional[int] = PhrasalConstraint(self.token_ids )
if stateful:
UpperCAmelCase : Union[str, Any] = self.seqlen
UpperCAmelCase : str = self.fulfilled_idx
UpperCAmelCase : Union[str, Any] = self.completed
return new_constraint
class __UpperCAmelCase :
def __init__( self : Optional[Any], __A : List[List[int]], __A : Tuple=True ):
UpperCAmelCase : Union[str, Any] = max([len(__A ) for one in nested_token_ids] )
UpperCAmelCase : int = {}
for token_ids in nested_token_ids:
UpperCAmelCase : str = root
for tidx, token_id in enumerate(__A ):
if token_id not in level:
UpperCAmelCase : Union[str, Any] = {}
UpperCAmelCase : int = level[token_id]
if no_subsets and self.has_subsets(__A, __A ):
raise ValueError(
'''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'''
F''' {nested_token_ids}.''' )
UpperCAmelCase : str = root
def __magic_name__ ( self : Union[str, Any], __A : Any ):
UpperCAmelCase : Union[str, Any] = self.trie
for current_token in current_seq:
UpperCAmelCase : Optional[int] = start[current_token]
UpperCAmelCase : int = list(start.keys() )
return next_tokens
def __magic_name__ ( self : Dict, __A : Optional[int] ):
UpperCAmelCase : Tuple = self.next_tokens(__A )
return len(__A ) == 0
def __magic_name__ ( self : Optional[Any], __A : int ):
UpperCAmelCase : List[Any] = list(root.values() )
if len(__A ) == 0:
return 1
else:
return sum([self.count_leaves(__A ) for nn in next_nodes] )
def __magic_name__ ( self : Union[str, Any], __A : Optional[int], __A : str ):
UpperCAmelCase : Optional[Any] = self.count_leaves(__A )
return len(__A ) != leaf_count
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : List[str], __A : List[List[int]] ):
super(__A, self ).__init__()
if not isinstance(__A, __A ) or len(__A ) == 0:
raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(__A, __A ) for token_ids in nested_token_ids ):
raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(__A, __A ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCAmelCase : Union[str, Any] = DisjunctiveTrie(__A )
UpperCAmelCase : Any = nested_token_ids
UpperCAmelCase : Tuple = self.trie.max_height
UpperCAmelCase : List[str] = []
UpperCAmelCase : Optional[int] = False
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Any = self.trie.next_tokens(self.current_seq )
if len(__A ) == 0:
return None
else:
return token_list
def __magic_name__ ( self : Union[str, Any], __A : int ):
if not isinstance(__A, __A ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__A )}''' )
UpperCAmelCase : List[Any] = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def __magic_name__ ( self : str, __A : int ):
if not isinstance(__A, __A ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__A )}''' )
UpperCAmelCase : int = False
UpperCAmelCase : str = False
UpperCAmelCase : Optional[Any] = False
if self.does_advance(__A ):
self.current_seq.append(__A )
UpperCAmelCase : str = True
else:
UpperCAmelCase : str = True
self.reset()
UpperCAmelCase : Optional[int] = self.trie.reached_leaf(self.current_seq )
UpperCAmelCase : Dict = completed
return stepped, completed, reset
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Dict = False
UpperCAmelCase : List[Any] = []
def __magic_name__ ( self : int ):
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def __magic_name__ ( self : Optional[Any], __A : Union[str, Any]=False ):
UpperCAmelCase : Tuple = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCAmelCase : Tuple = self.seqlen
UpperCAmelCase : int = self.current_seq
UpperCAmelCase : Optional[int] = self.completed
return new_constraint
class __UpperCAmelCase :
def __init__( self : Tuple, __A : List[Constraint] ):
UpperCAmelCase : Dict = constraints
# max # of steps required to fulfill a given constraint
UpperCAmelCase : List[str] = max([c.seqlen for c in constraints] )
UpperCAmelCase : Optional[Any] = len(__A )
UpperCAmelCase : str = False
self.init_state()
def __magic_name__ ( self : Any ):
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : int = [constraint.copy(stateful=__A ) for constraint in self.constraints]
def __magic_name__ ( self : Dict ):
UpperCAmelCase : Any = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : int = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCAmelCase : str = constraint.advance()
if isinstance(__A, __A ):
token_list.append(__A )
elif isinstance(__A, __A ):
token_list.extend(__A )
else:
UpperCAmelCase : List[Any] = self.inprogress_constraint.advance()
if isinstance(__A, __A ):
token_list.append(__A )
elif isinstance(__A, __A ):
token_list.extend(__A )
if len(__A ) == 0:
return None
else:
return token_list
def __magic_name__ ( self : Any, __A : Optional[List[int]] ):
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCAmelCase , UpperCAmelCase : str = self.add(__A )
# the entire list of constraints are fulfilled
if self.completed:
break
def __magic_name__ ( self : int, __A : int ):
if not isinstance(__A, __A ):
raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCAmelCase , UpperCAmelCase : int = False, False
if self.completed:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : Optional[int] = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.inprogress_constraint.update(__A )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__A ) )
UpperCAmelCase : str = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCAmelCase : Optional[int] = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCAmelCase : List[str] = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(__A ):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = pending_constraint.update(__A )
if not stepped:
raise Exception(
'''`constraint.update(token_id)` is not yielding incremental progress, '''
'''even though `constraint.does_advance(token_id)` is true.''' )
if complete:
self.complete_constraints.append(__A )
UpperCAmelCase : Optional[Any] = None
if not complete and stepped:
UpperCAmelCase : Tuple = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCAmelCase : str = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCAmelCase : List[str] = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def __magic_name__ ( self : Any, __A : int=True ):
UpperCAmelCase : Optional[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCAmelCase : Optional[int] = [
constraint.copy(stateful=__A ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCAmelCase : int = self.inprogress_constraint.copy(stateful=__A )
UpperCAmelCase : Tuple = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 336 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ):
UpperCAmelCase : Any = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Any = seq_length
UpperCAmelCase : Tuple = is_training
UpperCAmelCase : str = use_attention_mask
UpperCAmelCase : List[str] = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : Any = num_choices
def __magic_name__ ( self : str ):
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : List[Any] = None
if self.use_attention_mask:
UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Any = None
if self.use_token_type_ids:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = RobertaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def __magic_name__ ( self : int ):
UpperCAmelCase : Any = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs
UpperCAmelCase : Any = True
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = True
UpperCamelCase = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Dict = FlaxRobertaModelTester(self )
@slow
def __magic_name__ ( self : Any ):
for model_class_name in self.all_model_classes:
UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A )
UpperCAmelCase : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__A )
| 336 | 1 |
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = CpmAntTokenizer
UpperCamelCase = False
def __magic_name__ ( self : Dict ):
super().setUp()
UpperCAmelCase : Optional[int] = [
'''<d>''',
'''</d>''',
'''<s>''',
'''</s>''',
'''</_>''',
'''<unk>''',
'''<pad>''',
'''</n>''',
'''我''',
'''是''',
'''C''',
'''P''',
'''M''',
'''A''',
'''n''',
'''t''',
]
UpperCAmelCase : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
@tooslow
def __magic_name__ ( self : Any ):
UpperCAmelCase : List[str] = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' )
UpperCAmelCase : Union[str, Any] = '''今天天气真好!'''
UpperCAmelCase : Optional[Any] = ['''今天''', '''天气''', '''真''', '''好''', '''!''']
UpperCAmelCase : str = tokenizer.tokenize(__A )
self.assertListEqual(__A, __A )
UpperCAmelCase : Dict = '''今天天气真好!'''
UpperCAmelCase : Optional[int] = [tokenizer.bos_token] + tokens
UpperCAmelCase : Optional[Any] = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), __A )
UpperCAmelCase : List[str] = tokenizer.decode(__A )
self.assertEqual(__A, __A )
| 336 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : Dict = {"vocab_file": "vocab.txt"}
_lowerCamelCase : List[str] = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase : List[Any] = {
"facebook/esm2_t6_8M_UR50D": 1_0_2_4,
"facebook/esm2_t12_35M_UR50D": 1_0_2_4,
}
def a__ ( UpperCAmelCase : List[str] ) -> Any:
with open(UpperCAmelCase , '''r''' ) as f:
UpperCAmelCase : Dict = f.read().splitlines()
return [l.strip() for l in lines]
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ):
super().__init__(**__A )
UpperCAmelCase : Tuple = load_vocab_file(__A )
UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) )
UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase : Union[str, Any] = unk_token
UpperCAmelCase : Optional[Any] = cls_token
UpperCAmelCase : Optional[int] = pad_token
UpperCAmelCase : Optional[int] = mask_token
UpperCAmelCase : List[str] = eos_token
UpperCAmelCase : Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __magic_name__ ( self : Tuple, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : List[Any], __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ):
return text.split()
def __magic_name__ ( self : Optional[int], __A : Dict=False ):
return len(self._id_to_token )
def __magic_name__ ( self : int ):
return {token: i for i, token in enumerate(self.all_tokens )}
def __magic_name__ ( self : Tuple, __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ):
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
mask += [0] * len(__A ) + [1]
return mask
def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ):
UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(__A, '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __magic_name__ ( self : Dict ):
return self.get_vocab_size(with_added_tokens=__A )
def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ):
return super()._add_tokens(__A, special_tokens=__A )
| 336 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
_lowerCamelCase : str = (7_2_0, 1_2_8_0) # Height, Width
_lowerCamelCase : Dict = (0.4, 0.6) # if height or width lower than this scale, drop it.
_lowerCamelCase : List[str] = 1 / 1_0_0
_lowerCamelCase : List[str] = ""
_lowerCamelCase : Tuple = ""
_lowerCamelCase : Optional[Any] = ""
_lowerCamelCase : Tuple = 2_5_0
def a__ ( ) -> None:
UpperCAmelCase , UpperCAmelCase : int = get_dataset(UpperCAmelCase , UpperCAmelCase )
for index in range(UpperCAmelCase ):
UpperCAmelCase : str = random.sample(range(len(UpperCAmelCase ) ) , 4 )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = update_image_and_anno(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , filter_scale=UpperCAmelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase : Dict = random_chars(32 )
UpperCAmelCase : Union[str, Any] = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
UpperCAmelCase : Optional[int] = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'''
cva.imwrite(f'''{file_root}.jpg''' , UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' )
UpperCAmelCase : Tuple = []
for anno in new_annos:
UpperCAmelCase : str = anno[3] - anno[1]
UpperCAmelCase : Tuple = anno[4] - anno[2]
UpperCAmelCase : Dict = anno[1] + width / 2
UpperCAmelCase : Any = anno[2] + height / 2
UpperCAmelCase : List[str] = f'''{anno[0]} {x_center} {y_center} {width} {height}'''
annos_list.append(UpperCAmelCase )
with open(f'''{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : str ) -> tuple[list, list]:
UpperCAmelCase : str = []
UpperCAmelCase : Any = []
for label_file in glob.glob(os.path.join(UpperCAmelCase , '''*.txt''' ) ):
UpperCAmelCase : str = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(UpperCAmelCase ) as in_file:
UpperCAmelCase : Tuple = in_file.readlines()
UpperCAmelCase : int = os.path.join(UpperCAmelCase , f'''{label_name}.jpg''' )
UpperCAmelCase : Any = []
for obj_list in obj_lists:
UpperCAmelCase : int = obj_list.rstrip('''\n''' ).split(''' ''' )
UpperCAmelCase : Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2
UpperCAmelCase : Optional[int] = float(obj[2] ) - float(obj[4] ) / 2
UpperCAmelCase : Any = float(obj[1] ) + float(obj[3] ) / 2
UpperCAmelCase : List[Any] = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(UpperCAmelCase )
labels.append(UpperCAmelCase )
return img_paths, labels
def a__ ( UpperCAmelCase : list , UpperCAmelCase : list , UpperCAmelCase : list[int] , UpperCAmelCase : tuple[int, int] , UpperCAmelCase : tuple[float, float] , UpperCAmelCase : float = 0.0 , ) -> tuple[list, list, str]:
UpperCAmelCase : List[str] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
UpperCAmelCase : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
UpperCAmelCase : Union[str, Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
UpperCAmelCase : Optional[int] = int(scale_x * output_size[1] )
UpperCAmelCase : Any = int(scale_y * output_size[0] )
UpperCAmelCase : Tuple = []
UpperCAmelCase : Any = []
for i, index in enumerate(UpperCAmelCase ):
UpperCAmelCase : List[str] = all_img_list[index]
path_list.append(UpperCAmelCase )
UpperCAmelCase : Dict = all_annos[index]
UpperCAmelCase : Tuple = cva.imread(UpperCAmelCase )
if i == 0: # top-left
UpperCAmelCase : Dict = cva.resize(UpperCAmelCase , (divid_point_x, divid_point_y) )
UpperCAmelCase : Dict = img
for bbox in img_annos:
UpperCAmelCase : List[Any] = bbox[1] * scale_x
UpperCAmelCase : Tuple = bbox[2] * scale_y
UpperCAmelCase : Union[str, Any] = bbox[3] * scale_x
UpperCAmelCase : Any = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
UpperCAmelCase : List[Any] = cva.resize(UpperCAmelCase , (output_size[1] - divid_point_x, divid_point_y) )
UpperCAmelCase : Tuple = img
for bbox in img_annos:
UpperCAmelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x)
UpperCAmelCase : int = bbox[2] * scale_y
UpperCAmelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x)
UpperCAmelCase : Any = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
UpperCAmelCase : Dict = cva.resize(UpperCAmelCase , (divid_point_x, output_size[0] - divid_point_y) )
UpperCAmelCase : Optional[Any] = img
for bbox in img_annos:
UpperCAmelCase : Union[str, Any] = bbox[1] * scale_x
UpperCAmelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y)
UpperCAmelCase : Any = bbox[3] * scale_x
UpperCAmelCase : Tuple = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
UpperCAmelCase : List[str] = cva.resize(
UpperCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
UpperCAmelCase : int = img
for bbox in img_annos:
UpperCAmelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x)
UpperCAmelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y)
UpperCAmelCase : int = scale_x + bbox[3] * (1 - scale_x)
UpperCAmelCase : Optional[int] = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
UpperCAmelCase : Union[str, Any] = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def a__ ( UpperCAmelCase : int ) -> str:
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase : List[str] = ascii_lowercase + digits
return "".join(random.choice(UpperCAmelCase ) for _ in range(UpperCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 336 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : str = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) )
self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) )
class __UpperCAmelCase :
def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ):
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : List[str] = num_channels
UpperCAmelCase : str = image_size
UpperCAmelCase : Optional[int] = depth_multiplier
UpperCAmelCase : Union[str, Any] = depth_divisible_by
UpperCAmelCase : Optional[Any] = min_depth
UpperCAmelCase : List[str] = expand_ratio
UpperCAmelCase : Dict = tf_padding
UpperCAmelCase : str = output_stride
UpperCAmelCase : Union[str, Any] = first_layer_is_expansion
UpperCAmelCase : List[Any] = finegrained_output
UpperCAmelCase : Optional[Any] = hidden_act
UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
UpperCAmelCase : Optional[Any] = classifier_dropout_prob
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : List[str] = is_training
UpperCAmelCase : Tuple = num_labels
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Any = scope
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Dict = None
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels )
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def __magic_name__ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ):
UpperCAmelCase : Any = MobileNetVaModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[Any] = model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
self.parent.assertEqual(
result.pooler_output.shape, (self.batch_size, self.last_hidden_size), )
def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ):
UpperCAmelCase : Optional[int] = self.num_labels
UpperCAmelCase : Any = MobileNetVaForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[int] = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ):
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCAmelCase : Optional[Any] = model(__A, labels=__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs
UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
"""feature-extraction""": MobileNetVaModel,
"""image-classification""": MobileNetVaForImageClassification,
"""image-segmentation""": MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = MobileNetVaModelTester(self )
UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A )
def __magic_name__ ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' )
def __magic_name__ ( self : Tuple ):
pass
@unittest.skip(reason='''MobileNetV2 does not output attentions''' )
def __magic_name__ ( self : Any ):
pass
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(__A )
UpperCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase : Any = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : int ):
def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ):
UpperCAmelCase : Union[str, Any] = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Optional[Any] = outputs.hidden_states
UpperCAmelCase : List[Any] = 1_6
self.assertEqual(len(__A ), __A )
UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : int ):
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__A )
@slow
def __magic_name__ ( self : Dict ):
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> int:
UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[Any] ):
return (
MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None
)
@slow
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A )
UpperCAmelCase : Optional[int] = self.default_image_processor
UpperCAmelCase : Optional[Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : str = model(**__A )
# verify the logits
UpperCAmelCase : int = torch.Size((1, 1_0_0_1) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = model.to(__A )
UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = prepare_img()
UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(**__A )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify the logits
UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) )
self.assertEqual(logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor(
[
[[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]],
[[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]],
[[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]],
], device=__A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
| 336 | 1 |
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_lowerCamelCase : Any = HfApi()
_lowerCamelCase : Optional[int] = {}
# fmt: off
_lowerCamelCase : List[str] = torch.tensor([
-0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7,
1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9,
-1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9,
0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7
])
_lowerCamelCase : Optional[Any] = torch.tensor([
-2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6,
1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8,
-2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8,
2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5
])
_lowerCamelCase : int = torch.tensor([
-0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9,
-0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4,
-0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5,
0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3
])
_lowerCamelCase : Dict = torch.tensor([
0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2,
-0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9,
0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5,
-0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5
])
_lowerCamelCase : Tuple = torch.tensor([
0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3,
-0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5,
0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9,
-0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6
])
_lowerCamelCase : Dict = torch.tensor([
0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8,
-0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0,
0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3,
-0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1
])
_lowerCamelCase : List[str] = torch.tensor([
0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2,
-0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8,
0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4,
-0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0
])
_lowerCamelCase : Any = torch.tensor([
0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2,
-0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0,
0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6,
-0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3
])
_lowerCamelCase : Dict = torch.tensor([
-1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0,
1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3,
-2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0,
1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1])
_lowerCamelCase : Optional[int] = torch.tensor([
-1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4,
0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1,
-2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9,
1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6
])
_lowerCamelCase : Optional[Any] = torch.tensor([
-1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2,
0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7,
-2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1,
1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5
])
_lowerCamelCase : int = torch.tensor([
-2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9,
1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1,
-3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1,
3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6
])
_lowerCamelCase : Union[str, Any] = torch.tensor([
-2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0,
1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8,
-2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5,
2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3
])
_lowerCamelCase : Optional[Any] = torch.tensor([
-2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6,
1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8,
-3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0,
3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3
])
_lowerCamelCase : List[Any] = torch.tensor([
-1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4,
1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1,
-2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9,
1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9
])
# fmt: on
_lowerCamelCase : Union[str, Any] = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_lowerCamelCase : Optional[Any] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith("CompVis"):
_lowerCamelCase : Union[str, Any] = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_lowerCamelCase : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_lowerCamelCase : Any = torch.tensor([1_0] * noise.shape[0])
with torch.no_grad():
_lowerCamelCase : Optional[int] = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :3_0], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3
)
print(f"""{mod.modelId} has passed successfully!!!""")
| 336 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_lowerCamelCase : str = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """codegen"""
UpperCamelCase = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ):
UpperCAmelCase : int = vocab_size
UpperCAmelCase : Tuple = n_ctx
UpperCAmelCase : Tuple = n_positions
UpperCAmelCase : Optional[int] = n_embd
UpperCAmelCase : Union[str, Any] = n_layer
UpperCAmelCase : List[str] = n_head
UpperCAmelCase : Tuple = n_inner
UpperCAmelCase : int = rotary_dim
UpperCAmelCase : List[Any] = activation_function
UpperCAmelCase : List[str] = resid_pdrop
UpperCAmelCase : Optional[Any] = embd_pdrop
UpperCAmelCase : str = attn_pdrop
UpperCAmelCase : Tuple = layer_norm_epsilon
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Union[str, Any] = use_cache
UpperCAmelCase : Any = bos_token_id
UpperCAmelCase : List[str] = eos_token_id
super().__init__(
bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A )
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ):
super().__init__(__A, task=__A, patching_specs=__A, use_past=__A )
if not getattr(self._config, '''pad_token_id''', __A ):
# TODO: how to do that better?
UpperCAmelCase : Union[str, Any] = 0
@property
def __magic_name__ ( self : str ):
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__A, direction='''inputs''' )
UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __magic_name__ ( self : Dict ):
return self._config.n_layer
@property
def __magic_name__ ( self : List[str] ):
return self._config.n_head
def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ):
UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs(
__A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A )
# We need to order the input in the way they appears in the forward()
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase : str = seqlen + 2
UpperCAmelCase : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
UpperCAmelCase : Optional[int] = [
(torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers )
]
UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask''']
if self.use_past:
UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype
UpperCAmelCase : Dict = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 )
return ordered_inputs
@property
def __magic_name__ ( self : Tuple ):
return 1_3
| 336 | 1 |
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"stable diffusion controlnet",
"0.22.0",
"Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.",
standard_warn=False,
stacklevel=3,
)
| 336 |
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 336 | 1 |
import os
from math import logaa
def a__ ( UpperCAmelCase : str = "base_exp.txt" ) -> int:
UpperCAmelCase : float = 0
UpperCAmelCase : Any = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCAmelCase ) , UpperCAmelCase ) ) ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = list(map(UpperCAmelCase , line.split(''',''' ) ) )
if x * logaa(UpperCAmelCase ) > largest:
UpperCAmelCase : str = x * logaa(UpperCAmelCase )
UpperCAmelCase : List[Any] = i + 1
return result
if __name__ == "__main__":
print(solution())
| 336 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class __UpperCAmelCase :
# setable values
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None # sigma(t_i)
@classmethod
def __magic_name__ ( cls : Any ):
return cls()
@dataclass
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = 42
UpperCamelCase = 42
UpperCamelCase = 42
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@property
def __magic_name__ ( self : Optional[int] ):
return True
@register_to_config
def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ):
pass
def __magic_name__ ( self : Optional[Any] ):
return KarrasVeSchedulerState.create()
def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ):
UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy()
UpperCAmelCase : Union[str, Any] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, )
def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ):
if self.config.s_min <= sigma <= self.config.s_max:
UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 )
else:
UpperCAmelCase : Optional[int] = 0
# sample eps ~ N(0, S_noise^2 * I)
UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 )
UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape )
UpperCAmelCase : Tuple = sigma + gamma * sigma
UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ):
UpperCAmelCase : int = sample_hat + sigma_hat * model_output
UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat
UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A )
def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ):
UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output
UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev
UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A )
def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ):
raise NotImplementedError()
| 336 | 1 |
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int]=0.999 , UpperCAmelCase : Dict="cosine" , ) -> Tuple:
if alpha_transform_type == "cosine":
def alpha_bar_fn(UpperCAmelCase : int ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(UpperCAmelCase : Union[str, Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
UpperCAmelCase : List[Any] = []
for i in range(UpperCAmelCase ):
UpperCAmelCase : int = i / num_diffusion_timesteps
UpperCAmelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(UpperCAmelCase ) / alpha_bar_fn(UpperCAmelCase ) , UpperCAmelCase ) )
return torch.tensor(UpperCAmelCase , dtype=torch.floataa )
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
UpperCamelCase = [e.name for e in KarrasDiffusionSchedulers]
UpperCamelCase = 2
@register_to_config
def __init__( self : Optional[int], __A : int = 1_0_0_0, __A : float = 0.0_0_0_8_5, __A : float = 0.0_1_2, __A : str = "linear", __A : Optional[Union[np.ndarray, List[float]]] = None, __A : str = "epsilon", __A : str = "linspace", __A : int = 0, ):
if trained_betas is not None:
UpperCAmelCase : Optional[int] = torch.tensor(__A, dtype=torch.floataa )
elif beta_schedule == "linear":
UpperCAmelCase : List[str] = torch.linspace(__A, __A, __A, dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCAmelCase : List[Any] = (
torch.linspace(beta_start**0.5, beta_end**0.5, __A, dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCAmelCase : Dict = betas_for_alpha_bar(__A )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
UpperCAmelCase : str = 1.0 - self.betas
UpperCAmelCase : Any = torch.cumprod(self.alphas, dim=0 )
# set all values
self.set_timesteps(__A, __A, __A )
def __magic_name__ ( self : Optional[int], __A : str, __A : Optional[int]=None ):
if schedule_timesteps is None:
UpperCAmelCase : List[str] = self.timesteps
UpperCAmelCase : List[str] = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
UpperCAmelCase : int = 1 if len(__A ) > 1 else 0
else:
UpperCAmelCase : Optional[int] = timestep.cpu().item() if torch.is_tensor(__A ) else timestep
UpperCAmelCase : Any = self._index_counter[timestep_int]
return indices[pos].item()
@property
def __magic_name__ ( self : List[str] ):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def __magic_name__ ( self : Optional[int], __A : torch.FloatTensor, __A : Union[float, torch.FloatTensor], ):
UpperCAmelCase : Any = self.index_for_timestep(__A )
if self.state_in_first_order:
UpperCAmelCase : List[Any] = self.sigmas[step_index]
else:
UpperCAmelCase : int = self.sigmas_interpol[step_index]
UpperCAmelCase : List[str] = sample / ((sigma**2 + 1) ** 0.5)
return sample
def __magic_name__ ( self : Dict, __A : int, __A : Union[str, torch.device] = None, __A : Optional[int] = None, ):
UpperCAmelCase : Union[str, Any] = num_inference_steps
UpperCAmelCase : Optional[int] = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
UpperCAmelCase : List[Any] = np.linspace(0, num_train_timesteps - 1, __A, dtype=__A )[::-1].copy()
elif self.config.timestep_spacing == "leading":
UpperCAmelCase : Dict = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCAmelCase : Any = (np.arange(0, __A ) * step_ratio).round()[::-1].copy().astype(__A )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
UpperCAmelCase : List[str] = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCAmelCase : List[Any] = (np.arange(__A, 0, -step_ratio )).round().copy().astype(__A )
timesteps -= 1
else:
raise ValueError(
F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
UpperCAmelCase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
UpperCAmelCase : Tuple = torch.from_numpy(np.log(__A ) ).to(__A )
UpperCAmelCase : Tuple = np.interp(__A, np.arange(0, len(__A ) ), __A )
UpperCAmelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
UpperCAmelCase : List[Any] = torch.from_numpy(__A ).to(device=__A )
# interpolate sigmas
UpperCAmelCase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp()
UpperCAmelCase : Optional[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
UpperCAmelCase : Tuple = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(__A ).startswith('''mps''' ):
# mps does not support float64
UpperCAmelCase : Optional[int] = torch.from_numpy(__A ).to(__A, dtype=torch.floataa )
else:
UpperCAmelCase : Dict = torch.from_numpy(__A ).to(__A )
# interpolate timesteps
UpperCAmelCase : Optional[int] = self.sigma_to_t(__A ).to(__A, dtype=timesteps.dtype )
UpperCAmelCase : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten()
UpperCAmelCase : Any = torch.cat([timesteps[:1], interleaved_timesteps] )
UpperCAmelCase : Any = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
UpperCAmelCase : int = defaultdict(__A )
def __magic_name__ ( self : Optional[int], __A : Optional[Any] ):
# get log sigma
UpperCAmelCase : int = sigma.log()
# get distribution
UpperCAmelCase : Dict = log_sigma - self.log_sigmas[:, None]
# get sigmas range
UpperCAmelCase : Any = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
UpperCAmelCase : List[Any] = low_idx + 1
UpperCAmelCase : Any = self.log_sigmas[low_idx]
UpperCAmelCase : Union[str, Any] = self.log_sigmas[high_idx]
# interpolate sigmas
UpperCAmelCase : Union[str, Any] = (low - log_sigma) / (low - high)
UpperCAmelCase : Union[str, Any] = w.clamp(0, 1 )
# transform interpolation to time range
UpperCAmelCase : Optional[Any] = (1 - w) * low_idx + w * high_idx
UpperCAmelCase : List[Any] = t.view(sigma.shape )
return t
@property
def __magic_name__ ( self : int ):
return self.sample is None
def __magic_name__ ( self : Union[str, Any], __A : Union[torch.FloatTensor, np.ndarray], __A : Union[float, torch.FloatTensor], __A : Union[torch.FloatTensor, np.ndarray], __A : bool = True, ):
UpperCAmelCase : Tuple = self.index_for_timestep(__A )
# advance index counter by 1
UpperCAmelCase : Tuple = timestep.cpu().item() if torch.is_tensor(__A ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
UpperCAmelCase : str = self.sigmas[step_index]
UpperCAmelCase : Optional[int] = self.sigmas_interpol[step_index + 1]
UpperCAmelCase : str = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
UpperCAmelCase : Dict = self.sigmas[step_index - 1]
UpperCAmelCase : Optional[Any] = self.sigmas_interpol[step_index]
UpperCAmelCase : Tuple = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
UpperCAmelCase : Optional[int] = 0
UpperCAmelCase : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
UpperCAmelCase : Dict = sigma_hat if self.state_in_first_order else sigma_interpol
UpperCAmelCase : List[str] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol
UpperCAmelCase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError('''prediction_type not implemented yet: sample''' )
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
UpperCAmelCase : Tuple = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
UpperCAmelCase : Union[str, Any] = sigma_interpol - sigma_hat
# store for 2nd order step
UpperCAmelCase : Any = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
UpperCAmelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
UpperCAmelCase : Union[str, Any] = sigma_next - sigma_hat
UpperCAmelCase : Tuple = self.sample
UpperCAmelCase : str = None
UpperCAmelCase : List[str] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=__A )
def __magic_name__ ( self : Any, __A : torch.FloatTensor, __A : torch.FloatTensor, __A : torch.FloatTensor, ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
UpperCAmelCase : Union[str, Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(__A ):
# mps does not support float64
UpperCAmelCase : Union[str, Any] = self.timesteps.to(original_samples.device, dtype=torch.floataa )
UpperCAmelCase : Any = timesteps.to(original_samples.device, dtype=torch.floataa )
else:
UpperCAmelCase : Any = self.timesteps.to(original_samples.device )
UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device )
UpperCAmelCase : Dict = [self.index_for_timestep(__A, __A ) for t in timesteps]
UpperCAmelCase : Optional[int] = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
UpperCAmelCase : Optional[int] = sigma.unsqueeze(-1 )
UpperCAmelCase : Tuple = original_samples + noise * sigma
return noisy_samples
def __len__( self : List[str] ):
return self.config.num_train_timesteps
| 336 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __UpperCAmelCase ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def a__ ( ) -> Dict:
if os.name == "nt":
UpperCAmelCase : List[str] = CursorInfo()
UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Dict = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25l''' )
sys.stdout.flush()
def a__ ( ) -> Optional[int]:
if os.name == "nt":
UpperCAmelCase : int = CursorInfo()
UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Any = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25h''' )
sys.stdout.flush()
@contextmanager
def a__ ( ) -> Optional[Any]:
try:
hide_cursor()
yield
finally:
show_cursor()
| 336 | 1 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_lowerCamelCase : str = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """codegen"""
UpperCamelCase = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ):
UpperCAmelCase : int = vocab_size
UpperCAmelCase : Tuple = n_ctx
UpperCAmelCase : Tuple = n_positions
UpperCAmelCase : Optional[int] = n_embd
UpperCAmelCase : Union[str, Any] = n_layer
UpperCAmelCase : List[str] = n_head
UpperCAmelCase : Tuple = n_inner
UpperCAmelCase : int = rotary_dim
UpperCAmelCase : List[Any] = activation_function
UpperCAmelCase : List[str] = resid_pdrop
UpperCAmelCase : Optional[Any] = embd_pdrop
UpperCAmelCase : str = attn_pdrop
UpperCAmelCase : Tuple = layer_norm_epsilon
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Union[str, Any] = use_cache
UpperCAmelCase : Any = bos_token_id
UpperCAmelCase : List[str] = eos_token_id
super().__init__(
bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A )
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ):
super().__init__(__A, task=__A, patching_specs=__A, use_past=__A )
if not getattr(self._config, '''pad_token_id''', __A ):
# TODO: how to do that better?
UpperCAmelCase : Union[str, Any] = 0
@property
def __magic_name__ ( self : str ):
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__A, direction='''inputs''' )
UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __magic_name__ ( self : Dict ):
return self._config.n_layer
@property
def __magic_name__ ( self : List[str] ):
return self._config.n_head
def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ):
UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs(
__A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A )
# We need to order the input in the way they appears in the forward()
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase : str = seqlen + 2
UpperCAmelCase : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
UpperCAmelCase : Optional[int] = [
(torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers )
]
UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask''']
if self.use_past:
UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype
UpperCAmelCase : Dict = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 )
return ordered_inputs
@property
def __magic_name__ ( self : Tuple ):
return 1_3
| 336 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowerCamelCase : Tuple = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 336 | 1 |
_lowerCamelCase : Union[str, Any] = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
_lowerCamelCase : Union[str, Any] = {value: key for key, value in encode_dict.items()}
def a__ ( UpperCAmelCase : str ) -> str:
UpperCAmelCase : Optional[Any] = ''''''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('''encode() accepts only letters of the alphabet and spaces''' )
return encoded
def a__ ( UpperCAmelCase : str ) -> str:
if set(UpperCAmelCase ) - {"A", "B", " "} != set():
raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' )
UpperCAmelCase : str = ''''''
for word in coded.split():
while len(UpperCAmelCase ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase : int = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 336 |
from __future__ import annotations
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]:
if partitions <= 0:
raise ValueError('''partitions must be a positive number!''' )
if partitions > number_of_bytes:
raise ValueError('''partitions can not > number_of_bytes!''' )
UpperCAmelCase : str = number_of_bytes // partitions
UpperCAmelCase : Dict = []
for i in range(UpperCAmelCase ):
UpperCAmelCase : int = i * bytes_per_partition + 1
UpperCAmelCase : Optional[int] = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 1 |
from __future__ import annotations
import math
_lowerCamelCase : Tuple = "2020.9.26"
_lowerCamelCase : Optional[int] = "xcodz-dot, cclaus, dhruvmanila"
def a__ ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float ) -> tuple[float, float]:
if not all(isinstance(UpperCAmelCase , (float, int) ) for val in locals().values() ):
UpperCAmelCase : int = f'''Input values must either be float or int: {list(locals().values() )}'''
raise TypeError(UpperCAmelCase )
UpperCAmelCase : List[str] = ((x * distance) / (z + distance)) * scale
UpperCAmelCase : Any = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
def a__ ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : str , UpperCAmelCase : float ) -> tuple[float, float, float]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise TypeError('''Axis must be a str''' )
UpperCAmelCase : Optional[int] = locals()
del input_variables["axis"]
if not all(isinstance(UpperCAmelCase , (float, int) ) for val in input_variables.values() ):
UpperCAmelCase : Union[str, Any] = (
'''Input values except axis must either be float or int: '''
f'''{list(input_variables.values() )}'''
)
raise TypeError(UpperCAmelCase )
UpperCAmelCase : Optional[int] = (angle % 360) / 450 * 180 / math.pi
if axis == "z":
UpperCAmelCase : Any = x * math.cos(UpperCAmelCase ) - y * math.sin(UpperCAmelCase )
UpperCAmelCase : List[Any] = y * math.cos(UpperCAmelCase ) + x * math.sin(UpperCAmelCase )
UpperCAmelCase : Any = z
elif axis == "x":
UpperCAmelCase : List[str] = y * math.cos(UpperCAmelCase ) - z * math.sin(UpperCAmelCase )
UpperCAmelCase : str = z * math.cos(UpperCAmelCase ) + y * math.sin(UpperCAmelCase )
UpperCAmelCase : Dict = x
elif axis == "y":
UpperCAmelCase : Union[str, Any] = x * math.cos(UpperCAmelCase ) - z * math.sin(UpperCAmelCase )
UpperCAmelCase : Union[str, Any] = z * math.cos(UpperCAmelCase ) + x * math.sin(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = y
else:
raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' )
return new_x, new_y, new_z
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }""")
print(f"""{rotate(1.0, 2.0, 3.0, "y", 9_0.0) = }""")
| 336 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
_lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]:
if subparsers is not None:
UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description )
else:
UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description )
# Core arguments
UpperCAmelCase : Optional[int] = parser.add_argument_group(
'''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' )
config_args.add_argument(
'''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , )
config_args.add_argument(
'''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , )
config_args.add_argument(
'''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , )
UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' )
pod_args.add_argument(
'''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , )
pod_args.add_argument(
'''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , )
pod_args.add_argument(
'''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , )
pod_args.add_argument(
'''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , )
pod_args.add_argument(
'''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , )
pod_args.add_argument(
'''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' )
if subparsers is not None:
parser.set_defaults(func=UpperCAmelCase )
return parser
def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCAmelCase : List[Any] = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCAmelCase : List[str] = defaults.commands
if not args.tpu_name:
UpperCAmelCase : Tuple = defaults.tpu_name
if not args.tpu_zone:
UpperCAmelCase : int = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
UpperCAmelCase : Dict = '''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ):
UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}'''
if not args.command_file and not args.command:
raise ValueError('''You must specify either a command file or a command to run on the pod.''' )
if args.command_file:
with open(args.command_file , '''r''' ) as f:
UpperCAmelCase : int = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , UpperCAmelCase ):
UpperCAmelCase : int = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCAmelCase : Optional[int] = ['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [f'''pip install {args.accelerate_version}''']
new_cmd += args.command
UpperCAmelCase : int = '''; '''.join(UpperCAmelCase )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCAmelCase : Any = ['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(f'''Running {" ".join(UpperCAmelCase )}''' )
return
subprocess.run(UpperCAmelCase )
print('''Successfully setup pod.''' )
def a__ ( ) -> Any:
UpperCAmelCase : Any = tpu_command_parser()
UpperCAmelCase : Tuple = parser.parse_args()
tpu_command_launcher(UpperCAmelCase )
| 336 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : str = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """trocr"""
UpperCamelCase = ["""past_key_values"""]
UpperCamelCase = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self : int, __A : Any=5_0_2_6_5, __A : Union[str, Any]=1_0_2_4, __A : Any=1_2, __A : Optional[Any]=1_6, __A : Optional[Any]=4_0_9_6, __A : Any="gelu", __A : int=5_1_2, __A : Any=0.1, __A : Optional[int]=0.0, __A : int=0.0, __A : List[Any]=2, __A : List[str]=0.0_2, __A : Optional[int]=0.0, __A : Tuple=True, __A : Dict=False, __A : str=True, __A : Optional[Any]=True, __A : List[str]=1, __A : str=0, __A : Optional[Any]=2, **__A : List[Any], ):
UpperCAmelCase : Dict = vocab_size
UpperCAmelCase : str = d_model
UpperCAmelCase : List[Any] = decoder_layers
UpperCAmelCase : List[str] = decoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_ffn_dim
UpperCAmelCase : Union[str, Any] = activation_function
UpperCAmelCase : List[str] = max_position_embeddings
UpperCAmelCase : Dict = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : int = activation_dropout
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : List[Any] = decoder_layerdrop
UpperCAmelCase : List[Any] = use_cache
UpperCAmelCase : Any = scale_embedding
UpperCAmelCase : List[str] = use_learned_position_embeddings
UpperCAmelCase : Optional[Any] = layernorm_embedding
super().__init__(
pad_token_id=__A, bos_token_id=__A, eos_token_id=__A, decoder_start_token_id=__A, **__A, )
| 336 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Optional[int] = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
print('''Loading config file...''' )
def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ):
UpperCAmelCase : List[str] = []
for k, v in d.items():
UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k
if isinstance(UpperCAmelCase , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() )
else:
items.append((new_key, v) )
return dict(UpperCAmelCase )
UpperCAmelCase : List[str] = argparse.Namespace()
with open(UpperCAmelCase , '''r''' ) as yaml_file:
try:
UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader )
UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase )
for k, v in flat_cfg.items():
setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) )
return config
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]:
UpperCAmelCase : int = MobileViTVaConfig()
UpperCAmelCase : str = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase : Any = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase : Any = 384
else:
UpperCAmelCase : Tuple = 256
UpperCAmelCase : int = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase : Optional[Any] = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase : str = 384
else:
UpperCAmelCase : Dict = 256
UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase : Optional[Any] = 151
UpperCAmelCase : Tuple = 512
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Tuple = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase : Dict = 21
UpperCAmelCase : str = 512
UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json'''
UpperCAmelCase : Dict = True
# orig_config
UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase )
assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase : Union[str, Any] = '''huggingface/label-files'''
UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : int = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : List[str] = val
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]:
if base_model:
UpperCAmelCase : Dict = ''''''
else:
UpperCAmelCase : Dict = '''mobilevitv2.'''
UpperCAmelCase : Optional[int] = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase : List[str] = k[8:]
else:
UpperCAmelCase : Dict = k
if ".block." in k:
UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase : Dict = [0, 1]
elif i == 4:
UpperCAmelCase : Dict = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase : int = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
UpperCAmelCase : Optional[Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
UpperCAmelCase : Any = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any:
UpperCAmelCase : str = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(UpperCAmelCase )
for k in keys_to_ignore:
state_dict.pop(UpperCAmelCase , UpperCAmelCase )
def a__ ( ) -> Union[str, Any]:
UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase )
# load original state_dict
UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval()
UpperCAmelCase : str = False
else:
UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval()
UpperCAmelCase : Any = False
# remove and rename some keys of load the original model
UpperCAmelCase : Optional[Any] = checkpoint
remove_unused_keys(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# load modified state_dict
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase : Optional[Any] = outputs.logits
UpperCAmelCase : int = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] )
assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 )
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if __name__ == "__main__":
_lowerCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 336 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
_lowerCamelCase : Dict = logging.get_logger(__name__)
_lowerCamelCase : int = {
"openai/imagegpt-small": "",
"openai/imagegpt-medium": "",
"openai/imagegpt-large": "",
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """imagegpt"""
UpperCamelCase = ["""past_key_values"""]
UpperCamelCase = {
"""hidden_size""": """n_embd""",
"""max_position_embeddings""": """n_positions""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[Any], __A : int=5_1_2 + 1, __A : Optional[int]=3_2 * 3_2, __A : str=5_1_2, __A : int=2_4, __A : Any=8, __A : List[str]=None, __A : str="quick_gelu", __A : str=0.1, __A : int=0.1, __A : List[str]=0.1, __A : Tuple=1E-5, __A : str=0.0_2, __A : str=True, __A : Union[str, Any]=True, __A : Union[str, Any]=False, __A : Any=False, __A : int=False, **__A : int, ):
UpperCAmelCase : Any = vocab_size
UpperCAmelCase : Optional[int] = n_positions
UpperCAmelCase : Union[str, Any] = n_embd
UpperCAmelCase : List[Any] = n_layer
UpperCAmelCase : str = n_head
UpperCAmelCase : str = n_inner
UpperCAmelCase : str = activation_function
UpperCAmelCase : Optional[Any] = resid_pdrop
UpperCAmelCase : str = embd_pdrop
UpperCAmelCase : List[str] = attn_pdrop
UpperCAmelCase : List[str] = layer_norm_epsilon
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Dict = scale_attn_weights
UpperCAmelCase : List[str] = use_cache
UpperCAmelCase : Any = scale_attn_by_inverse_layer_idx
UpperCAmelCase : Union[str, Any] = reorder_and_upcast_attn
UpperCAmelCase : Optional[int] = tie_word_embeddings
super().__init__(tie_word_embeddings=__A, **__A )
class __UpperCAmelCase ( lowerCamelCase__ ):
@property
def __magic_name__ ( self : int ):
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
] )
def __magic_name__ ( self : str, __A : "FeatureExtractionMixin", __A : int = 1, __A : int = -1, __A : bool = False, __A : Optional["TensorType"] = None, __A : int = 3, __A : int = 3_2, __A : int = 3_2, ):
UpperCAmelCase : int = self._generate_dummy_images(__A, __A, __A, __A )
UpperCAmelCase : Dict = dict(preprocessor(images=__A, return_tensors=__A ) )
return inputs
| 336 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class __UpperCAmelCase ( lowerCamelCase__ ):
def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
UpperCAmelCase : str = '''__cached_''' + self.fget.__name__
UpperCAmelCase : int = getattr(__A, __A, __A )
if cached is None:
UpperCAmelCase : Any = self.fget(__A )
setattr(__A, __A, __A )
return cached
def a__ ( UpperCAmelCase : Optional[Any] ) -> Any:
UpperCAmelCase : Any = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'''invalid truth value {val!r}''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_torch_fx_proxy(UpperCAmelCase ):
return True
if is_torch_available():
import torch
if isinstance(UpperCAmelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(UpperCAmelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]:
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : str ) -> Tuple:
return _is_numpy(UpperCAmelCase )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
import torch
return isinstance(UpperCAmelCase , torch.Tensor )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
return False if not is_torch_available() else _is_torch(UpperCAmelCase )
def a__ ( UpperCAmelCase : Tuple ) -> List[str]:
import torch
return isinstance(UpperCAmelCase , torch.device )
def a__ ( UpperCAmelCase : Any ) -> Any:
return False if not is_torch_available() else _is_torch_device(UpperCAmelCase )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
import torch
if isinstance(UpperCAmelCase , UpperCAmelCase ):
if hasattr(UpperCAmelCase , UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase )
else:
return False
return isinstance(UpperCAmelCase , torch.dtype )
def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase )
def a__ ( UpperCAmelCase : Any ) -> str:
import tensorflow as tf
return isinstance(UpperCAmelCase , tf.Tensor )
def a__ ( UpperCAmelCase : int ) -> Union[str, Any]:
return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[str] ) -> Tuple:
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(UpperCAmelCase )
return type(UpperCAmelCase ) == tf.Tensor
def a__ ( UpperCAmelCase : int ) -> List[Any]:
return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[Any] ) -> Dict:
import jax.numpy as jnp # noqa: F811
return isinstance(UpperCAmelCase , jnp.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]:
return False if not is_flax_available() else _is_jax(UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Tuple:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return [to_py_obj(UpperCAmelCase ) for o in obj]
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase ).tolist()
elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def a__ ( UpperCAmelCase : Any ) -> List[str]:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return np.array(UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase )
else:
return obj
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Optional[Any] = fields(self )
# Safety and consistency checks
if not len(__A ):
raise ValueError(F'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' )
UpperCAmelCase : int = getattr(self, class_fields[0].name )
UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__A ):
if isinstance(__A, __A ):
UpperCAmelCase : Tuple = first_field.items()
UpperCAmelCase : Any = True
else:
try:
UpperCAmelCase : Optional[Any] = iter(__A )
UpperCAmelCase : Optional[Any] = True
except TypeError:
UpperCAmelCase : Optional[int] = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__A ):
if (
not isinstance(__A, (list, tuple) )
or not len(__A ) == 2
or not isinstance(element[0], __A )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
UpperCAmelCase : Any = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self, element[0], element[1] )
if element[1] is not None:
UpperCAmelCase : Union[str, Any] = element[1]
elif first_field is not None:
UpperCAmelCase : Union[str, Any] = first_field
else:
for field in class_fields:
UpperCAmelCase : Optional[Any] = getattr(self, field.name )
if v is not None:
UpperCAmelCase : Optional[int] = v
def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ):
raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ):
raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Any, *__A : Dict, **__A : str ):
raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ):
raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self : List[str], __A : List[str] ):
if isinstance(__A, __A ):
UpperCAmelCase : int = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__A, __A )
super().__setattr__(__A, __A )
def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ):
# Will raise a KeyException if needed
super().__setitem__(__A, __A )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__A, __A )
def __magic_name__ ( self : List[str] ):
return tuple(self[k] for k in self.keys() )
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@classmethod
def __magic_name__ ( cls : List[Any], __A : Tuple ):
raise ValueError(
F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """longest"""
UpperCamelCase = """max_length"""
UpperCamelCase = """do_not_pad"""
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """pt"""
UpperCamelCase = """tf"""
UpperCamelCase = """np"""
UpperCamelCase = """jax"""
class __UpperCAmelCase :
def __init__( self : Any, __A : List[ContextManager] ):
UpperCAmelCase : Tuple = context_managers
UpperCAmelCase : Tuple = ExitStack()
def __enter__( self : Any ):
for context_manager in self.context_managers:
self.stack.enter_context(__A )
def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ):
self.stack.__exit__(*__A, **__A )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> str:
UpperCAmelCase : int = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def a__ ( UpperCAmelCase : Dict ) -> Any:
UpperCAmelCase : List[Any] = model_class.__name__
UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]:
def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ):
for k, v in d.items():
UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k
if v and isinstance(UpperCAmelCase , UpperCAmelCase ):
yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items()
else:
yield key, v
return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) )
@contextmanager
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]:
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]:
if is_numpy_array(UpperCAmelCase ):
return np.transpose(UpperCAmelCase , axes=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.T if axes is None else array.permute(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.reshape(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.reshape(UpperCAmelCase , UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any:
if is_numpy_array(UpperCAmelCase ):
return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str:
if is_numpy_array(UpperCAmelCase ):
return np.expand_dims(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.unsqueeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.size(UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.numel()
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.size(UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return array.size
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict:
for key, value in auto_map.items():
if isinstance(UpperCAmelCase , (tuple, list) ):
UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
UpperCAmelCase : List[Any] = f'''{repo_id}--{value}'''
return auto_map
def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]:
for base_class in inspect.getmro(UpperCAmelCase ):
UpperCAmelCase : Any = base_class.__module__
UpperCAmelCase : Dict = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'''Could not infer framework from class {model_class}.''' )
| 336 | 1 |
def a__ ( ) -> list[list[int]]:
return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )]
_lowerCamelCase : List[str] = generate_large_matrix()
_lowerCamelCase : Union[str, Any] = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def a__ ( UpperCAmelCase : list[list[int]] ) -> None:
assert all(row == sorted(UpperCAmelCase , reverse=UpperCAmelCase ) for row in grid )
assert all(list(UpperCAmelCase ) == sorted(UpperCAmelCase , reverse=UpperCAmelCase ) for col in zip(*UpperCAmelCase ) )
def a__ ( UpperCAmelCase : list[int] ) -> int:
UpperCAmelCase : Union[str, Any] = 0
UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
UpperCAmelCase : Any = (left + right) // 2
UpperCAmelCase : List[str] = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
UpperCAmelCase : List[Any] = mid + 1
else:
UpperCAmelCase : Dict = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(UpperCAmelCase )
def a__ ( UpperCAmelCase : list[list[int]] ) -> int:
UpperCAmelCase : Dict = 0
UpperCAmelCase : List[Any] = len(grid[0] )
for i in range(len(UpperCAmelCase ) ):
UpperCAmelCase : Any = find_negative_index(grid[i][:bound] )
total += bound
return (len(UpperCAmelCase ) * len(grid[0] )) - total
def a__ ( UpperCAmelCase : list[list[int]] ) -> int:
return len([number for row in grid for number in row if number < 0] )
def a__ ( UpperCAmelCase : list[list[int]] ) -> int:
UpperCAmelCase : Tuple = 0
for row in grid:
for i, number in enumerate(UpperCAmelCase ):
if number < 0:
total += len(UpperCAmelCase ) - i
break
return total
def a__ ( ) -> None:
from timeit import timeit
print('''Running benchmarks''' )
UpperCAmelCase : Union[str, Any] = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
UpperCAmelCase : Any = timeit(f'''{func}(grid=grid)''' , setup=UpperCAmelCase , number=500 )
print(f'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 336 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = LayoutLMTokenizer
UpperCamelCase = LayoutLMTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
def __magic_name__ ( self : Any ):
super().setUp()
UpperCAmelCase : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __magic_name__ ( self : Union[str, Any], **__A : List[str] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A )
def __magic_name__ ( self : Optional[int], __A : int ):
UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running'''
UpperCAmelCase : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __magic_name__ ( self : Any ):
UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file )
UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] )
def __magic_name__ ( self : Optional[int] ):
pass
| 336 | 1 |
from string import ascii_lowercase, ascii_uppercase
def a__ ( UpperCAmelCase : str ) -> str:
if not sentence:
return ""
UpperCAmelCase : Union[str, Any] = dict(zip(UpperCAmelCase , UpperCAmelCase ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 336 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __UpperCAmelCase :
def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : int = num_channels
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Optional[int] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Tuple = mask_ratio
UpperCAmelCase : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCAmelCase : Tuple = (image_size // patch_size) ** 2
UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : str = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Optional[Any] ):
return ViTMAEConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, )
def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ):
UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A )
UpperCAmelCase : Tuple = model(__A, training=__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ):
UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A )
UpperCAmelCase : int = model(__A, training=__A )
# expected sequence length = num_patches
UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2
UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCAmelCase : Tuple = 1
UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A )
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = model(__A, training=__A )
UpperCAmelCase : Union[str, Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs
UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = TFViTMAEModelTester(self )
UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) )
UpperCAmelCase : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) )
def __magic_name__ ( self : str ):
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Any = model_class(__A )
UpperCAmelCase : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : int = [*signature.parameters.keys()]
UpperCAmelCase : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__A )
def __magic_name__ ( self : int ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : str = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : Dict = model(__A, noise=__A )
UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A )
UpperCAmelCase : Dict = outputs_dict[0].numpy()
UpperCAmelCase : Tuple = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 )
def __magic_name__ ( self : Optional[Any] ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__A : Union[str, Any] ):
UpperCAmelCase : str = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__A ):
UpperCAmelCase : Tuple = v.numpy()
else:
UpperCAmelCase : str = np.array(__A )
return inputs_np_dict
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : Any = self._prepare_for_class(__A, __A )
UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A )
UpperCAmelCase : str = model(__A, noise=__A )
UpperCAmelCase : str = model(**__A, noise=__A )
self.assert_outputs_same(__A, __A )
def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ):
# make masks reproducible
np.random.seed(2 )
UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : int = tf.constant(__A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCAmelCase : List[Any] = tf_noise
super().check_pt_tf_models(__A, __A, __A )
def __magic_name__ ( self : str ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Union[str, Any] = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__A )
if module_member_name.endswith('''MainLayer''' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )]
for module_member in (getattr(__A, __A ),)
if isinstance(__A, __A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__A, '''_keras_serializable''', __A )
}
UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : str = tf.convert_to_tensor(__A )
inputs_dict.update({'''noise''': noise} )
for main_layer_class in tf_main_layer_classes:
UpperCAmelCase : Tuple = main_layer_class(__A )
UpperCAmelCase : int = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) )
UpperCAmelCase : List[Any] = model(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' )
model.save(__A )
UpperCAmelCase : List[str] = tf.keras.models.load_model(
__A, custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__A, tf.keras.Model )
UpperCAmelCase : Tuple = model(__A )
self.assert_outputs_same(__A, __A )
@slow
def __magic_name__ ( self : Dict ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(__A )
UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A )
UpperCAmelCase : Union[str, Any] = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy()
UpperCAmelCase : Union[str, Any] = 0
else:
UpperCAmelCase : Optional[int] = outputs.logits.numpy()
UpperCAmelCase : int = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A, saved_model=__A )
UpperCAmelCase : Dict = model_class.from_pretrained(__A )
UpperCAmelCase : str = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy()
UpperCAmelCase : Dict = 0
else:
UpperCAmelCase : Any = after_outputs['''logits'''].numpy()
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__A, 1E-5 )
def __magic_name__ ( self : Optional[Any] ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : List[Any] = model(__A, noise=__A )
UpperCAmelCase : str = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__A )
UpperCAmelCase : int = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
UpperCAmelCase : str = model_class.from_config(model.config )
UpperCAmelCase : List[str] = new_model(__A ) # Build model
new_model.set_weights(model.get_weights() )
UpperCAmelCase : Tuple = new_model(__A, noise=__A )
self.assert_outputs_same(__A, __A )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def __magic_name__ ( self : Tuple ):
pass
@slow
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__A )
def a__ ( ) -> Dict:
UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[str] ):
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def __magic_name__ ( self : str ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' )
UpperCAmelCase : List[str] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCAmelCase : Optional[int] = ViTMAEConfig()
UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) )
# forward pass
UpperCAmelCase : Optional[int] = model(**__A, noise=__A )
# verify the logits
UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : List[str] = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
| 336 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = ShapEPipeline
UpperCamelCase = ["""prompt"""]
UpperCamelCase = ["""prompt"""]
UpperCamelCase = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def __magic_name__ ( self : str ):
return 3_2
@property
def __magic_name__ ( self : List[str] ):
return 3_2
@property
def __magic_name__ ( self : Any ):
return self.time_input_dim * 4
@property
def __magic_name__ ( self : List[str] ):
return 8
@property
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __magic_name__ ( self : Union[str, Any] ):
torch.manual_seed(0 )
UpperCAmelCase : Any = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, )
return CLIPTextModelWithProjection(__A )
@property
def __magic_name__ ( self : List[Any] ):
torch.manual_seed(0 )
UpperCAmelCase : Tuple = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 1_6,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 3_2,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
UpperCAmelCase : List[Any] = PriorTransformer(**__A )
return model
@property
def __magic_name__ ( self : List[Any] ):
torch.manual_seed(0 )
UpperCAmelCase : int = {
'''param_shapes''': (
(self.renderer_dim, 9_3),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 1_2,
'''background''': (
0.1,
0.1,
0.1,
),
}
UpperCAmelCase : Any = ShapERenderer(**__A )
return model
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Optional[Any] = self.dummy_prior
UpperCAmelCase : Union[str, Any] = self.dummy_text_encoder
UpperCAmelCase : Optional[int] = self.dummy_tokenizer
UpperCAmelCase : Dict = self.dummy_renderer
UpperCAmelCase : str = HeunDiscreteScheduler(
beta_schedule='''exp''', num_train_timesteps=1_0_2_4, prediction_type='''sample''', use_karras_sigmas=__A, clip_sample=__A, clip_sample_range=1.0, )
UpperCAmelCase : Dict = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __magic_name__ ( self : Tuple, __A : Dict, __A : Optional[int]=0 ):
if str(__A ).startswith('''mps''' ):
UpperCAmelCase : Tuple = torch.manual_seed(__A )
else:
UpperCAmelCase : List[Any] = torch.Generator(device=__A ).manual_seed(__A )
UpperCAmelCase : List[Any] = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 3_2,
'''output_type''': '''np''',
}
return inputs
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = '''cpu'''
UpperCAmelCase : Optional[Any] = self.get_dummy_components()
UpperCAmelCase : Union[str, Any] = self.pipeline_class(**__A )
UpperCAmelCase : List[Any] = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
UpperCAmelCase : Dict = pipe(**self.get_dummy_inputs(__A ) )
UpperCAmelCase : int = output.images[0]
UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (2_0, 3_2, 3_2, 3)
UpperCAmelCase : int = np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __magic_name__ ( self : Union[str, Any] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : str = torch_device == '''cpu'''
UpperCAmelCase : Optional[Any] = True
self._test_inference_batch_single_identical(
batch_size=2, test_max_difference=__A, relax_max_difference=__A, )
def __magic_name__ ( self : Dict ):
UpperCAmelCase : List[Any] = self.get_dummy_components()
UpperCAmelCase : str = self.pipeline_class(**__A )
UpperCAmelCase : Tuple = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : List[str] = 2
UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(__A )
for key in inputs.keys():
if key in self.batch_params:
UpperCAmelCase : List[str] = batch_size * [inputs[key]]
UpperCAmelCase : Tuple = pipe(**__A, num_images_per_prompt=__A )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __UpperCAmelCase ( unittest.TestCase ):
def __magic_name__ ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
UpperCAmelCase : Dict = ShapEPipeline.from_pretrained('''openai/shap-e''' )
UpperCAmelCase : Any = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
UpperCAmelCase : Union[str, Any] = torch.Generator(device=__A ).manual_seed(0 )
UpperCAmelCase : Optional[int] = pipe(
'''a shark''', generator=__A, guidance_scale=1_5.0, num_inference_steps=6_4, frame_size=6_4, output_type='''np''', ).images[0]
assert images.shape == (2_0, 6_4, 6_4, 3)
assert_mean_pixel_difference(__A, __A )
| 336 |
def a__ ( UpperCAmelCase : int ) -> int:
UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
UpperCAmelCase : Optional[Any] = 1
for n in range(m + 1 ):
for k in range(1 , UpperCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
_lowerCamelCase : List[Any] = int(input("Enter a number: ").strip())
print(partition(n))
except ValueError:
print("Please enter a number.")
else:
try:
_lowerCamelCase : str = int(sys.argv[1])
print(partition(n))
except ValueError:
print("Please pass a number.")
| 336 | 1 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = (PNDMScheduler,)
UpperCamelCase = (("""num_inference_steps""", 5_0),)
def __magic_name__ ( self : List[Any], **__A : List[str] ):
UpperCAmelCase : List[Any] = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
}
config.update(**__A )
return config
def __magic_name__ ( self : Dict, __A : List[str]=0, **__A : Union[str, Any] ):
UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase : Tuple = kwargs.pop('''num_inference_steps''', __A )
UpperCAmelCase : str = self.dummy_sample
UpperCAmelCase : List[Any] = 0.1 * sample
UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : List[str] = self.get_scheduler_config(**__A )
UpperCAmelCase : str = scheduler_class(**__A )
scheduler.set_timesteps(__A )
# copy over dummy past residuals
UpperCAmelCase : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__A )
UpperCAmelCase : int = scheduler_class.from_pretrained(__A )
new_scheduler.set_timesteps(__A )
# copy over dummy past residuals
UpperCAmelCase : int = dummy_past_residuals[:]
UpperCAmelCase : Dict = scheduler.step_prk(__A, __A, __A, **__A ).prev_sample
UpperCAmelCase : Any = new_scheduler.step_prk(__A, __A, __A, **__A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase : Optional[Any] = scheduler.step_plms(__A, __A, __A, **__A ).prev_sample
UpperCAmelCase : int = new_scheduler.step_plms(__A, __A, __A, **__A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __magic_name__ ( self : Optional[int] ):
pass
def __magic_name__ ( self : List[str], __A : Any=0, **__A : List[str] ):
UpperCAmelCase : int = dict(self.forward_default_kwargs )
UpperCAmelCase : Optional[int] = kwargs.pop('''num_inference_steps''', __A )
UpperCAmelCase : Union[str, Any] = self.dummy_sample
UpperCAmelCase : Dict = 0.1 * sample
UpperCAmelCase : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : List[Any] = self.get_scheduler_config()
UpperCAmelCase : Union[str, Any] = scheduler_class(**__A )
scheduler.set_timesteps(__A )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase : Dict = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__A )
UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(__A )
# copy over dummy past residuals
new_scheduler.set_timesteps(__A )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase : str = dummy_past_residuals[:]
UpperCAmelCase : int = scheduler.step_prk(__A, __A, __A, **__A ).prev_sample
UpperCAmelCase : List[str] = new_scheduler.step_prk(__A, __A, __A, **__A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase : Any = scheduler.step_plms(__A, __A, __A, **__A ).prev_sample
UpperCAmelCase : Tuple = new_scheduler.step_plms(__A, __A, __A, **__A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __magic_name__ ( self : Optional[int], **__A : List[Any] ):
UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase : List[Any] = self.get_scheduler_config(**__A )
UpperCAmelCase : int = scheduler_class(**__A )
UpperCAmelCase : Optional[Any] = 1_0
UpperCAmelCase : Optional[int] = self.dummy_model()
UpperCAmelCase : Dict = self.dummy_sample_deter
scheduler.set_timesteps(__A )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase : str = model(__A, __A )
UpperCAmelCase : List[str] = scheduler.step_prk(__A, __A, __A ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase : List[str] = model(__A, __A )
UpperCAmelCase : Dict = scheduler.step_plms(__A, __A, __A ).prev_sample
return sample
def __magic_name__ ( self : Any ):
UpperCAmelCase : Any = dict(self.forward_default_kwargs )
UpperCAmelCase : List[Any] = kwargs.pop('''num_inference_steps''', __A )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : Tuple = self.get_scheduler_config()
UpperCAmelCase : Optional[int] = scheduler_class(**__A )
UpperCAmelCase : Union[str, Any] = self.dummy_sample
UpperCAmelCase : Any = 0.1 * sample
if num_inference_steps is not None and hasattr(__A, '''set_timesteps''' ):
scheduler.set_timesteps(__A )
elif num_inference_steps is not None and not hasattr(__A, '''set_timesteps''' ):
UpperCAmelCase : Tuple = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]
UpperCAmelCase : Tuple = dummy_past_residuals[:]
UpperCAmelCase : Union[str, Any] = scheduler.step_prk(__A, 0, __A, **__A ).prev_sample
UpperCAmelCase : Any = scheduler.step_prk(__A, 1, __A, **__A ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
UpperCAmelCase : List[Any] = scheduler.step_plms(__A, 0, __A, **__A ).prev_sample
UpperCAmelCase : str = scheduler.step_plms(__A, 1, __A, **__A ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def __magic_name__ ( self : Any ):
for timesteps in [1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=__A )
def __magic_name__ ( self : Optional[Any] ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__A )
UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase : Tuple = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase : Optional[Any] = scheduler_class(**__A )
scheduler.set_timesteps(1_0 )
assert torch.equal(
scheduler.timesteps, torch.LongTensor(
[9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ), )
def __magic_name__ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1], [0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=__A, beta_end=__A )
def __magic_name__ ( self : int ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__A )
def __magic_name__ ( self : str ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__A )
def __magic_name__ ( self : Dict ):
for t in [1, 5, 1_0]:
self.check_over_forward(time_step=__A )
def __magic_name__ ( self : Tuple ):
for t, num_inference_steps in zip([1, 5, 1_0], [1_0, 5_0, 1_0_0] ):
self.check_over_forward(num_inference_steps=__A )
def __magic_name__ ( self : Optional[int] ):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
UpperCAmelCase : List[Any] = 2_7
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : Union[str, Any] = self.dummy_sample
UpperCAmelCase : Optional[Any] = 0.1 * sample
UpperCAmelCase : List[str] = self.get_scheduler_config()
UpperCAmelCase : Union[str, Any] = scheduler_class(**__A )
scheduler.set_timesteps(__A )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase : Optional[Any] = scheduler.step_prk(__A, __A, __A ).prev_sample
def __magic_name__ ( self : Optional[int] ):
with self.assertRaises(__A ):
UpperCAmelCase : List[Any] = self.scheduler_classes[0]
UpperCAmelCase : List[str] = self.get_scheduler_config()
UpperCAmelCase : Union[str, Any] = scheduler_class(**__A )
scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample ).prev_sample
def __magic_name__ ( self : int ):
UpperCAmelCase : int = self.full_loop()
UpperCAmelCase : Tuple = torch.sum(torch.abs(__A ) )
UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2
assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : Dict = self.full_loop(prediction_type='''v_prediction''' )
UpperCAmelCase : List[Any] = torch.sum(torch.abs(__A ) )
UpperCAmelCase : List[str] = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2
assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3
def __magic_name__ ( self : int ):
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase : Optional[Any] = self.full_loop(set_alpha_to_one=__A, beta_start=0.0_1 )
UpperCAmelCase : List[str] = torch.sum(torch.abs(__A ) )
UpperCAmelCase : str = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2
assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3
def __magic_name__ ( self : List[Any] ):
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase : Any = self.full_loop(set_alpha_to_one=__A, beta_start=0.0_1 )
UpperCAmelCase : Dict = torch.sum(torch.abs(__A ) )
UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
| 336 |
from __future__ import annotations
def a__ ( UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase )
# We need to create solution object to save path.
UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )]
UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase )
if solved:
print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) )
else:
print('''No solution exists!''' )
return solved
def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Dict = len(UpperCAmelCase )
# Final check point.
if i == j == (size - 1):
UpperCAmelCase : Dict = 1
return True
UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds
UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
UpperCAmelCase : str = 1
# check for directions
if (
run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase )
or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase )
):
return True
UpperCAmelCase : Any = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 1 |
from typing import TYPE_CHECKING
from ..utils import _LazyModule
_lowerCamelCase : int = {
"config": [
"EXTERNAL_DATA_FORMAT_SIZE_LIMIT",
"OnnxConfig",
"OnnxConfigWithPast",
"OnnxSeq2SeqConfigWithPast",
"PatchingSpec",
],
"convert": ["export", "validate_model_outputs"],
"features": ["FeaturesManager"],
"utils": ["ParameterFormat", "compute_serialized_parameters_size"],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
_lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 336 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __UpperCAmelCase :
def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Any = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Optional[Any] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : str = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = scope
UpperCAmelCase : List[str] = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
UpperCAmelCase : str = (self.image_size // 3_2) ** 2
UpperCAmelCase : List[str] = num_patches + 1
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : str = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Any ):
UpperCAmelCase : Dict = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [4, 8, 1_6, 3_2],
'''num_groups''': 2,
}
return ViTHybridConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, )
def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ):
UpperCAmelCase : int = ViTHybridModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Tuple = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ):
UpperCAmelCase : str = self.type_sequence_label_size
UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self : int ):
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs
UpperCAmelCase : int = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = ViTHybridModelTester(self )
UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : int ):
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
UpperCAmelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, nn.Linear ) )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[Any] = model_class(__A )
UpperCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : str = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = _config_zero_init(__A )
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(config=__A )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', )
@slow
def __magic_name__ ( self : List[str] ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> Tuple:
UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : str ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__A )
UpperCAmelCase : Tuple = self.default_image_processor
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**__A )
# verify the logits
UpperCAmelCase : str = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
@require_accelerate
def __magic_name__ ( self : Dict ):
UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' )
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' )
UpperCAmelCase : Tuple = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' )
UpperCAmelCase : Dict = model(**__A )
UpperCAmelCase : Any = outputs.logits
# model predicts one of the 1000 ImageNet classes
UpperCAmelCase : Dict = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
| 336 | 1 |
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
UpperCAmelCase : int = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b"
UpperCAmelCase : Optional[Any] = str(bin(UpperCAmelCase ) )[2:]
UpperCAmelCase : Tuple = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def a__ ( ) -> tuple[list[int], int]:
UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )]
UpperCAmelCase : Any = randint(-5_000 , 5_000 )
return (arr, r)
_lowerCamelCase : Any = make_dataset()
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]:
for triplet in permutations(UpperCAmelCase , 3 ):
if sum(UpperCAmelCase ) == target:
return tuple(sorted(UpperCAmelCase ) )
return (0, 0, 0)
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]:
arr.sort()
UpperCAmelCase : Tuple = len(UpperCAmelCase )
for i in range(n - 1 ):
UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def a__ ( ) -> tuple[float, float]:
UpperCAmelCase : Union[str, Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
UpperCAmelCase : Tuple = '''
triplet_sum1(*dataset)
'''
UpperCAmelCase : List[str] = '''
triplet_sum2(*dataset)
'''
UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
return (min(UpperCAmelCase ), min(UpperCAmelCase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCamelCase : int = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 336 | 1 |
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
| 336 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class __UpperCAmelCase :
def __magic_name__ ( self : int, __A : Dict ):
raise NotImplementedError()
def __magic_name__ ( self : int ):
raise NotImplementedError()
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ):
UpperCAmelCase : List[str] = tokenizer
UpperCAmelCase : str = skip_prompt
UpperCAmelCase : List[str] = decode_kwargs
# variables used in the streaming process
UpperCAmelCase : Dict = []
UpperCAmelCase : List[str] = 0
UpperCAmelCase : Union[str, Any] = True
def __magic_name__ ( self : Dict, __A : Optional[int] ):
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('''TextStreamer only supports batch size 1''' )
elif len(value.shape ) > 1:
UpperCAmelCase : Union[str, Any] = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
UpperCAmelCase : Optional[int] = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('''\n''' ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
# If the last token is a CJK character, we print the characters.
elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
self.print_len += len(__A )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1]
self.print_len += len(__A )
self.on_finalized_text(__A )
def __magic_name__ ( self : str ):
# Flush the cache, if it exists
if len(self.token_cache ) > 0:
UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
UpperCAmelCase : Dict = text[self.print_len :]
UpperCAmelCase : List[Any] = []
UpperCAmelCase : List[Any] = 0
else:
UpperCAmelCase : Dict = ''''''
UpperCAmelCase : str = True
self.on_finalized_text(__A, stream_end=__A )
def __magic_name__ ( self : List[str], __A : str, __A : bool = False ):
print(__A, flush=__A, end='''''' if not stream_end else None )
def __magic_name__ ( self : List[Any], __A : Optional[int] ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ):
super().__init__(__A, __A, **__A )
UpperCAmelCase : Dict = Queue()
UpperCAmelCase : Any = None
UpperCAmelCase : Any = timeout
def __magic_name__ ( self : Dict, __A : str, __A : bool = False ):
self.text_queue.put(__A, timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal, timeout=self.timeout )
def __iter__( self : int ):
return self
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 336 | 1 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ):
UpperCAmelCase : Any = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Any = seq_length
UpperCAmelCase : Tuple = is_training
UpperCAmelCase : str = use_attention_mask
UpperCAmelCase : List[str] = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : Any = num_choices
def __magic_name__ ( self : str ):
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : List[Any] = None
if self.use_attention_mask:
UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Any = None
if self.use_token_type_ids:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = RobertaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def __magic_name__ ( self : int ):
UpperCAmelCase : Any = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs
UpperCAmelCase : Any = True
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = True
UpperCamelCase = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Dict = FlaxRobertaModelTester(self )
@slow
def __magic_name__ ( self : Any ):
for model_class_name in self.all_model_classes:
UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A )
UpperCAmelCase : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__A )
| 336 |
import numpy
# List of input, output pairs
_lowerCamelCase : Dict = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
_lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
_lowerCamelCase : Dict = [2, 4, 1, 5]
_lowerCamelCase : Dict = len(train_data)
_lowerCamelCase : int = 0.0_0_9
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict:
return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output(
UpperCAmelCase , UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Any:
UpperCAmelCase : str = 0
for i in range(len(UpperCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict:
UpperCAmelCase : Optional[int] = 0
for i in range(UpperCAmelCase ):
if index == -1:
summation_value += _error(UpperCAmelCase )
else:
summation_value += _error(UpperCAmelCase ) * train_data[i][0][index]
return summation_value
def a__ ( UpperCAmelCase : Dict ) -> Dict:
UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m
return cost_derivative_value
def a__ ( ) -> List[Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase : List[str] = 0.000002
UpperCAmelCase : Any = 0
UpperCAmelCase : Dict = 0
while True:
j += 1
UpperCAmelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase ) ):
UpperCAmelCase : List[str] = get_cost_derivative(i - 1 )
UpperCAmelCase : Tuple = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ):
break
UpperCAmelCase : int = temp_parameter_vector
print(('''Number of iterations:''', j) )
def a__ ( ) -> List[Any]:
for i in range(len(UpperCAmelCase ) ):
print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 336 | 1 |
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : list[int] ) -> None:
UpperCAmelCase : List[str] = len(UpperCAmelCase )
print('''The following activities are selected:''' )
# The first activity is always selected
UpperCAmelCase : Union[str, Any] = 0
print(UpperCAmelCase , end=''',''' )
# Consider rest of the activities
for j in range(UpperCAmelCase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(UpperCAmelCase , end=''',''' )
UpperCAmelCase : Any = j
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5]
_lowerCamelCase : Optional[int] = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 336 |
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
UpperCAmelCase : Optional[Any] = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
UpperCAmelCase : Any = left
UpperCAmelCase : List[str] = point
elif point > right:
UpperCAmelCase : Any = right
UpperCAmelCase : List[str] = point
else:
if item < current_item:
UpperCAmelCase : Optional[int] = point - 1
else:
UpperCAmelCase : str = point + 1
return None
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
elif point > right:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 )
else:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> int:
if collection != sorted(UpperCAmelCase ):
raise ValueError('''Collection must be ascending sorted''' )
return True
if __name__ == "__main__":
import sys
_lowerCamelCase : Optional[int] = 0
if debug == 1:
_lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
_lowerCamelCase : List[Any] = 6_7
_lowerCamelCase : Optional[Any] = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 336 | 1 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class __UpperCAmelCase ( unittest.TestCase , lowerCamelCase__ ):
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Optional[Any] = load_tool('''text-classification''' )
self.tool.setup()
UpperCAmelCase : List[str] = load_tool('''text-classification''', remote=__A )
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = self.tool('''That\'s quite cool''', ['''positive''', '''negative'''] )
self.assertEqual(__A, '''positive''' )
def __magic_name__ ( self : str ):
UpperCAmelCase : str = self.remote_tool('''That\'s quite cool''', ['''positive''', '''negative'''] )
self.assertEqual(__A, '''positive''' )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Optional[Any] = self.tool(text='''That\'s quite cool''', labels=['''positive''', '''negative'''] )
self.assertEqual(__A, '''positive''' )
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Union[str, Any] = self.remote_tool(text='''That\'s quite cool''', labels=['''positive''', '''negative'''] )
self.assertEqual(__A, '''positive''' )
| 336 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Any = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else ''''''
UpperCAmelCase : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''),
(f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''),
(f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''),
(f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any:
for i in range(config.num_hidden_layers ):
UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' )
UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' )
UpperCAmelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase : str = q_bias
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : int = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' )
UpperCAmelCase : str = gamma_a
UpperCAmelCase : Dict = gamma_a
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : str = val
def a__ ( ) -> Optional[int]:
UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]:
UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True
UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
UpperCAmelCase : List[Any] = 1_024
UpperCAmelCase : Optional[Any] = 4_096
UpperCAmelCase : Any = 24
UpperCAmelCase : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 16
UpperCAmelCase : List[Any] = '''huggingface/label-files'''
UpperCAmelCase : Any = '''rvlcdip-id2label.json'''
UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = idalabel
UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model''']
UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase )
for src, dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase )
# load HuggingFace model
UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase )
model.eval()
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image
UpperCAmelCase : Dict = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase )
UpperCAmelCase : List[str] = prepare_img()
UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' )
UpperCAmelCase : str = encoding['''pixel_values''']
UpperCAmelCase : Any = model(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify logits
UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected"
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if push_to_hub:
if has_lm_head:
UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , )
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 336 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCamelCase : Optional[int] = logging.get_logger(__name__)
_lowerCamelCase : str = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """ibert"""
def __init__( self : Optional[Any], __A : Any=3_0_5_2_2, __A : Union[str, Any]=7_6_8, __A : Optional[int]=1_2, __A : Union[str, Any]=1_2, __A : str=3_0_7_2, __A : Tuple="gelu", __A : int=0.1, __A : Optional[int]=0.1, __A : Optional[int]=5_1_2, __A : str=2, __A : Tuple=0.0_2, __A : Tuple=1E-12, __A : int=1, __A : str=0, __A : Any=2, __A : Any="absolute", __A : Optional[int]=False, __A : Dict="none", **__A : Any, ):
super().__init__(pad_token_id=__A, bos_token_id=__A, eos_token_id=__A, **__A )
UpperCAmelCase : Tuple = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Tuple = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : int = hidden_act
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Tuple = type_vocab_size
UpperCAmelCase : int = initializer_range
UpperCAmelCase : Union[str, Any] = layer_norm_eps
UpperCAmelCase : Dict = position_embedding_type
UpperCAmelCase : List[Any] = quant_mode
UpperCAmelCase : Tuple = force_dequant
class __UpperCAmelCase ( lowerCamelCase__ ):
@property
def __magic_name__ ( self : List[str] ):
if self.task == "multiple-choice":
UpperCAmelCase : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase : str = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 336 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ):
UpperCAmelCase : Any = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Any = seq_length
UpperCAmelCase : Tuple = is_training
UpperCAmelCase : str = use_attention_mask
UpperCAmelCase : List[str] = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : Any = num_choices
def __magic_name__ ( self : str ):
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : List[Any] = None
if self.use_attention_mask:
UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Any = None
if self.use_token_type_ids:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = RobertaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def __magic_name__ ( self : int ):
UpperCAmelCase : Any = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs
UpperCAmelCase : Any = True
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = True
UpperCamelCase = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Dict = FlaxRobertaModelTester(self )
@slow
def __magic_name__ ( self : Any ):
for model_class_name in self.all_model_classes:
UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A )
UpperCAmelCase : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__A )
| 336 | 1 |
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_lowerCamelCase : Dict = True
from torch.cuda.amp import autocast
_lowerCamelCase : Optional[int] = logging.getLogger(__name__)
def a__ ( UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None ) -> Union[str, Any]:
return field(default_factory=lambda: default , metadata=UpperCAmelCase )
@dataclass
class __UpperCAmelCase :
UpperCamelCase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
UpperCamelCase = field(
default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase = field(
default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} )
UpperCamelCase = field(
default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} )
UpperCamelCase = field(
default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} )
UpperCamelCase = field(
default=0.1 , metadata={
"""help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."""
} , )
UpperCamelCase = field(
default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , )
UpperCamelCase = field(
default=0.0_5 , metadata={
"""help""": (
"""Propability of each feature vector along the time axis to be chosen as the start of the vector"""
"""span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"""
"""vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."""
)
} , )
UpperCamelCase = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} )
@dataclass
class __UpperCAmelCase :
UpperCamelCase = field(
default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase = field(
default="""train+validation""" , metadata={
"""help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'"""
} , )
UpperCamelCase = field(
default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
UpperCamelCase = field(
default=lowerCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase = field(
default=lowerCamelCase__ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
UpperCamelCase = field(
default=lowerCamelCase__ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of validation examples to this """
"""value if set."""
)
} , )
UpperCamelCase = list_field(
default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , )
@dataclass
class __UpperCAmelCase :
UpperCamelCase = 42
UpperCamelCase = True
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
def __call__( self : List[str], __A : List[Dict[str, Union[List[int], torch.Tensor]]] ):
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
UpperCAmelCase : Optional[Any] = [{'''input_values''': feature['''input_values''']} for feature in features]
UpperCAmelCase : Optional[Any] = [{'''input_ids''': feature['''labels''']} for feature in features]
UpperCAmelCase : Tuple = self.processor.pad(
__A, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', )
UpperCAmelCase : Any = self.processor.pad(
labels=__A, padding=self.padding, max_length=self.max_length_labels, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors='''pt''', )
# replace padding with -100 to ignore loss correctly
UpperCAmelCase : Any = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ), -1_0_0 )
UpperCAmelCase : Dict = labels
return batch
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : List[Any], __A : nn.Module, __A : Dict[str, Union[torch.Tensor, Any]] ):
model.train()
UpperCAmelCase : str = self._prepare_inputs(__A )
if self.use_amp:
with autocast():
UpperCAmelCase : Dict = self.compute_loss(__A, __A )
else:
UpperCAmelCase : Any = self.compute_loss(__A, __A )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
UpperCAmelCase : Optional[Any] = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
UpperCAmelCase : Any = loss.sum() / (inputs['''labels'''] >= 0).sum()
else:
raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' )
if self.args.gradient_accumulation_steps > 1:
UpperCAmelCase : Union[str, Any] = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(__A ).backward()
elif self.use_apex:
with amp.scale_loss(__A, self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(__A )
else:
loss.backward()
return loss.detach()
def a__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
UpperCAmelCase : Tuple = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , UpperCAmelCase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
UpperCAmelCase : Tuple = datasets.load_dataset(
'''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name )
UpperCAmelCase : Any = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' )
# Create and save tokenizer
UpperCAmelCase : List[str] = f'''[{"".join(data_args.chars_to_ignore )}]'''
def remove_special_characters(UpperCAmelCase : int ):
UpperCAmelCase : Optional[Any] = re.sub(UpperCAmelCase , '''''' , batch['''sentence'''] ).lower() + ''' '''
return batch
UpperCAmelCase : List[str] = train_dataset.map(UpperCAmelCase , remove_columns=['''sentence'''] )
UpperCAmelCase : Any = eval_dataset.map(UpperCAmelCase , remove_columns=['''sentence'''] )
def extract_all_chars(UpperCAmelCase : Optional[int] ):
UpperCAmelCase : Any = ''' '''.join(batch['''text'''] )
UpperCAmelCase : List[str] = list(set(UpperCAmelCase ) )
return {"vocab": [vocab], "all_text": [all_text]}
UpperCAmelCase : Any = train_dataset.map(
UpperCAmelCase , batched=UpperCAmelCase , batch_size=-1 , keep_in_memory=UpperCAmelCase , remove_columns=train_dataset.column_names , )
UpperCAmelCase : Union[str, Any] = train_dataset.map(
UpperCAmelCase , batched=UpperCAmelCase , batch_size=-1 , keep_in_memory=UpperCAmelCase , remove_columns=eval_dataset.column_names , )
UpperCAmelCase : Dict = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) )
UpperCAmelCase : Tuple = {v: k for k, v in enumerate(UpperCAmelCase )}
UpperCAmelCase : Union[str, Any] = vocab_dict[''' ''']
del vocab_dict[" "]
UpperCAmelCase : Optional[Any] = len(UpperCAmelCase )
UpperCAmelCase : Any = len(UpperCAmelCase )
with open('''vocab.json''' , '''w''' ) as vocab_file:
json.dump(UpperCAmelCase , UpperCAmelCase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase : str = WavaVecaCTCTokenizer(
'''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , )
UpperCAmelCase : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase )
UpperCAmelCase : Any = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase )
UpperCAmelCase : List[Any] = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , )
if data_args.max_train_samples is not None:
UpperCAmelCase : Tuple = min(len(UpperCAmelCase ) , data_args.max_train_samples )
UpperCAmelCase : Tuple = train_dataset.select(range(UpperCAmelCase ) )
if data_args.max_val_samples is not None:
UpperCAmelCase : Tuple = eval_dataset.select(range(data_args.max_val_samples ) )
UpperCAmelCase : Dict = torchaudio.transforms.Resample(48_000 , 16_000 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(UpperCAmelCase : Optional[int] ):
UpperCAmelCase , UpperCAmelCase : Tuple = torchaudio.load(batch['''path'''] )
UpperCAmelCase : Optional[Any] = resampler(UpperCAmelCase ).squeeze().numpy()
UpperCAmelCase : List[Any] = 16_000
UpperCAmelCase : Optional[Any] = batch['''text''']
return batch
UpperCAmelCase : List[Any] = train_dataset.map(
UpperCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
UpperCAmelCase : Tuple = eval_dataset.map(
UpperCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , )
def prepare_dataset(UpperCAmelCase : Any ):
# check that all files have the correct sampling rate
assert (
len(set(batch['''sampling_rate'''] ) ) == 1
), f'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.'''
UpperCAmelCase : Union[str, Any] = processor(
audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] )
batch.update(UpperCAmelCase )
return batch
UpperCAmelCase : Tuple = train_dataset.map(
UpperCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , )
UpperCAmelCase : str = eval_dataset.map(
UpperCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , )
# Metric
UpperCAmelCase : Union[str, Any] = datasets.load_metric('''wer''' )
def compute_metrics(UpperCAmelCase : List[str] ):
UpperCAmelCase : Tuple = pred.predictions
UpperCAmelCase : Any = np.argmax(UpperCAmelCase , axis=-1 )
UpperCAmelCase : int = processor.tokenizer.pad_token_id
UpperCAmelCase : Any = processor.batch_decode(UpperCAmelCase )
# we do not want to group tokens when computing the metrics
UpperCAmelCase : Dict = processor.batch_decode(pred.label_ids , group_tokens=UpperCAmelCase )
UpperCAmelCase : Tuple = wer_metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
UpperCAmelCase : int = DataCollatorCTCWithPadding(processor=UpperCAmelCase , padding=UpperCAmelCase )
# Initialize our Trainer
UpperCAmelCase : Tuple = CTCTrainer(
model=UpperCAmelCase , data_collator=UpperCAmelCase , args=UpperCAmelCase , compute_metrics=UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
UpperCAmelCase : Any = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
UpperCAmelCase : Dict = model_args.model_name_or_path
else:
UpperCAmelCase : Tuple = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
UpperCAmelCase : Tuple = trainer.train(resume_from_checkpoint=UpperCAmelCase )
trainer.save_model()
UpperCAmelCase : Tuple = train_result.metrics
UpperCAmelCase : int = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase )
)
UpperCAmelCase : Dict = min(UpperCAmelCase , len(UpperCAmelCase ) )
trainer.log_metrics('''train''' , UpperCAmelCase )
trainer.save_metrics('''train''' , UpperCAmelCase )
trainer.save_state()
# Evaluation
UpperCAmelCase : List[Any] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase : Any = trainer.evaluate()
UpperCAmelCase : Dict = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCAmelCase )
UpperCAmelCase : List[Any] = min(UpperCAmelCase , len(UpperCAmelCase ) )
trainer.log_metrics('''eval''' , UpperCAmelCase )
trainer.save_metrics('''eval''' , UpperCAmelCase )
return results
if __name__ == "__main__":
main()
| 336 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : Dict = {"vocab_file": "vocab.txt"}
_lowerCamelCase : List[str] = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase : List[Any] = {
"facebook/esm2_t6_8M_UR50D": 1_0_2_4,
"facebook/esm2_t12_35M_UR50D": 1_0_2_4,
}
def a__ ( UpperCAmelCase : List[str] ) -> Any:
with open(UpperCAmelCase , '''r''' ) as f:
UpperCAmelCase : Dict = f.read().splitlines()
return [l.strip() for l in lines]
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ):
super().__init__(**__A )
UpperCAmelCase : Tuple = load_vocab_file(__A )
UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) )
UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase : Union[str, Any] = unk_token
UpperCAmelCase : Optional[Any] = cls_token
UpperCAmelCase : Optional[int] = pad_token
UpperCAmelCase : Optional[int] = mask_token
UpperCAmelCase : List[str] = eos_token
UpperCAmelCase : Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __magic_name__ ( self : Tuple, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : List[Any], __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ):
return text.split()
def __magic_name__ ( self : Optional[int], __A : Dict=False ):
return len(self._id_to_token )
def __magic_name__ ( self : int ):
return {token: i for i, token in enumerate(self.all_tokens )}
def __magic_name__ ( self : Tuple, __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ):
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
mask += [0] * len(__A ) + [1]
return mask
def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ):
UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(__A, '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __magic_name__ ( self : Dict ):
return self.get_vocab_size(with_added_tokens=__A )
def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ):
return super()._add_tokens(__A, special_tokens=__A )
| 336 | 1 |
# flake8: noqa
# Lint as: python3
_lowerCamelCase : Optional[int] = [
"VerificationMode",
"Version",
"disable_progress_bar",
"enable_progress_bar",
"is_progress_bar_enabled",
"experimental",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 336 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : str = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) )
self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) )
class __UpperCAmelCase :
def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ):
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : List[str] = num_channels
UpperCAmelCase : str = image_size
UpperCAmelCase : Optional[int] = depth_multiplier
UpperCAmelCase : Union[str, Any] = depth_divisible_by
UpperCAmelCase : Optional[Any] = min_depth
UpperCAmelCase : List[str] = expand_ratio
UpperCAmelCase : Dict = tf_padding
UpperCAmelCase : str = output_stride
UpperCAmelCase : Union[str, Any] = first_layer_is_expansion
UpperCAmelCase : List[Any] = finegrained_output
UpperCAmelCase : Optional[Any] = hidden_act
UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
UpperCAmelCase : Optional[Any] = classifier_dropout_prob
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : List[str] = is_training
UpperCAmelCase : Tuple = num_labels
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Any = scope
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Dict = None
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels )
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def __magic_name__ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ):
UpperCAmelCase : Any = MobileNetVaModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[Any] = model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
self.parent.assertEqual(
result.pooler_output.shape, (self.batch_size, self.last_hidden_size), )
def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ):
UpperCAmelCase : Optional[int] = self.num_labels
UpperCAmelCase : Any = MobileNetVaForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[int] = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ):
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCAmelCase : Optional[Any] = model(__A, labels=__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs
UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
"""feature-extraction""": MobileNetVaModel,
"""image-classification""": MobileNetVaForImageClassification,
"""image-segmentation""": MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = MobileNetVaModelTester(self )
UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A )
def __magic_name__ ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' )
def __magic_name__ ( self : Tuple ):
pass
@unittest.skip(reason='''MobileNetV2 does not output attentions''' )
def __magic_name__ ( self : Any ):
pass
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(__A )
UpperCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase : Any = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : int ):
def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ):
UpperCAmelCase : Union[str, Any] = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Optional[Any] = outputs.hidden_states
UpperCAmelCase : List[Any] = 1_6
self.assertEqual(len(__A ), __A )
UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : int ):
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__A )
@slow
def __magic_name__ ( self : Dict ):
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> int:
UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[Any] ):
return (
MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None
)
@slow
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A )
UpperCAmelCase : Optional[int] = self.default_image_processor
UpperCAmelCase : Optional[Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : str = model(**__A )
# verify the logits
UpperCAmelCase : int = torch.Size((1, 1_0_0_1) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = model.to(__A )
UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = prepare_img()
UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(**__A )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify the logits
UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) )
self.assertEqual(logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor(
[
[[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]],
[[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]],
[[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]],
], device=__A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
| 336 | 1 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCAmelCase :
def __init__( self : Any, __A : Optional[Any], __A : List[Any]=1_2, __A : Optional[int]=7, __A : Optional[Any]=True, __A : int=True, __A : List[str]=True, __A : Union[str, Any]=9_9, __A : Tuple=3_2, __A : str=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : int=3_7, __A : str=0.1, __A : Tuple=0.1, __A : str=5_1_2, __A : Any=0.0_2, __A : Any=0, __A : Optional[Any]=None, ):
UpperCAmelCase : Dict = parent
UpperCAmelCase : Optional[Any] = batch_size
UpperCAmelCase : Dict = seq_length
UpperCAmelCase : Optional[int] = is_training
UpperCAmelCase : Tuple = use_input_mask
UpperCAmelCase : Tuple = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : str = hidden_size
UpperCAmelCase : Tuple = projection_dim
UpperCAmelCase : List[Any] = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : List[Any] = attention_dropout
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : Optional[int] = initializer_range
UpperCAmelCase : Union[str, Any] = scope
UpperCAmelCase : List[Any] = bos_token_id
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : Any = None
if self.use_input_mask:
UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase : List[str] = input_mask.numpy()
UpperCAmelCase , UpperCAmelCase : Dict = input_mask.shape
UpperCAmelCase : str = np.random.randint(1, seq_length - 1, size=(batch_size,) )
for batch_idx, start_index in enumerate(__A ):
UpperCAmelCase : List[str] = 1
UpperCAmelCase : Union[str, Any] = 0
UpperCAmelCase : List[Any] = self.get_config()
return config, input_ids, tf.convert_to_tensor(__A )
def __magic_name__ ( self : List[str] ):
return BlipTextConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, )
def __magic_name__ ( self : Optional[Any], __A : str, __A : Dict, __A : Any ):
UpperCAmelCase : Union[str, Any] = TFBlipTextModel(config=__A )
UpperCAmelCase : Dict = model(__A, attention_mask=__A, training=__A )
UpperCAmelCase : Tuple = model(__A, training=__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = config_and_inputs
UpperCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else ()
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Optional[Any] = BlipTextModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self, config_class=__A, hidden_size=3_7 )
def __magic_name__ ( self : str ):
self.config_tester.run_common_tests()
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : Tuple ):
pass
def __magic_name__ ( self : Tuple ):
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def __magic_name__ ( self : int ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def __magic_name__ ( self : Dict ):
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def __magic_name__ ( self : Tuple ):
pass
@slow
def __magic_name__ ( self : Optional[int] ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Dict = TFBlipTextModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def __magic_name__ ( self : int, __A : int=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=__A )
| 336 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_lowerCamelCase : str = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """codegen"""
UpperCamelCase = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ):
UpperCAmelCase : int = vocab_size
UpperCAmelCase : Tuple = n_ctx
UpperCAmelCase : Tuple = n_positions
UpperCAmelCase : Optional[int] = n_embd
UpperCAmelCase : Union[str, Any] = n_layer
UpperCAmelCase : List[str] = n_head
UpperCAmelCase : Tuple = n_inner
UpperCAmelCase : int = rotary_dim
UpperCAmelCase : List[Any] = activation_function
UpperCAmelCase : List[str] = resid_pdrop
UpperCAmelCase : Optional[Any] = embd_pdrop
UpperCAmelCase : str = attn_pdrop
UpperCAmelCase : Tuple = layer_norm_epsilon
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Union[str, Any] = use_cache
UpperCAmelCase : Any = bos_token_id
UpperCAmelCase : List[str] = eos_token_id
super().__init__(
bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A )
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ):
super().__init__(__A, task=__A, patching_specs=__A, use_past=__A )
if not getattr(self._config, '''pad_token_id''', __A ):
# TODO: how to do that better?
UpperCAmelCase : Union[str, Any] = 0
@property
def __magic_name__ ( self : str ):
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__A, direction='''inputs''' )
UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __magic_name__ ( self : Dict ):
return self._config.n_layer
@property
def __magic_name__ ( self : List[str] ):
return self._config.n_head
def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ):
UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs(
__A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A )
# We need to order the input in the way they appears in the forward()
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase : str = seqlen + 2
UpperCAmelCase : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
UpperCAmelCase : Optional[int] = [
(torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers )
]
UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask''']
if self.use_past:
UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype
UpperCAmelCase : Dict = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 )
return ordered_inputs
@property
def __magic_name__ ( self : Tuple ):
return 1_3
| 336 | 1 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class __UpperCAmelCase ( unittest.TestCase ):
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = 0
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(__A, __A )
def __magic_name__ ( self : List[Any] ):
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : str = Path(__A ) / '''preprocessor_config.json'''
UpperCAmelCase : List[Any] = Path(__A ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), )
json.dump({'''model_type''': '''clip'''}, open(__A, '''w''' ) )
UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained(__A )
self.assertIsInstance(__A, __A )
def __magic_name__ ( self : Any ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = Path(__A ) / '''preprocessor_config.json'''
UpperCAmelCase : str = Path(__A ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), )
json.dump({'''model_type''': '''clip'''}, open(__A, '''w''' ) )
UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(__A )
self.assertIsInstance(__A, __A )
def __magic_name__ ( self : Any ):
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = CLIPConfig()
# Create a dummy config file with image_proceesor_type
UpperCAmelCase : List[str] = Path(__A ) / '''preprocessor_config.json'''
UpperCAmelCase : Optional[Any] = Path(__A ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), )
json.dump({'''model_type''': '''clip'''}, open(__A, '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(__A ).to_dict()
config_dict.pop('''image_processor_type''' )
UpperCAmelCase : str = CLIPImageProcessor(**__A )
# save in new folder
model_config.save_pretrained(__A )
config.save_pretrained(__A )
UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(__A )
# make sure private variable is not incorrectly saved
UpperCAmelCase : int = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(__A, __A )
def __magic_name__ ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Tuple = Path(__A ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), )
UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained(__A )
self.assertIsInstance(__A, __A )
def __magic_name__ ( self : Dict ):
with self.assertRaisesRegex(
__A, '''clip-base is not a local folder and is not a valid model identifier''' ):
UpperCAmelCase : str = AutoImageProcessor.from_pretrained('''clip-base''' )
def __magic_name__ ( self : List[str] ):
with self.assertRaisesRegex(
__A, R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained(__A, revision='''aaaaaa''' )
def __magic_name__ ( self : Union[str, Any] ):
with self.assertRaisesRegex(
__A, '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''', ):
UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def __magic_name__ ( self : Union[str, Any] ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__A ):
UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__A ):
UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=__A )
UpperCAmelCase : str = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=__A )
self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__A )
UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained(__A, trust_remote_code=__A )
self.assertEqual(reloaded_image_processor.__class__.__name__, '''NewImageProcessor''' )
def __magic_name__ ( self : Any ):
try:
AutoConfig.register('''custom''', __A )
AutoImageProcessor.register(__A, __A )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__A ):
AutoImageProcessor.register(__A, __A )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Dict = Path(__A ) / '''preprocessor_config.json'''
UpperCAmelCase : Any = Path(__A ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), )
json.dump({'''model_type''': '''clip'''}, open(__A, '''w''' ) )
UpperCAmelCase : Any = CustomImageProcessor.from_pretrained(__A )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__A )
UpperCAmelCase : int = AutoImageProcessor.from_pretrained(__A )
self.assertIsInstance(__A, __A )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def __magic_name__ ( self : List[Any] ):
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = True
try:
AutoConfig.register('''custom''', __A )
AutoImageProcessor.register(__A, __A )
# If remote code is not set, the default is to use local
UpperCAmelCase : int = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=__A )
self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=__A )
self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' )
self.assertTrue(not hasattr(__A, '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 336 |
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 336 | 1 |
from __future__ import annotations
from typing import TypedDict
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = 42
UpperCamelCase = 42
def a__ ( UpperCAmelCase : str ) -> list[str]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise TypeError('''The parameter s type must be str.''' )
return [s[i:] + s[:i] for i in range(len(UpperCAmelCase ) )]
def a__ ( UpperCAmelCase : str ) -> BWTTransformDict:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise TypeError('''The parameter s type must be str.''' )
if not s:
raise ValueError('''The parameter s must not be empty.''' )
UpperCAmelCase : Optional[int] = all_rotations(UpperCAmelCase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
UpperCAmelCase : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(UpperCAmelCase ),
}
return response
def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise TypeError('''The parameter bwt_string type must be str.''' )
if not bwt_string:
raise ValueError('''The parameter bwt_string must not be empty.''' )
try:
UpperCAmelCase : Optional[int] = int(UpperCAmelCase )
except ValueError:
raise TypeError(
'''The parameter idx_original_string type must be int or passive'''
''' of cast to int.''' )
if idx_original_string < 0:
raise ValueError('''The parameter idx_original_string must not be lower than 0.''' )
if idx_original_string >= len(UpperCAmelCase ):
raise ValueError(
'''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' )
UpperCAmelCase : Union[str, Any] = [''''''] * len(UpperCAmelCase )
for _ in range(len(UpperCAmelCase ) ):
for i in range(len(UpperCAmelCase ) ):
UpperCAmelCase : List[str] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
_lowerCamelCase : Any = "Provide a string that I will generate its BWT transform: "
_lowerCamelCase : List[str] = input(entry_msg).strip()
_lowerCamelCase : Dict = bwt_transform(s)
print(
f"""Burrows Wheeler transform for string '{s}' results """
f"""in '{result["bwt_string"]}'"""
)
_lowerCamelCase : Optional[int] = reverse_bwt(result["bwt_string"], result["idx_original_string"])
print(
f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """
f"""we get original string '{original_string}'"""
)
| 336 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class __UpperCAmelCase :
# setable values
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None # sigma(t_i)
@classmethod
def __magic_name__ ( cls : Any ):
return cls()
@dataclass
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = 42
UpperCamelCase = 42
UpperCamelCase = 42
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@property
def __magic_name__ ( self : Optional[int] ):
return True
@register_to_config
def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ):
pass
def __magic_name__ ( self : Optional[Any] ):
return KarrasVeSchedulerState.create()
def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ):
UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy()
UpperCAmelCase : Union[str, Any] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, )
def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ):
if self.config.s_min <= sigma <= self.config.s_max:
UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 )
else:
UpperCAmelCase : Optional[int] = 0
# sample eps ~ N(0, S_noise^2 * I)
UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 )
UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape )
UpperCAmelCase : Tuple = sigma + gamma * sigma
UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ):
UpperCAmelCase : int = sample_hat + sigma_hat * model_output
UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat
UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A )
def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ):
UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output
UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev
UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A )
def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ):
raise NotImplementedError()
| 336 | 1 |
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase_ ( lowercase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Dict ) ->List[Any]:
"""simple docstring"""
a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__UpperCAmelCase , '''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(__UpperCAmelCase , '''neck_hidden_sizes''' ) )
self.parent.assertTrue(hasattr(__UpperCAmelCase , '''num_attention_heads''' ) )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : Optional[Any]=32 , __UpperCAmelCase : int=2 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Dict=640 , __UpperCAmelCase : str=4 , __UpperCAmelCase : int="silu" , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=10 , __UpperCAmelCase : List[str]=None , ) ->Any:
"""simple docstring"""
a = parent
a = batch_size
a = image_size
a = patch_size
a = num_channels
a = last_hidden_size
a = num_attention_heads
a = hidden_act
a = conv_kernel_size
a = output_stride
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = classifier_dropout_prob
a = use_labels
a = is_training
a = num_labels
a = initializer_range
a = scope
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]:
"""simple docstring"""
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.num_labels )
a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
a = self.get_config()
return config, pixel_values, labels, pixel_labels
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Any:
"""simple docstring"""
a = MobileViTModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) ->Tuple:
"""simple docstring"""
a = self.num_labels
a = MobileViTForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
a = self.num_labels
a = MobileViTForSemanticSegmentation(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
a = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __lowerCAmelCase ( self : Dict ) ->Tuple:
"""simple docstring"""
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
__snake_case = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
a = MobileViTModelTester(self )
a = MobileViTConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase )
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViT does not use inputs_embeds''' )
def __lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''MobileViT does not support input and output embeddings''' )
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''MobileViT does not output attentions''' )
def __lowerCAmelCase ( self : Dict ) ->List[str]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__UpperCAmelCase )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self : str ) ->Optional[int]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
def check_hidden_states_output(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ):
a = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
a = outputs.hidden_states
a = 5
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
a = 2
for i in range(len(__UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = MobileViTModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _a ( ) -> Union[str, Any]:
a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None
@slow
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
a = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(__UpperCAmelCase )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
a = model(**__UpperCAmelCase )
# verify the logits
a = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
a = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
a = model.to(__UpperCAmelCase )
a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
a = model(**__UpperCAmelCase )
a = outputs.logits
# verify the logits
a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __UpperCAmelCase )
a = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
] , device=__UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
a = model.to(__UpperCAmelCase )
a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
a = model(**__UpperCAmelCase )
a = outputs.logits.detach().cpu()
a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(50, 60)] )
a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase )
a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
| 0 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __UpperCAmelCase ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def a__ ( ) -> Dict:
if os.name == "nt":
UpperCAmelCase : List[str] = CursorInfo()
UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Dict = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25l''' )
sys.stdout.flush()
def a__ ( ) -> Optional[int]:
if os.name == "nt":
UpperCAmelCase : int = CursorInfo()
UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Any = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25h''' )
sys.stdout.flush()
@contextmanager
def a__ ( ) -> Optional[Any]:
try:
hide_cursor()
yield
finally:
show_cursor()
| 336 | 0 |
'''simple docstring'''
import warnings
from functools import wraps
from typing import Callable
def lowerCAmelCase_ ( snake_case_ : Callable ) -> Callable:
'''simple docstring'''
@wraps(snake_case_ )
def _inner_fn(*snake_case_ : Optional[Any] , **snake_case_ : Tuple ):
warnings.warn(
(f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , snake_case_ , )
return fn(*snake_case_ , **snake_case_ )
return _inner_fn
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowerCamelCase : Tuple = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 336 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Any = logging.get_logger(__name__)
lowerCamelCase : Dict = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Optional[Any] = """time_series_transformer"""
lowerCAmelCase__ : Optional[int] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__(self : Any , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "student_t" , UpperCamelCase : str = "nll" , UpperCamelCase : int = 1 , UpperCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase : Optional[Union[str, bool]] = "mean" , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : int = 32 , UpperCamelCase : int = 32 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : bool = True , UpperCamelCase : str = "gelu" , UpperCamelCase : int = 64 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : int = 100 , UpperCamelCase : float = 0.02 , UpperCamelCase : Tuple=True , **UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
lowercase__ = prediction_length
lowercase__ = context_length or prediction_length
lowercase__ = distribution_output
lowercase__ = loss
lowercase__ = input_size
lowercase__ = num_time_features
lowercase__ = lags_sequence
lowercase__ = scaling
lowercase__ = num_dynamic_real_features
lowercase__ = num_static_real_features
lowercase__ = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
lowercase__ = cardinality
else:
lowercase__ = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
lowercase__ = embedding_dimension
else:
lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
lowercase__ = num_parallel_samples
# Transformer architecture configuration
lowercase__ = input_size * len(UpperCamelCase ) + self._number_of_features
lowercase__ = d_model
lowercase__ = encoder_attention_heads
lowercase__ = decoder_attention_heads
lowercase__ = encoder_ffn_dim
lowercase__ = decoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = decoder_layers
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = use_cache
super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase )
@property
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 2 |
from __future__ import annotations
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]:
if partitions <= 0:
raise ValueError('''partitions must be a positive number!''' )
if partitions > number_of_bytes:
raise ValueError('''partitions can not > number_of_bytes!''' )
UpperCAmelCase : str = number_of_bytes // partitions
UpperCAmelCase : Dict = []
for i in range(UpperCAmelCase ):
UpperCAmelCase : int = i * bytes_per_partition + 1
UpperCAmelCase : Optional[int] = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' )
if len(snake_case__ ) == 0:
raise ValueError('''Input list must be a non empty list''' )
if len(snake_case__ ) == 1:
return True
A : Any = series[1] - series[0]
for index in range(len(snake_case__ ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' )
if len(snake_case__ ) == 0:
raise ValueError('''Input list must be a non empty list''' )
A : Optional[Any] = 0
for val in series:
answer += val
return answer / len(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
_lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]:
if subparsers is not None:
UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description )
else:
UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description )
# Core arguments
UpperCAmelCase : Optional[int] = parser.add_argument_group(
'''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' )
config_args.add_argument(
'''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , )
config_args.add_argument(
'''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , )
config_args.add_argument(
'''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , )
UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' )
pod_args.add_argument(
'''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , )
pod_args.add_argument(
'''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , )
pod_args.add_argument(
'''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , )
pod_args.add_argument(
'''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , )
pod_args.add_argument(
'''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , )
pod_args.add_argument(
'''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' )
if subparsers is not None:
parser.set_defaults(func=UpperCAmelCase )
return parser
def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCAmelCase : List[Any] = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCAmelCase : List[str] = defaults.commands
if not args.tpu_name:
UpperCAmelCase : Tuple = defaults.tpu_name
if not args.tpu_zone:
UpperCAmelCase : int = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
UpperCAmelCase : Dict = '''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ):
UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}'''
if not args.command_file and not args.command:
raise ValueError('''You must specify either a command file or a command to run on the pod.''' )
if args.command_file:
with open(args.command_file , '''r''' ) as f:
UpperCAmelCase : int = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , UpperCAmelCase ):
UpperCAmelCase : int = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCAmelCase : Optional[int] = ['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [f'''pip install {args.accelerate_version}''']
new_cmd += args.command
UpperCAmelCase : int = '''; '''.join(UpperCAmelCase )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCAmelCase : Any = ['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(f'''Running {" ".join(UpperCAmelCase )}''' )
return
subprocess.run(UpperCAmelCase )
print('''Successfully setup pod.''' )
def a__ ( ) -> Any:
UpperCAmelCase : Any = tpu_command_parser()
UpperCAmelCase : Tuple = parser.parse_args()
tpu_command_launcher(UpperCAmelCase )
| 336 | 0 |
'''simple docstring'''
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : Tuple ):
# Initialise PyTorch model
lowerCAmelCase = AlbertConfig.from_json_file(lowerCamelCase )
print(f'''Building PyTorch model from configuration: {config}''' )
lowerCAmelCase = AlbertForPreTraining(lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_albert(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--albert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained ALBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
__snake_case =parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 4 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Optional[int] = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
print('''Loading config file...''' )
def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ):
UpperCAmelCase : List[str] = []
for k, v in d.items():
UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k
if isinstance(UpperCAmelCase , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() )
else:
items.append((new_key, v) )
return dict(UpperCAmelCase )
UpperCAmelCase : List[str] = argparse.Namespace()
with open(UpperCAmelCase , '''r''' ) as yaml_file:
try:
UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader )
UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase )
for k, v in flat_cfg.items():
setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) )
return config
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]:
UpperCAmelCase : int = MobileViTVaConfig()
UpperCAmelCase : str = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase : Any = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase : Any = 384
else:
UpperCAmelCase : Tuple = 256
UpperCAmelCase : int = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase : Optional[Any] = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase : str = 384
else:
UpperCAmelCase : Dict = 256
UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase : Optional[Any] = 151
UpperCAmelCase : Tuple = 512
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Tuple = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase : Dict = 21
UpperCAmelCase : str = 512
UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json'''
UpperCAmelCase : Dict = True
# orig_config
UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase )
assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase : Union[str, Any] = '''huggingface/label-files'''
UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : int = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : List[str] = val
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]:
if base_model:
UpperCAmelCase : Dict = ''''''
else:
UpperCAmelCase : Dict = '''mobilevitv2.'''
UpperCAmelCase : Optional[int] = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase : List[str] = k[8:]
else:
UpperCAmelCase : Dict = k
if ".block." in k:
UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase : Dict = [0, 1]
elif i == 4:
UpperCAmelCase : Dict = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase : int = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
UpperCAmelCase : Optional[Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
UpperCAmelCase : Any = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any:
UpperCAmelCase : str = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(UpperCAmelCase )
for k in keys_to_ignore:
state_dict.pop(UpperCAmelCase , UpperCAmelCase )
def a__ ( ) -> Union[str, Any]:
UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase )
# load original state_dict
UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval()
UpperCAmelCase : str = False
else:
UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval()
UpperCAmelCase : Any = False
# remove and rename some keys of load the original model
UpperCAmelCase : Optional[Any] = checkpoint
remove_unused_keys(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# load modified state_dict
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase : Optional[Any] = outputs.logits
UpperCAmelCase : int = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] )
assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 )
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if __name__ == "__main__":
_lowerCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 336 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase):
SCREAMING_SNAKE_CASE__ = DanceDiffusionPipeline
SCREAMING_SNAKE_CASE__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {
'''callback''',
'''latents''',
'''callback_steps''',
'''output_type''',
'''num_images_per_prompt''',
}
SCREAMING_SNAKE_CASE__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
def __A (self ) -> Dict:
torch.manual_seed(0 )
_lowercase =UNetaDModel(
block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCAmelCase , use_timestep_embedding=UpperCAmelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
_lowercase =IPNDMScheduler()
_lowercase ={
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def __A (self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple:
if str(UpperCAmelCase ).startswith('''mps''' ):
_lowercase =torch.manual_seed(UpperCAmelCase )
else:
_lowercase =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
_lowercase ={
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def __A (self ) -> Tuple:
_lowercase ='''cpu''' # ensure determinism for the device-dependent torch.Generator
_lowercase =self.get_dummy_components()
_lowercase =DanceDiffusionPipeline(**UpperCAmelCase )
_lowercase =pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
_lowercase =self.get_dummy_inputs(UpperCAmelCase )
_lowercase =pipe(**UpperCAmelCase )
_lowercase =output.audios
_lowercase =audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_lowercase =np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __A (self ) -> Any:
return super().test_save_load_local()
@skip_mps
def __A (self ) -> Dict:
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def __A (self ) -> Any:
return super().test_save_load_optional_components()
@skip_mps
def __A (self ) -> Optional[Any]:
return super().test_attention_slicing_forward_pass()
def __A (self ) -> Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase):
def __A (self ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A (self ) -> List[str]:
_lowercase =torch_device
_lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
_lowercase =pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
_lowercase =torch.manual_seed(0 )
_lowercase =pipe(generator=UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 )
_lowercase =output.audios
_lowercase =audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowercase =np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def __A (self ) -> Optional[Any]:
_lowercase =torch_device
_lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
_lowercase =pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
_lowercase =torch.manual_seed(0 )
_lowercase =pipe(generator=UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 )
_lowercase =output.audios
_lowercase =audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowercase =np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
| 5 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class __UpperCAmelCase ( lowerCamelCase__ ):
def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
UpperCAmelCase : str = '''__cached_''' + self.fget.__name__
UpperCAmelCase : int = getattr(__A, __A, __A )
if cached is None:
UpperCAmelCase : Any = self.fget(__A )
setattr(__A, __A, __A )
return cached
def a__ ( UpperCAmelCase : Optional[Any] ) -> Any:
UpperCAmelCase : Any = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'''invalid truth value {val!r}''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_torch_fx_proxy(UpperCAmelCase ):
return True
if is_torch_available():
import torch
if isinstance(UpperCAmelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(UpperCAmelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]:
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : str ) -> Tuple:
return _is_numpy(UpperCAmelCase )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
import torch
return isinstance(UpperCAmelCase , torch.Tensor )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
return False if not is_torch_available() else _is_torch(UpperCAmelCase )
def a__ ( UpperCAmelCase : Tuple ) -> List[str]:
import torch
return isinstance(UpperCAmelCase , torch.device )
def a__ ( UpperCAmelCase : Any ) -> Any:
return False if not is_torch_available() else _is_torch_device(UpperCAmelCase )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
import torch
if isinstance(UpperCAmelCase , UpperCAmelCase ):
if hasattr(UpperCAmelCase , UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase )
else:
return False
return isinstance(UpperCAmelCase , torch.dtype )
def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase )
def a__ ( UpperCAmelCase : Any ) -> str:
import tensorflow as tf
return isinstance(UpperCAmelCase , tf.Tensor )
def a__ ( UpperCAmelCase : int ) -> Union[str, Any]:
return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[str] ) -> Tuple:
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(UpperCAmelCase )
return type(UpperCAmelCase ) == tf.Tensor
def a__ ( UpperCAmelCase : int ) -> List[Any]:
return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[Any] ) -> Dict:
import jax.numpy as jnp # noqa: F811
return isinstance(UpperCAmelCase , jnp.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]:
return False if not is_flax_available() else _is_jax(UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Tuple:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return [to_py_obj(UpperCAmelCase ) for o in obj]
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase ).tolist()
elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def a__ ( UpperCAmelCase : Any ) -> List[str]:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return np.array(UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase )
else:
return obj
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Optional[Any] = fields(self )
# Safety and consistency checks
if not len(__A ):
raise ValueError(F'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' )
UpperCAmelCase : int = getattr(self, class_fields[0].name )
UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__A ):
if isinstance(__A, __A ):
UpperCAmelCase : Tuple = first_field.items()
UpperCAmelCase : Any = True
else:
try:
UpperCAmelCase : Optional[Any] = iter(__A )
UpperCAmelCase : Optional[Any] = True
except TypeError:
UpperCAmelCase : Optional[int] = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__A ):
if (
not isinstance(__A, (list, tuple) )
or not len(__A ) == 2
or not isinstance(element[0], __A )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
UpperCAmelCase : Any = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self, element[0], element[1] )
if element[1] is not None:
UpperCAmelCase : Union[str, Any] = element[1]
elif first_field is not None:
UpperCAmelCase : Union[str, Any] = first_field
else:
for field in class_fields:
UpperCAmelCase : Optional[Any] = getattr(self, field.name )
if v is not None:
UpperCAmelCase : Optional[int] = v
def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ):
raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ):
raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Any, *__A : Dict, **__A : str ):
raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ):
raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self : List[str], __A : List[str] ):
if isinstance(__A, __A ):
UpperCAmelCase : int = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__A, __A )
super().__setattr__(__A, __A )
def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ):
# Will raise a KeyException if needed
super().__setitem__(__A, __A )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__A, __A )
def __magic_name__ ( self : List[str] ):
return tuple(self[k] for k in self.keys() )
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@classmethod
def __magic_name__ ( cls : List[Any], __A : Tuple ):
raise ValueError(
F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """longest"""
UpperCamelCase = """max_length"""
UpperCamelCase = """do_not_pad"""
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """pt"""
UpperCamelCase = """tf"""
UpperCamelCase = """np"""
UpperCamelCase = """jax"""
class __UpperCAmelCase :
def __init__( self : Any, __A : List[ContextManager] ):
UpperCAmelCase : Tuple = context_managers
UpperCAmelCase : Tuple = ExitStack()
def __enter__( self : Any ):
for context_manager in self.context_managers:
self.stack.enter_context(__A )
def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ):
self.stack.__exit__(*__A, **__A )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> str:
UpperCAmelCase : int = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def a__ ( UpperCAmelCase : Dict ) -> Any:
UpperCAmelCase : List[Any] = model_class.__name__
UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]:
def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ):
for k, v in d.items():
UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k
if v and isinstance(UpperCAmelCase , UpperCAmelCase ):
yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items()
else:
yield key, v
return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) )
@contextmanager
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]:
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]:
if is_numpy_array(UpperCAmelCase ):
return np.transpose(UpperCAmelCase , axes=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.T if axes is None else array.permute(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.reshape(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.reshape(UpperCAmelCase , UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any:
if is_numpy_array(UpperCAmelCase ):
return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str:
if is_numpy_array(UpperCAmelCase ):
return np.expand_dims(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.unsqueeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.size(UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.numel()
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.size(UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return array.size
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict:
for key, value in auto_map.items():
if isinstance(UpperCAmelCase , (tuple, list) ):
UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
UpperCAmelCase : List[Any] = f'''{repo_id}--{value}'''
return auto_map
def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]:
for base_class in inspect.getmro(UpperCAmelCase ):
UpperCAmelCase : Any = base_class.__module__
UpperCAmelCase : Dict = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'''Could not infer framework from class {model_class}.''' )
| 336 | 0 |
from collections import defaultdict
from math import gcd
def __lowerCAmelCase ( a__ = 150_0000 ) -> int:
__a = defaultdict(a__ )
__a = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , a__ , 2 ):
if gcd(a__ , a__ ) > 1:
continue
__a = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(a__ , limit + 1 , a__ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }") | 6 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = LayoutLMTokenizer
UpperCamelCase = LayoutLMTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
def __magic_name__ ( self : Any ):
super().setUp()
UpperCAmelCase : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __magic_name__ ( self : Union[str, Any], **__A : List[str] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A )
def __magic_name__ ( self : Optional[int], __A : int ):
UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running'''
UpperCAmelCase : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __magic_name__ ( self : Any ):
UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file )
UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] )
def __magic_name__ ( self : Optional[int] ):
pass
| 336 | 0 |
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> str:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError('\'float\' object cannot be interpreted as an integer' )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError('\'str\' object cannot be interpreted as an integer' )
if num == 0:
return "0b0"
A__ = False
if num < 0:
A__ = True
A__ = -num
A__ = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary )
return "0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __UpperCAmelCase :
def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : int = num_channels
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Optional[int] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Tuple = mask_ratio
UpperCAmelCase : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCAmelCase : Tuple = (image_size // patch_size) ** 2
UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : str = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Optional[Any] ):
return ViTMAEConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, )
def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ):
UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A )
UpperCAmelCase : Tuple = model(__A, training=__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ):
UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A )
UpperCAmelCase : int = model(__A, training=__A )
# expected sequence length = num_patches
UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2
UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCAmelCase : Tuple = 1
UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A )
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = model(__A, training=__A )
UpperCAmelCase : Union[str, Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs
UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = TFViTMAEModelTester(self )
UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) )
UpperCAmelCase : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) )
def __magic_name__ ( self : str ):
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Any = model_class(__A )
UpperCAmelCase : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : int = [*signature.parameters.keys()]
UpperCAmelCase : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__A )
def __magic_name__ ( self : int ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : str = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : Dict = model(__A, noise=__A )
UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A )
UpperCAmelCase : Dict = outputs_dict[0].numpy()
UpperCAmelCase : Tuple = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 )
def __magic_name__ ( self : Optional[Any] ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__A : Union[str, Any] ):
UpperCAmelCase : str = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__A ):
UpperCAmelCase : Tuple = v.numpy()
else:
UpperCAmelCase : str = np.array(__A )
return inputs_np_dict
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : Any = self._prepare_for_class(__A, __A )
UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A )
UpperCAmelCase : str = model(__A, noise=__A )
UpperCAmelCase : str = model(**__A, noise=__A )
self.assert_outputs_same(__A, __A )
def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ):
# make masks reproducible
np.random.seed(2 )
UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : int = tf.constant(__A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCAmelCase : List[Any] = tf_noise
super().check_pt_tf_models(__A, __A, __A )
def __magic_name__ ( self : str ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Union[str, Any] = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__A )
if module_member_name.endswith('''MainLayer''' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )]
for module_member in (getattr(__A, __A ),)
if isinstance(__A, __A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__A, '''_keras_serializable''', __A )
}
UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : str = tf.convert_to_tensor(__A )
inputs_dict.update({'''noise''': noise} )
for main_layer_class in tf_main_layer_classes:
UpperCAmelCase : Tuple = main_layer_class(__A )
UpperCAmelCase : int = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) )
UpperCAmelCase : List[Any] = model(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' )
model.save(__A )
UpperCAmelCase : List[str] = tf.keras.models.load_model(
__A, custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__A, tf.keras.Model )
UpperCAmelCase : Tuple = model(__A )
self.assert_outputs_same(__A, __A )
@slow
def __magic_name__ ( self : Dict ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(__A )
UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A )
UpperCAmelCase : Union[str, Any] = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy()
UpperCAmelCase : Union[str, Any] = 0
else:
UpperCAmelCase : Optional[int] = outputs.logits.numpy()
UpperCAmelCase : int = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A, saved_model=__A )
UpperCAmelCase : Dict = model_class.from_pretrained(__A )
UpperCAmelCase : str = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy()
UpperCAmelCase : Dict = 0
else:
UpperCAmelCase : Any = after_outputs['''logits'''].numpy()
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__A, 1E-5 )
def __magic_name__ ( self : Optional[Any] ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : List[Any] = model(__A, noise=__A )
UpperCAmelCase : str = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__A )
UpperCAmelCase : int = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
UpperCAmelCase : str = model_class.from_config(model.config )
UpperCAmelCase : List[str] = new_model(__A ) # Build model
new_model.set_weights(model.get_weights() )
UpperCAmelCase : Tuple = new_model(__A, noise=__A )
self.assert_outputs_same(__A, __A )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def __magic_name__ ( self : Tuple ):
pass
@slow
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__A )
def a__ ( ) -> Dict:
UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[str] ):
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def __magic_name__ ( self : str ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' )
UpperCAmelCase : List[str] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCAmelCase : Optional[int] = ViTMAEConfig()
UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) )
# forward pass
UpperCAmelCase : Optional[int] = model(**__A, noise=__A )
# verify the logits
UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : List[str] = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
| 336 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = "sew"
def __init__( self : Dict , _UpperCamelCase : Any=3_2 , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : List[Any]=1_2 , _UpperCamelCase : Optional[Any]=3_0_7_2 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : str=0.1 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Optional[Any]=0.0 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : int=0.02 , _UpperCamelCase : Tuple=1e-5 , _UpperCamelCase : List[str]="group" , _UpperCamelCase : int="gelu" , _UpperCamelCase : Tuple=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _UpperCamelCase : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _UpperCamelCase : int=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Union[str, Any]=1_2_8 , _UpperCamelCase : Any=1_6 , _UpperCamelCase : str=True , _UpperCamelCase : Optional[int]=0.05 , _UpperCamelCase : List[Any]=1_0 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Tuple=1_0 , _UpperCamelCase : Any=0 , _UpperCamelCase : Dict="mean" , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : str=False , _UpperCamelCase : List[Any]=2_5_6 , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=1 , _UpperCamelCase : List[Any]=2 , **_UpperCamelCase : int , ) ->Optional[int]:
super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase )
snake_case_ = hidden_size
snake_case_ = feat_extract_norm
snake_case_ = feat_extract_activation
snake_case_ = list(_UpperCamelCase )
snake_case_ = list(_UpperCamelCase )
snake_case_ = list(_UpperCamelCase )
snake_case_ = conv_bias
snake_case_ = num_conv_pos_embeddings
snake_case_ = num_conv_pos_embedding_groups
snake_case_ = len(self.conv_dim )
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = squeeze_factor
snake_case_ = hidden_act
snake_case_ = num_attention_heads
snake_case_ = hidden_dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = feat_proj_dropout
snake_case_ = final_dropout
snake_case_ = layerdrop
snake_case_ = layer_norm_eps
snake_case_ = initializer_range
snake_case_ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
snake_case_ = apply_spec_augment
snake_case_ = mask_time_prob
snake_case_ = mask_time_length
snake_case_ = mask_time_min_masks
snake_case_ = mask_feature_prob
snake_case_ = mask_feature_length
snake_case_ = mask_feature_min_masks
# ctc loss
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# sequence classification
snake_case_ = use_weighted_layer_sum
snake_case_ = classifier_proj_size
@property
def snake_case__( self : Dict ) ->Optional[Any]:
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 8 |
def a__ ( UpperCAmelCase : int ) -> int:
UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
UpperCAmelCase : Optional[Any] = 1
for n in range(m + 1 ):
for k in range(1 , UpperCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
_lowerCamelCase : List[Any] = int(input("Enter a number: ").strip())
print(partition(n))
except ValueError:
print("Please enter a number.")
else:
try:
_lowerCamelCase : str = int(sys.argv[1])
print(partition(n))
except ValueError:
print("Please pass a number.")
| 336 | 0 |
import argparse
import datetime
def _UpperCamelCase ( lowercase__ ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__SCREAMING_SNAKE_CASE : Dict = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase__ ) < 11:
raise ValueError('''Must be 10 characters long''' )
# Get month
__SCREAMING_SNAKE_CASE : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('''Month must be between 1 - 12''' )
__SCREAMING_SNAKE_CASE : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get day
__SCREAMING_SNAKE_CASE : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('''Date must be between 1 - 31''' )
# Get second separator
__SCREAMING_SNAKE_CASE : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get year
__SCREAMING_SNAKE_CASE : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''' )
# Get datetime obj for validation
__SCREAMING_SNAKE_CASE : List[str] = datetime.date(int(lowercase__ ) , int(lowercase__ ) , int(lowercase__ ) )
# Start math
if m <= 2:
__SCREAMING_SNAKE_CASE : Dict = y - 1
__SCREAMING_SNAKE_CASE : List[str] = m + 12
# maths var
__SCREAMING_SNAKE_CASE : int = int(str(lowercase__ )[:2] )
__SCREAMING_SNAKE_CASE : int = int(str(lowercase__ )[2:] )
__SCREAMING_SNAKE_CASE : int = int(2.6 * m - 5.39 )
__SCREAMING_SNAKE_CASE : int = int(c / 4 )
__SCREAMING_SNAKE_CASE : int = int(k / 4 )
__SCREAMING_SNAKE_CASE : int = int(d + k )
__SCREAMING_SNAKE_CASE : int = int(t + u + v + x )
__SCREAMING_SNAKE_CASE : int = int(z - (2 * c) )
__SCREAMING_SNAKE_CASE : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' )
# Response
__SCREAMING_SNAKE_CASE : str = F'''Your date {date_input}, is a {days[str(lowercase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : int =argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
__lowerCAmelCase : int =parser.parse_args()
zeller(args.date_input)
| 9 |
from __future__ import annotations
def a__ ( UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase )
# We need to create solution object to save path.
UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )]
UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase )
if solved:
print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) )
else:
print('''No solution exists!''' )
return solved
def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Dict = len(UpperCAmelCase )
# Final check point.
if i == j == (size - 1):
UpperCAmelCase : Dict = 1
return True
UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds
UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
UpperCAmelCase : str = 1
# check for directions
if (
run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase )
or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase )
):
return True
UpperCAmelCase : Any = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 0 |
import numpy as np
def lowerCAmelCase_ ( __a ) -> np.array:
"""simple docstring"""
return 1 / (1 + np.exp(-vector ))
def lowerCAmelCase_ ( __a ) -> np.array:
"""simple docstring"""
return vector * sigmoid(1.7_0_2 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __UpperCAmelCase :
def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Any = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Optional[Any] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : str = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = scope
UpperCAmelCase : List[str] = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
UpperCAmelCase : str = (self.image_size // 3_2) ** 2
UpperCAmelCase : List[str] = num_patches + 1
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : str = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Any ):
UpperCAmelCase : Dict = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [4, 8, 1_6, 3_2],
'''num_groups''': 2,
}
return ViTHybridConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, )
def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ):
UpperCAmelCase : int = ViTHybridModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Tuple = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ):
UpperCAmelCase : str = self.type_sequence_label_size
UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self : int ):
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs
UpperCAmelCase : int = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = ViTHybridModelTester(self )
UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : int ):
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
UpperCAmelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, nn.Linear ) )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[Any] = model_class(__A )
UpperCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : str = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = _config_zero_init(__A )
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(config=__A )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', )
@slow
def __magic_name__ ( self : List[str] ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> Tuple:
UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : str ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__A )
UpperCAmelCase : Tuple = self.default_image_processor
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**__A )
# verify the logits
UpperCAmelCase : str = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
@require_accelerate
def __magic_name__ ( self : Dict ):
UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' )
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' )
UpperCAmelCase : Tuple = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' )
UpperCAmelCase : Dict = model(**__A )
UpperCAmelCase : Any = outputs.logits
# model predicts one of the 1000 ImageNet classes
UpperCAmelCase : Dict = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
| 336 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "dandelin/vilt-b32-finetuned-vqa"
__SCREAMING_SNAKE_CASE = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__SCREAMING_SNAKE_CASE = "image_qa"
__SCREAMING_SNAKE_CASE = AutoProcessor
__SCREAMING_SNAKE_CASE = AutoModelForVisualQuestionAnswering
__SCREAMING_SNAKE_CASE = ["image", "text"]
__SCREAMING_SNAKE_CASE = ["text"]
def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> int:
requires_backends(self , ["vision"])
super().__init__(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple:
return self.pre_processor(__lowerCamelCase , __lowerCamelCase , return_tensors="pt")
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
with torch.no_grad():
return self.model(**__lowerCamelCase).logits
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
_A : str = outputs.argmax(-1).item()
return self.model.config.idalabel[idx]
| 11 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def a__ ( ) -> tuple[list[int], int]:
UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )]
UpperCAmelCase : Any = randint(-5_000 , 5_000 )
return (arr, r)
_lowerCamelCase : Any = make_dataset()
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]:
for triplet in permutations(UpperCAmelCase , 3 ):
if sum(UpperCAmelCase ) == target:
return tuple(sorted(UpperCAmelCase ) )
return (0, 0, 0)
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]:
arr.sort()
UpperCAmelCase : Tuple = len(UpperCAmelCase )
for i in range(n - 1 ):
UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def a__ ( ) -> tuple[float, float]:
UpperCAmelCase : Union[str, Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
UpperCAmelCase : Tuple = '''
triplet_sum1(*dataset)
'''
UpperCAmelCase : List[str] = '''
triplet_sum2(*dataset)
'''
UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
return (min(UpperCAmelCase ), min(UpperCAmelCase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCamelCase : int = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 336 | 0 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : Tuple = ['pixel_values']
def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ):
super().__init__(**UpperCamelCase_ )
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_pad
__lowerCamelCase = pad_size
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ):
__lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ )
__lowerCamelCase = (old_height // size + 1) * size - old_height
__lowerCamelCase = (old_width // size + 1) * size - old_width
return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ )
def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ):
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_pad if do_pad is not None else self.do_pad
__lowerCamelCase = pad_size if pad_size is not None else self.pad_size
__lowerCamelCase = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_pad:
__lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__lowerCamelCase = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 12 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class __UpperCAmelCase :
def __magic_name__ ( self : int, __A : Dict ):
raise NotImplementedError()
def __magic_name__ ( self : int ):
raise NotImplementedError()
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ):
UpperCAmelCase : List[str] = tokenizer
UpperCAmelCase : str = skip_prompt
UpperCAmelCase : List[str] = decode_kwargs
# variables used in the streaming process
UpperCAmelCase : Dict = []
UpperCAmelCase : List[str] = 0
UpperCAmelCase : Union[str, Any] = True
def __magic_name__ ( self : Dict, __A : Optional[int] ):
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('''TextStreamer only supports batch size 1''' )
elif len(value.shape ) > 1:
UpperCAmelCase : Union[str, Any] = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
UpperCAmelCase : Optional[int] = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('''\n''' ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
# If the last token is a CJK character, we print the characters.
elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
self.print_len += len(__A )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1]
self.print_len += len(__A )
self.on_finalized_text(__A )
def __magic_name__ ( self : str ):
# Flush the cache, if it exists
if len(self.token_cache ) > 0:
UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
UpperCAmelCase : Dict = text[self.print_len :]
UpperCAmelCase : List[Any] = []
UpperCAmelCase : List[Any] = 0
else:
UpperCAmelCase : Dict = ''''''
UpperCAmelCase : str = True
self.on_finalized_text(__A, stream_end=__A )
def __magic_name__ ( self : List[str], __A : str, __A : bool = False ):
print(__A, flush=__A, end='''''' if not stream_end else None )
def __magic_name__ ( self : List[Any], __A : Optional[int] ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ):
super().__init__(__A, __A, **__A )
UpperCAmelCase : Dict = Queue()
UpperCAmelCase : Any = None
UpperCAmelCase : Any = timeout
def __magic_name__ ( self : Dict, __A : str, __A : bool = False ):
self.text_queue.put(__A, timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal, timeout=self.timeout )
def __iter__( self : int ):
return self
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 336 | 0 |
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
_UpperCAmelCase : Tuple = IFInpaintingSuperResolutionPipeline
_UpperCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
_UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} )
_UpperCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''}
def _SCREAMING_SNAKE_CASE ( self : str):
return self._get_superresolution_dummy_components()
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str=0):
if str(lowerCAmelCase__).startswith("mps"):
SCREAMING_SNAKE_CASE_: Tuple = torch.manual_seed(lowerCAmelCase__)
else:
SCREAMING_SNAKE_CASE_: str = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _SCREAMING_SNAKE_CASE ( self : Dict):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA")
def _SCREAMING_SNAKE_CASE ( self : Any):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1)
def _SCREAMING_SNAKE_CASE ( self : int):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
self._test_save_load_local()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 13 |
import numpy
# List of input, output pairs
_lowerCamelCase : Dict = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
_lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
_lowerCamelCase : Dict = [2, 4, 1, 5]
_lowerCamelCase : Dict = len(train_data)
_lowerCamelCase : int = 0.0_0_9
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict:
return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output(
UpperCAmelCase , UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Any:
UpperCAmelCase : str = 0
for i in range(len(UpperCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict:
UpperCAmelCase : Optional[int] = 0
for i in range(UpperCAmelCase ):
if index == -1:
summation_value += _error(UpperCAmelCase )
else:
summation_value += _error(UpperCAmelCase ) * train_data[i][0][index]
return summation_value
def a__ ( UpperCAmelCase : Dict ) -> Dict:
UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m
return cost_derivative_value
def a__ ( ) -> List[Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase : List[str] = 0.000002
UpperCAmelCase : Any = 0
UpperCAmelCase : Dict = 0
while True:
j += 1
UpperCAmelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase ) ):
UpperCAmelCase : List[str] = get_cost_derivative(i - 1 )
UpperCAmelCase : Tuple = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ):
break
UpperCAmelCase : int = temp_parameter_vector
print(('''Number of iterations:''', j) )
def a__ ( ) -> List[Any]:
for i in range(len(UpperCAmelCase ) ):
print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 336 | 0 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowerCamelCase : str = """src/transformers"""
# Matches is_xxx_available()
_lowerCamelCase : Optional[int] = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
_lowerCamelCase : Tuple = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowerCamelCase : Union[str, Any] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
_lowerCamelCase : Tuple = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
_lowerCamelCase : Union[str, Any] = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowerCamelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
_lowerCamelCase : Optional[int] = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowerCamelCase : int = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
_lowerCamelCase : str = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
_lowerCamelCase : str = re.compile(r"""^\s*try:""")
# Catches a line with else:
_lowerCamelCase : Any = re.compile(r"""^\s*else:""")
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
if _re_test_backend.search(lowercase_ ) is None:
return None
A__ = [b[0] for b in _re_backend.findall(lowercase_ )]
backends.sort()
return "_and_".join(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
A__ = f.readlines()
A__ = 0
while line_index < len(lowercase_ ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase_ ):
return None
# First grab the objects without a specific backend in _import_structure
A__ = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
A__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase_ ):
A__ = _re_one_line_import_struct.search(lowercase_ ).groups()[0]
A__ = re.findall('''\[([^\]]+)\]''' , lowercase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
A__ = _re_import_struct_key_value.search(lowercase_ )
if single_line_import_search is not None:
A__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
A__ = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
A__ = lines[line_index]
if _re_import_struct_add_one.search(lowercase_ ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase_ ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase_ ) is not None:
A__ = _re_import_struct_add_many.search(lowercase_ ).groups()[0].split(''', ''' )
A__ = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif _re_between_brackets.search(lowercase_ ) is not None:
A__ = _re_between_brackets.search(lowercase_ ).groups()[0].split(''', ''' )
A__ = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif _re_quote_object.search(lowercase_ ) is not None:
objects.append(_re_quote_object.search(lowercase_ ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
A__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A__ = []
while (
line_index < len(lowercase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
A__ = lines[line_index]
A__ = _re_import.search(lowercase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A__ = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
A__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
A__ = lines[line_index]
A__ = _re_import.search(lowercase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
def find_duplicates(lowercase_ ):
return [k for k, v in collections.Counter(lowercase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A__ = []
for key in import_dict_objects.keys():
A__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
A__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A__ = '''base imports''' if key == '''none''' else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def SCREAMING_SNAKE_CASE ( ) -> List[Any]:
"""simple docstring"""
A__ = []
for root, _, files in os.walk(lowercase_ ):
if "__init__.py" in files:
A__ = os.path.join(lowercase_ , '''__init__.py''' )
A__ = parse_init(lowercase_ )
if objects is not None:
A__ = analyze_results(*lowercase_ )
if len(lowercase_ ) > 0:
A__ = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('''\n'''.join(lowercase_ ) )
if len(lowercase_ ) > 0:
raise ValueError('''\n\n'''.join(lowercase_ ) )
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = []
for path, directories, files in os.walk(lowercase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(lowercase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase_ ) / folder).glob('''*.py''' ) ) ) == 0:
continue
A__ = str((Path(lowercase_ ) / folder).relative_to(lowercase_ ) )
A__ = short_path.replace(os.path.sep , '''.''' )
submodules.append(lowercase_ )
for fname in files:
if fname == "__init__.py":
continue
A__ = str((Path(lowercase_ ) / fname).relative_to(lowercase_ ) )
A__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(lowercase_ )
return submodules
_lowerCamelCase : int = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
"""simple docstring"""
A__ = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(lowercase_ , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
A__ = spec.loader.load_module()
A__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase_ ) > 0:
A__ = '''\n'''.join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
f"""{list_of_modules}\n"""
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 14 |
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
UpperCAmelCase : Optional[Any] = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
UpperCAmelCase : Any = left
UpperCAmelCase : List[str] = point
elif point > right:
UpperCAmelCase : Any = right
UpperCAmelCase : List[str] = point
else:
if item < current_item:
UpperCAmelCase : Optional[int] = point - 1
else:
UpperCAmelCase : str = point + 1
return None
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
elif point > right:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 )
else:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> int:
if collection != sorted(UpperCAmelCase ):
raise ValueError('''Collection must be ascending sorted''' )
return True
if __name__ == "__main__":
import sys
_lowerCamelCase : Optional[int] = 0
if debug == 1:
_lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
_lowerCamelCase : List[Any] = 6_7
_lowerCamelCase : Optional[Any] = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 336 | 0 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = (DDIMParallelScheduler,)
snake_case_ = (("eta", 0.0), ("num_inference_steps", 50))
def UpperCamelCase_ ( self : Dict ,**A : List[Any] ):
__A = {
"num_train_timesteps": 10_00,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**A )
return config
def UpperCamelCase_ ( self : Union[str, Any] ,**A : Union[str, Any] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config(**A )
__A = scheduler_class(**A )
__A , __A = 10, 0.0
__A = self.dummy_model()
__A = self.dummy_sample_deter
scheduler.set_timesteps(A )
for t in scheduler.timesteps:
__A = model(A ,A )
__A = scheduler.step(A ,A ,A ,A ).prev_sample
return sample
def UpperCamelCase_ ( self : Dict ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=A )
def UpperCamelCase_ ( self : Optional[int] ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=A )
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config(steps_offset=1 )
__A = scheduler_class(**A )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps ,torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def UpperCamelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=A ,beta_end=A )
def UpperCamelCase_ ( self : Any ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A )
def UpperCamelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A )
def UpperCamelCase_ ( self : Optional[Any] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A )
def UpperCamelCase_ ( self : Any ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=A )
def UpperCamelCase_ ( self : Any ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=A )
def UpperCamelCase_ ( self : List[str] ):
self.check_over_configs(thresholding=A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=A ,prediction_type=A ,sample_max_value=A ,)
def UpperCamelCase_ ( self : Any ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=A )
def UpperCamelCase_ ( self : List[Any] ):
for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 5_00] ):
self.check_over_forward(time_step=A ,num_inference_steps=A )
def UpperCamelCase_ ( self : Dict ):
for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=A ,eta=A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 ,4_00 ) - 0.1_47_71 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 ,9_60 ) - 0.3_24_60 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ,4_86 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ,9_98 ) - 0.02 ) ) < 1E-5
def UpperCamelCase_ ( self : List[Any] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
__A , __A = 10, 0.0
scheduler.set_timesteps(A )
__A = self.dummy_model()
__A = self.dummy_sample_deter
__A = self.dummy_sample_deter + 0.1
__A = self.dummy_sample_deter - 0.1
__A = samplea.shape[0]
__A = torch.stack([samplea, samplea, samplea] ,dim=0 )
__A = torch.arange(A )[0:3, None].repeat(1 ,A )
__A = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) )
__A = scheduler.batch_step_no_noise(A ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,A )
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2
assert abs(result_mean.item() - 0.49_82 ) < 1E-3
def UpperCamelCase_ ( self : List[Any] ):
__A = self.full_loop()
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3
def UpperCamelCase_ ( self : Tuple ):
__A = self.full_loop(prediction_type="v_prediction" )
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 52.53_02 ) < 1E-2
assert abs(result_mean.item() - 0.06_84 ) < 1E-3
def UpperCamelCase_ ( self : Union[str, Any] ):
# We specify different beta, so that the first alpha is 0.99
__A = self.full_loop(set_alpha_to_one=A ,beta_start=0.01 )
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2
assert abs(result_mean.item() - 0.19_51 ) < 1E-3
def UpperCamelCase_ ( self : Any ):
# We specify different beta, so that the first alpha is 0.99
__A = self.full_loop(set_alpha_to_one=A ,beta_start=0.01 )
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2
assert abs(result_mean.item() - 0.19_41 ) < 1E-3
| 15 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Any = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else ''''''
UpperCAmelCase : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''),
(f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''),
(f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''),
(f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any:
for i in range(config.num_hidden_layers ):
UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' )
UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' )
UpperCAmelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase : str = q_bias
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : int = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' )
UpperCAmelCase : str = gamma_a
UpperCAmelCase : Dict = gamma_a
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : str = val
def a__ ( ) -> Optional[int]:
UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]:
UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True
UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
UpperCAmelCase : List[Any] = 1_024
UpperCAmelCase : Optional[Any] = 4_096
UpperCAmelCase : Any = 24
UpperCAmelCase : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 16
UpperCAmelCase : List[Any] = '''huggingface/label-files'''
UpperCAmelCase : Any = '''rvlcdip-id2label.json'''
UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = idalabel
UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model''']
UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase )
for src, dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase )
# load HuggingFace model
UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase )
model.eval()
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image
UpperCAmelCase : Dict = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase )
UpperCAmelCase : List[str] = prepare_img()
UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' )
UpperCAmelCase : str = encoding['''pixel_values''']
UpperCAmelCase : Any = model(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify logits
UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected"
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if push_to_hub:
if has_lm_head:
UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , )
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 336 | 0 |
"""simple docstring"""
from graphs.minimum_spanning_tree_kruskal import kruskal
def __UpperCAmelCase ( ) -> Dict:
lowercase__ : str = 9
lowercase__ : Optional[int] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowercase__ : int = kruskal(__lowerCamelCase , __lowerCamelCase )
lowercase__ : str = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
| 16 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ):
UpperCAmelCase : Any = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Any = seq_length
UpperCAmelCase : Tuple = is_training
UpperCAmelCase : str = use_attention_mask
UpperCAmelCase : List[str] = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : Any = num_choices
def __magic_name__ ( self : str ):
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : List[Any] = None
if self.use_attention_mask:
UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Any = None
if self.use_token_type_ids:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = RobertaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def __magic_name__ ( self : int ):
UpperCAmelCase : Any = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs
UpperCAmelCase : Any = True
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = True
UpperCamelCase = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Dict = FlaxRobertaModelTester(self )
@slow
def __magic_name__ ( self : Any ):
for model_class_name in self.all_model_classes:
UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A )
UpperCAmelCase : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__A )
| 336 | 0 |
"""simple docstring"""
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> str:
'''simple docstring'''
if not isinstance(UpperCamelCase_, UpperCamelCase_):
raise ValueError("iterations must be defined as integers")
if not isinstance(UpperCamelCase_, UpperCamelCase_) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0")
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz")
__lowercase = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(UpperCamelCase_)
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : Dict = {"vocab_file": "vocab.txt"}
_lowerCamelCase : List[str] = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase : List[Any] = {
"facebook/esm2_t6_8M_UR50D": 1_0_2_4,
"facebook/esm2_t12_35M_UR50D": 1_0_2_4,
}
def a__ ( UpperCAmelCase : List[str] ) -> Any:
with open(UpperCAmelCase , '''r''' ) as f:
UpperCAmelCase : Dict = f.read().splitlines()
return [l.strip() for l in lines]
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ):
super().__init__(**__A )
UpperCAmelCase : Tuple = load_vocab_file(__A )
UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) )
UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase : Union[str, Any] = unk_token
UpperCAmelCase : Optional[Any] = cls_token
UpperCAmelCase : Optional[int] = pad_token
UpperCAmelCase : Optional[int] = mask_token
UpperCAmelCase : List[str] = eos_token
UpperCAmelCase : Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __magic_name__ ( self : Tuple, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : List[Any], __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ):
return text.split()
def __magic_name__ ( self : Optional[int], __A : Dict=False ):
return len(self._id_to_token )
def __magic_name__ ( self : int ):
return {token: i for i, token in enumerate(self.all_tokens )}
def __magic_name__ ( self : Tuple, __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ):
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
mask += [0] * len(__A ) + [1]
return mask
def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ):
UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(__A, '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __magic_name__ ( self : Dict ):
return self.get_vocab_size(with_added_tokens=__A )
def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ):
return super()._add_tokens(__A, special_tokens=__A )
| 336 | 0 |
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : Any = logging.get_logger(__name__)
__lowerCamelCase : Tuple = {
'''microsoft/xprophetnet-large-wiki100-cased''': (
'''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json'''
),
}
class a__ ( A__ ):
A = 'xlm-prophetnet'
A = ['past_key_values']
A = {
'num_attention_heads': 'num_encoder_attention_heads',
}
def __init__( self : Optional[Any],_A : Optional[float] = 0.1,_A : Optional[Union[str, Callable]] = "gelu",_A : Optional[int] = 3_0522,_A : Optional[int] = 1024,_A : Optional[int] = 4096,_A : Optional[int] = 12,_A : Optional[int] = 16,_A : Optional[int] = 4096,_A : Optional[int] = 12,_A : Optional[int] = 16,_A : Optional[float] = 0.1,_A : Optional[float] = 0.1,_A : Optional[int] = 512,_A : Optional[float] = 0.02,_A : Optional[bool] = True,_A : Optional[bool] = True,_A : Optional[int] = 0,_A : Optional[int] = 2,_A : Optional[int] = 32,_A : Optional[int] = 128,_A : Optional[bool] = False,_A : Optional[float] = 0.0,_A : Optional[bool] = True,_A : Optional[int] = 0,_A : Optional[int] = 1,_A : Optional[int] = 2,**_A : str,):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = vocab_size
SCREAMING_SNAKE_CASE_ : Tuple = hidden_size
SCREAMING_SNAKE_CASE_ : str = encoder_ffn_dim
SCREAMING_SNAKE_CASE_ : Any = num_encoder_layers
SCREAMING_SNAKE_CASE_ : Any = num_encoder_attention_heads
SCREAMING_SNAKE_CASE_ : int = decoder_ffn_dim
SCREAMING_SNAKE_CASE_ : Optional[int] = num_decoder_layers
SCREAMING_SNAKE_CASE_ : str = num_decoder_attention_heads
SCREAMING_SNAKE_CASE_ : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE_ : Optional[int] = init_std # Normal(0, this parameter)
SCREAMING_SNAKE_CASE_ : Dict = activation_function
# parameters for xlmprophetnet
SCREAMING_SNAKE_CASE_ : int = ngram
SCREAMING_SNAKE_CASE_ : Optional[int] = num_buckets
SCREAMING_SNAKE_CASE_ : Optional[int] = relative_max_distance
SCREAMING_SNAKE_CASE_ : List[Any] = disable_ngram_loss
SCREAMING_SNAKE_CASE_ : List[str] = eps
# 3 Types of Dropout
SCREAMING_SNAKE_CASE_ : str = attention_dropout
SCREAMING_SNAKE_CASE_ : Tuple = activation_dropout
SCREAMING_SNAKE_CASE_ : List[Any] = dropout
SCREAMING_SNAKE_CASE_ : Any = use_cache
super().__init__(
pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,is_encoder_decoder=_A,add_cross_attention=_A,decoder_start_token_id=_A,**_A,)
@property
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def __UpperCamelCase ( self : Optional[int],_A : str ):
"""simple docstring"""
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
" `num_decoder_layers`." )
| 18 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : str = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) )
self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) )
class __UpperCAmelCase :
def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ):
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : List[str] = num_channels
UpperCAmelCase : str = image_size
UpperCAmelCase : Optional[int] = depth_multiplier
UpperCAmelCase : Union[str, Any] = depth_divisible_by
UpperCAmelCase : Optional[Any] = min_depth
UpperCAmelCase : List[str] = expand_ratio
UpperCAmelCase : Dict = tf_padding
UpperCAmelCase : str = output_stride
UpperCAmelCase : Union[str, Any] = first_layer_is_expansion
UpperCAmelCase : List[Any] = finegrained_output
UpperCAmelCase : Optional[Any] = hidden_act
UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
UpperCAmelCase : Optional[Any] = classifier_dropout_prob
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : List[str] = is_training
UpperCAmelCase : Tuple = num_labels
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Any = scope
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Dict = None
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels )
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def __magic_name__ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ):
UpperCAmelCase : Any = MobileNetVaModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[Any] = model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
self.parent.assertEqual(
result.pooler_output.shape, (self.batch_size, self.last_hidden_size), )
def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ):
UpperCAmelCase : Optional[int] = self.num_labels
UpperCAmelCase : Any = MobileNetVaForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[int] = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ):
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCAmelCase : Optional[Any] = model(__A, labels=__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs
UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
"""feature-extraction""": MobileNetVaModel,
"""image-classification""": MobileNetVaForImageClassification,
"""image-segmentation""": MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = MobileNetVaModelTester(self )
UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A )
def __magic_name__ ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' )
def __magic_name__ ( self : Tuple ):
pass
@unittest.skip(reason='''MobileNetV2 does not output attentions''' )
def __magic_name__ ( self : Any ):
pass
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(__A )
UpperCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase : Any = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : int ):
def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ):
UpperCAmelCase : Union[str, Any] = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Optional[Any] = outputs.hidden_states
UpperCAmelCase : List[Any] = 1_6
self.assertEqual(len(__A ), __A )
UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : int ):
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__A )
@slow
def __magic_name__ ( self : Dict ):
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> int:
UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[Any] ):
return (
MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None
)
@slow
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A )
UpperCAmelCase : Optional[int] = self.default_image_processor
UpperCAmelCase : Optional[Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : str = model(**__A )
# verify the logits
UpperCAmelCase : int = torch.Size((1, 1_0_0_1) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = model.to(__A )
UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = prepare_img()
UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(**__A )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify the logits
UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) )
self.assertEqual(logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor(
[
[[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]],
[[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]],
[[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]],
], device=__A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
| 336 | 0 |
import qiskit
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
lowerCamelCase_ = qiskit.Aer.get_backend("aer_simulator" )
# Create a Quantum Circuit acting on the q register
lowerCamelCase_ = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
lowerCamelCase_ = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_0_0_0 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(lowerCamelCase__ )
if __name__ == "__main__":
print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
| 19 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_lowerCamelCase : str = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
}
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """codegen"""
UpperCamelCase = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ):
UpperCAmelCase : int = vocab_size
UpperCAmelCase : Tuple = n_ctx
UpperCAmelCase : Tuple = n_positions
UpperCAmelCase : Optional[int] = n_embd
UpperCAmelCase : Union[str, Any] = n_layer
UpperCAmelCase : List[str] = n_head
UpperCAmelCase : Tuple = n_inner
UpperCAmelCase : int = rotary_dim
UpperCAmelCase : List[Any] = activation_function
UpperCAmelCase : List[str] = resid_pdrop
UpperCAmelCase : Optional[Any] = embd_pdrop
UpperCAmelCase : str = attn_pdrop
UpperCAmelCase : Tuple = layer_norm_epsilon
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Union[str, Any] = use_cache
UpperCAmelCase : Any = bos_token_id
UpperCAmelCase : List[str] = eos_token_id
super().__init__(
bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A )
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ):
super().__init__(__A, task=__A, patching_specs=__A, use_past=__A )
if not getattr(self._config, '''pad_token_id''', __A ):
# TODO: how to do that better?
UpperCAmelCase : Union[str, Any] = 0
@property
def __magic_name__ ( self : str ):
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__A, direction='''inputs''' )
UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __magic_name__ ( self : Dict ):
return self._config.n_layer
@property
def __magic_name__ ( self : List[str] ):
return self._config.n_head
def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ):
UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs(
__A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A )
# We need to order the input in the way they appears in the forward()
UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
UpperCAmelCase : str = seqlen + 2
UpperCAmelCase : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
UpperCAmelCase : Optional[int] = [
(torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers )
]
UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask''']
if self.use_past:
UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype
UpperCAmelCase : Dict = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 )
return ordered_inputs
@property
def __magic_name__ ( self : Tuple ):
return 1_3
| 336 | 0 |
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=() , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="no" , SCREAMING_SNAKE_CASE__="29500" ) -> Union[str, Any]:
lowercase : str = False
lowercase : List[Any] = False
if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ):
lowercase : Tuple = True
elif "IPython" in sys.modules:
lowercase : Dict = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() )
try:
lowercase : List[str] = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." )
if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , SCREAMING_SNAKE_CASE__ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"""To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """
"""your training function. Restart your notebook and make sure no cells initializes an """
"""`Accelerator`.""" )
if num_processes is None:
lowercase : List[Any] = 8
lowercase : List[str] = PrepareForLaunch(SCREAMING_SNAKE_CASE__ , distributed_type="""TPU""" )
print(f"Launching a training on {num_processes} TPU cores." )
xmp.spawn(SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , nprocs=SCREAMING_SNAKE_CASE__ , start_method="""fork""" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("""Launching training on one GPU.""" )
else:
print("""Launching training on one CPU.""" )
function(*SCREAMING_SNAKE_CASE__ )
else:
if num_processes is None:
raise ValueError(
"""You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"""To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """
"""inside your training function. Restart your notebook and make sure no cells initializes an """
"""`Accelerator`.""" )
if torch.cuda.is_initialized():
raise ValueError(
"""To launch a multi-GPU training from your notebook, you need to avoid running any instruction """
"""using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """
"""function.""" )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=SCREAMING_SNAKE_CASE__ , master_addr="""127.0.01""" , master_port=SCREAMING_SNAKE_CASE__ , mixed_precision=SCREAMING_SNAKE_CASE__ ):
lowercase : Optional[Any] = PrepareForLaunch(SCREAMING_SNAKE_CASE__ , distributed_type="""MULTI_GPU""" )
print(f"Launching training on {num_processes} GPUs." )
try:
start_processes(SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , nprocs=SCREAMING_SNAKE_CASE__ , start_method="""fork""" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"""CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """
"""This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """
"""Please review your imports and test them when running the `notebook_launcher()` to identify """
"""which one is problematic.""" ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
lowercase : Union[str, Any] = """1"""
print("""Launching training on MPS.""" )
elif torch.cuda.is_available():
print("""Launching training on one GPU.""" )
else:
print("""Launching training on CPU.""" )
function(*SCREAMING_SNAKE_CASE__ )
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=() , SCREAMING_SNAKE_CASE__=2 ) -> List[Any]:
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=SCREAMING_SNAKE_CASE__ , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ):
lowercase : Tuple = PrepareForLaunch(SCREAMING_SNAKE_CASE__ , debug=SCREAMING_SNAKE_CASE__ )
start_processes(SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , nprocs=SCREAMING_SNAKE_CASE__ , start_method="""fork""" )
| 20 |
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 336 | 0 |
import functools
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int:
# Validation
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for day in days ):
raise ValueError('The parameter days should be a list of integers' )
if len(lowerCamelCase_ ) != 3 or not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for cost in costs ):
raise ValueError('The parameter costs should be a list of three integers' )
if len(lowerCamelCase_ ) == 0:
return 0
if min(lowerCamelCase_ ) <= 0:
raise ValueError('All days elements should be greater than 0' )
if max(lowerCamelCase_ ) >= 366:
raise ValueError('All days elements should be less than 366' )
_lowercase : Optional[int] = set(lowerCamelCase_ )
@functools.cache
def dynamic_programming(lowerCamelCase_ ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class __UpperCAmelCase :
# setable values
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None # sigma(t_i)
@classmethod
def __magic_name__ ( cls : Any ):
return cls()
@dataclass
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = 42
UpperCamelCase = 42
UpperCamelCase = 42
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@property
def __magic_name__ ( self : Optional[int] ):
return True
@register_to_config
def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ):
pass
def __magic_name__ ( self : Optional[Any] ):
return KarrasVeSchedulerState.create()
def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ):
UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy()
UpperCAmelCase : Union[str, Any] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, )
def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ):
if self.config.s_min <= sigma <= self.config.s_max:
UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 )
else:
UpperCAmelCase : Optional[int] = 0
# sample eps ~ N(0, S_noise^2 * I)
UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 )
UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape )
UpperCAmelCase : Tuple = sigma + gamma * sigma
UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ):
UpperCAmelCase : int = sample_hat + sigma_hat * model_output
UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat
UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A )
def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ):
UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output
UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev
UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A )
def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ):
raise NotImplementedError()
| 336 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
__SCREAMING_SNAKE_CASE :List[Any] = None
__SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE :List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__SCREAMING_SNAKE_CASE :List[Any] = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''',
},
}
__SCREAMING_SNAKE_CASE :Optional[Any] = {
'''albert-base-v1''': 512,
'''albert-large-v1''': 512,
'''albert-xlarge-v1''': 512,
'''albert-xxlarge-v1''': 512,
'''albert-base-v2''': 512,
'''albert-large-v2''': 512,
'''albert-xlarge-v2''': 512,
'''albert-xxlarge-v2''': 512,
}
__SCREAMING_SNAKE_CASE :Optional[int] = '''▁'''
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES
_lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : int = AlbertTokenizer
def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=True , snake_case_ : str=True , snake_case_ : Tuple=False , snake_case_ : List[Any]="[CLS]" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : str="<unk>" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : List[Any]="<pad>" , snake_case_ : List[str]="[CLS]" , snake_case_ : int="[MASK]" , **snake_case_ : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_UpperCAmelCase = (
AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ )
if isinstance(snake_case_ , snake_case_ )
else mask_token
)
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , )
_UpperCAmelCase = do_lower_case
_UpperCAmelCase = remove_space
_UpperCAmelCase = keep_accents
_UpperCAmelCase = vocab_file
_UpperCAmelCase = False if not self.vocab_file else True
def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ):
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowercase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ):
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(snake_case_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
_UpperCAmelCase = os.path.join(
snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ):
copyfile(self.vocab_file , snake_case_ )
return (out_vocab_file,)
| 22 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __UpperCAmelCase ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def a__ ( ) -> Dict:
if os.name == "nt":
UpperCAmelCase : List[str] = CursorInfo()
UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Dict = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25l''' )
sys.stdout.flush()
def a__ ( ) -> Optional[int]:
if os.name == "nt":
UpperCAmelCase : int = CursorInfo()
UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
UpperCAmelCase : Any = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) )
elif os.name == "posix":
sys.stdout.write('''\033[?25h''' )
sys.stdout.flush()
@contextmanager
def a__ ( ) -> Optional[Any]:
try:
hide_cursor()
yield
finally:
show_cursor()
| 336 | 0 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ) -> List[str]:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
UpperCAmelCase : List[str] = TapasConfig.from_json_file(_lowerCAmelCase )
# set absolute/relative position embeddings parameter
UpperCAmelCase : Optional[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
UpperCAmelCase : Any = TapasForQuestionAnswering(config=_lowerCAmelCase )
elif task == "WTQ":
# run_task_main.py hparams
UpperCAmelCase : int = 4
UpperCAmelCase : int = True
# hparam_utils.py hparams
UpperCAmelCase : Union[str, Any] = 0.6_6_4_6_9_4
UpperCAmelCase : Tuple = 0.2_0_7_9_5_1
UpperCAmelCase : Dict = 0.1_2_1_1_9_4
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : str = True
UpperCAmelCase : List[Any] = False
UpperCAmelCase : Tuple = 0.0_3_5_2_5_1_3
UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=_lowerCAmelCase )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Tuple = False
# hparam_utils.py hparams
UpperCAmelCase : Union[str, Any] = 3_6.4_5_1_9
UpperCAmelCase : Optional[Any] = 0.9_0_3_4_2_1
UpperCAmelCase : Dict = 2_2_2.0_8_8
UpperCAmelCase : int = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : Any = 0.7_6_3_1_4_1
UpperCAmelCase : Tuple = TapasForQuestionAnswering(config=_lowerCAmelCase )
elif task == "TABFACT":
UpperCAmelCase : List[str] = TapasForSequenceClassification(config=_lowerCAmelCase )
elif task == "MLM":
UpperCAmelCase : List[str] = TapasForMaskedLM(config=_lowerCAmelCase )
elif task == "INTERMEDIATE_PRETRAINING":
UpperCAmelCase : List[Any] = TapasModel(config=_lowerCAmelCase )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(_lowerCAmelCase )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
UpperCAmelCase : Dict = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(_lowerCAmelCase )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
UpperCamelCase__: Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCamelCase__: Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 23 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowerCamelCase : Tuple = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 336 | 0 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case_ = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 24 |
from __future__ import annotations
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]:
if partitions <= 0:
raise ValueError('''partitions must be a positive number!''' )
if partitions > number_of_bytes:
raise ValueError('''partitions can not > number_of_bytes!''' )
UpperCAmelCase : str = number_of_bytes // partitions
UpperCAmelCase : Dict = []
for i in range(UpperCAmelCase ):
UpperCAmelCase : int = i * bytes_per_partition + 1
UpperCAmelCase : Optional[int] = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 0 |
"""simple docstring"""
import os
import sys
import unittest
UpperCAmelCase__ : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
UpperCAmelCase__ : List[str] = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
UpperCAmelCase__ : Dict = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class lowerCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __magic_name__ (self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""BertModelTest""": """BertModelTester"""}
SCREAMING_SNAKE_CASE__ : Any = {
"""BlipModelTest""": """BlipModelTester""",
"""BlipTextImageModelTest""": """BlipTextImageModelsModelTester""",
"""BlipTextModelTest""": """BlipTextModelTester""",
"""BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""",
"""BlipVQAModelTest""": """BlipVQAModelTester""",
"""BlipVisionModelTest""": """BlipVisionModelTester""",
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def __magic_name__ (self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : List[str] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = {
"""BertForMaskedLM""": ["""BertModelTest"""],
"""BertForMultipleChoice""": ["""BertModelTest"""],
"""BertForNextSentencePrediction""": ["""BertModelTest"""],
"""BertForPreTraining""": ["""BertModelTest"""],
"""BertForQuestionAnswering""": ["""BertModelTest"""],
"""BertForSequenceClassification""": ["""BertModelTest"""],
"""BertForTokenClassification""": ["""BertModelTest"""],
"""BertLMHeadModel""": ["""BertModelTest"""],
"""BertModel""": ["""BertModelTest"""],
}
SCREAMING_SNAKE_CASE__ : Dict = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTest"""],
"""BlipModel""": ["""BlipModelTest"""],
"""BlipTextModel""": ["""BlipTextModelTest"""],
"""BlipVisionModel""": ["""BlipVisionModelTest"""],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def __magic_name__ (self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Dict = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""BertForMaskedLM""": ["""BertModelTester"""],
"""BertForMultipleChoice""": ["""BertModelTester"""],
"""BertForNextSentencePrediction""": ["""BertModelTester"""],
"""BertForPreTraining""": ["""BertModelTester"""],
"""BertForQuestionAnswering""": ["""BertModelTester"""],
"""BertForSequenceClassification""": ["""BertModelTester"""],
"""BertForTokenClassification""": ["""BertModelTester"""],
"""BertLMHeadModel""": ["""BertModelTester"""],
"""BertModel""": ["""BertModelTester"""],
}
SCREAMING_SNAKE_CASE__ : int = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTester"""],
"""BlipModel""": ["""BlipModelTester"""],
"""BlipTextModel""": ["""BlipTextModelTester"""],
"""BlipVisionModel""": ["""BlipVisionModelTester"""],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
| 25 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
_lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]:
if subparsers is not None:
UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description )
else:
UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description )
# Core arguments
UpperCAmelCase : Optional[int] = parser.add_argument_group(
'''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' )
config_args.add_argument(
'''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , )
config_args.add_argument(
'''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , )
config_args.add_argument(
'''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , )
UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' )
pod_args.add_argument(
'''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , )
pod_args.add_argument(
'''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , )
pod_args.add_argument(
'''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , )
pod_args.add_argument(
'''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , )
pod_args.add_argument(
'''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , )
pod_args.add_argument(
'''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' )
if subparsers is not None:
parser.set_defaults(func=UpperCAmelCase )
return parser
def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCAmelCase : List[Any] = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCAmelCase : List[str] = defaults.commands
if not args.tpu_name:
UpperCAmelCase : Tuple = defaults.tpu_name
if not args.tpu_zone:
UpperCAmelCase : int = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
UpperCAmelCase : Dict = '''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ):
UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}'''
if not args.command_file and not args.command:
raise ValueError('''You must specify either a command file or a command to run on the pod.''' )
if args.command_file:
with open(args.command_file , '''r''' ) as f:
UpperCAmelCase : int = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , UpperCAmelCase ):
UpperCAmelCase : int = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCAmelCase : Optional[int] = ['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [f'''pip install {args.accelerate_version}''']
new_cmd += args.command
UpperCAmelCase : int = '''; '''.join(UpperCAmelCase )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCAmelCase : Any = ['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(f'''Running {" ".join(UpperCAmelCase )}''' )
return
subprocess.run(UpperCAmelCase )
print('''Successfully setup pod.''' )
def a__ ( ) -> Any:
UpperCAmelCase : Any = tpu_command_parser()
UpperCAmelCase : Tuple = parser.parse_args()
tpu_command_launcher(UpperCAmelCase )
| 336 | 0 |
import argparse
import json
from tqdm import tqdm
def lowerCAmelCase_ ( ):
_A : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--src_path""",type=snake_case_,default="""biencoder-nq-dev.json""",help="""Path to raw DPR training data""",)
parser.add_argument(
"""--evaluation_set""",type=snake_case_,help="""where to store parsed evaluation_set file""",)
parser.add_argument(
"""--gold_data_path""",type=snake_case_,help="""where to store parsed gold_data_path file""",)
_A : str = parser.parse_args()
with open(args.src_path,"""r""" ) as src_file, open(args.evaluation_set,"""w""" ) as eval_file, open(
args.gold_data_path,"""w""" ) as gold_file:
_A : List[Any] = json.load(snake_case_ )
for dpr_record in tqdm(snake_case_ ):
_A : Union[str, Any] = dpr_record["""question"""]
_A : List[str] = [context["""title"""] for context in dpr_record["""positive_ctxs"""]]
eval_file.write(question + """\n""" )
gold_file.write("""\t""".join(snake_case_ ) + """\n""" )
if __name__ == "__main__":
main()
| 26 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Optional[int] = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
print('''Loading config file...''' )
def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ):
UpperCAmelCase : List[str] = []
for k, v in d.items():
UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k
if isinstance(UpperCAmelCase , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() )
else:
items.append((new_key, v) )
return dict(UpperCAmelCase )
UpperCAmelCase : List[str] = argparse.Namespace()
with open(UpperCAmelCase , '''r''' ) as yaml_file:
try:
UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader )
UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase )
for k, v in flat_cfg.items():
setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) )
return config
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]:
UpperCAmelCase : int = MobileViTVaConfig()
UpperCAmelCase : str = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase : Any = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase : Any = 384
else:
UpperCAmelCase : Tuple = 256
UpperCAmelCase : int = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase : Optional[Any] = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase : str = 384
else:
UpperCAmelCase : Dict = 256
UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase : Optional[Any] = 151
UpperCAmelCase : Tuple = 512
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Tuple = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase : Dict = 21
UpperCAmelCase : str = 512
UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json'''
UpperCAmelCase : Dict = True
# orig_config
UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase )
assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase : Union[str, Any] = '''huggingface/label-files'''
UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : int = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : List[str] = val
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]:
if base_model:
UpperCAmelCase : Dict = ''''''
else:
UpperCAmelCase : Dict = '''mobilevitv2.'''
UpperCAmelCase : Optional[int] = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase : List[str] = k[8:]
else:
UpperCAmelCase : Dict = k
if ".block." in k:
UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase : Dict = [0, 1]
elif i == 4:
UpperCAmelCase : Dict = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase : int = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
UpperCAmelCase : Optional[Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
UpperCAmelCase : Any = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any:
UpperCAmelCase : str = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(UpperCAmelCase )
for k in keys_to_ignore:
state_dict.pop(UpperCAmelCase , UpperCAmelCase )
def a__ ( ) -> Union[str, Any]:
UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase )
# load original state_dict
UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval()
UpperCAmelCase : str = False
else:
UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval()
UpperCAmelCase : Any = False
# remove and rename some keys of load the original model
UpperCAmelCase : Optional[Any] = checkpoint
remove_unused_keys(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# load modified state_dict
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase : Optional[Any] = outputs.logits
UpperCAmelCase : int = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] )
assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 )
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if __name__ == "__main__":
_lowerCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 336 | 0 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __UpperCamelCase :
def __init__( self , __a , __a=2 , __a=3 , __a=4 , __a=2 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=36 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=6 , __a=6 , __a=3 , __a=4 , __a=None , __a=1000 , ):
'''simple docstring'''
__a : Optional[Any] = parent
__a : int = batch_size
__a : Any = num_channels
__a : Optional[int] = image_size
__a : Dict = patch_size
__a : int = is_training
__a : Union[str, Any] = use_input_mask
__a : Optional[int] = use_token_type_ids
__a : Dict = use_labels
__a : str = vocab_size
__a : List[Any] = hidden_size
__a : Union[str, Any] = num_hidden_layers
__a : str = num_attention_heads
__a : Union[str, Any] = intermediate_size
__a : Any = hidden_act
__a : List[str] = hidden_dropout_prob
__a : List[str] = attention_probs_dropout_prob
__a : List[Any] = max_position_embeddings
__a : Tuple = type_vocab_size
__a : Any = type_sequence_label_size
__a : Optional[int] = initializer_range
__a : Any = coordinate_size
__a : List[Any] = shape_size
__a : Optional[int] = num_labels
__a : Dict = num_choices
__a : Union[str, Any] = scope
__a : Union[str, Any] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__a : Optional[int] = text_seq_length
__a : Any = (image_size // patch_size) ** 2 + 1
__a : Dict = self.text_seq_length + self.image_seq_length
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__a : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__a : Any = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__a : List[Any] = bbox[i, j, 3]
__a : Tuple = bbox[i, j, 1]
__a : str = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__a : int = bbox[i, j, 2]
__a : Dict = bbox[i, j, 0]
__a : int = tmp_coordinate
__a : Optional[int] = tf.constant(__a )
__a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a : str = None
if self.use_input_mask:
__a : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] )
__a : str = None
if self.use_token_type_ids:
__a : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__a : Optional[Any] = None
__a : Optional[int] = None
if self.use_labels:
__a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__a : int = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ):
'''simple docstring'''
__a : Dict = TFLayoutLMvaModel(config=__a )
# text + image
__a : List[Any] = model(__a , pixel_values=__a , training=__a )
__a : Any = model(
__a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , training=__a , )
__a : Optional[int] = model(__a , bbox=__a , pixel_values=__a , training=__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__a : Any = model(__a , training=__a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__a : str = model({'pixel_values': pixel_values} , training=__a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ):
'''simple docstring'''
__a : Any = self.num_labels
__a : Dict = TFLayoutLMvaForSequenceClassification(config=__a )
__a : List[str] = model(
__a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ):
'''simple docstring'''
__a : str = self.num_labels
__a : Optional[Any] = TFLayoutLMvaForTokenClassification(config=__a )
__a : List[str] = model(
__a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ):
'''simple docstring'''
__a : List[Any] = 2
__a : Any = TFLayoutLMvaForQuestionAnswering(config=__a )
__a : Any = model(
__a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , training=__a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Dict = self.prepare_config_and_inputs()
((__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Dict = config_and_inputs
__a : Any = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
A_ = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
A_ = (
{"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel}
if is_tf_available()
else {}
)
A_ = False
A_ = False
A_ = False
def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ):
'''simple docstring'''
return True
def __UpperCAmelCase ( self , __a , __a , __a=False ):
'''simple docstring'''
__a : str = copy.deepcopy(__a )
if model_class in get_values(__a ):
__a : str = {
k: tf.tile(tf.expand_dims(__a , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__a , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__a ):
__a : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__a ):
__a : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__a : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__a ):
__a : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__a ):
__a : Union[str, Any] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Optional[Any] = TFLayoutLMvaModelTester(self )
__a : Optional[int] = ConfigTester(self , config_class=__a , hidden_size=37 )
def __UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a : Dict = model_class(__a )
if getattr(__a , 'hf_compute_loss' , __a ):
# The number of elements in the loss should be the same as the number of elements in the label
__a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a )
__a : str = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__a )[0]
]
__a : Dict = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a )
__a : Dict = prepared_for_class.pop('input_ids' )
__a : Tuple = model(__a , **__a )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a )
__a : str = prepared_for_class.pop('input_ids' )
if "labels" in prepared_for_class:
__a : Union[str, Any] = prepared_for_class['labels'].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__a : List[Any] = -100
__a : List[str] = tf.convert_to_tensor(__a )
__a : Any = model(__a , **__a )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a )
__a : str = model(__a )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__a : Tuple = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a )
# Get keys that were added with the _prepare_for_class function
__a : Dict = prepared_for_class.keys() - inputs_dict.keys()
__a : Any = inspect.signature(model.call ).parameters
__a : str = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__a : List[Any] = {0: 'input_ids'}
for label_key in label_keys:
__a : List[Any] = signature_names.index(__a )
__a : Union[str, Any] = label_key
__a : List[str] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__a : Union[str, Any] = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__a : Optional[Any] = prepared_for_class[value]
__a : str = tuple(__a )
# Send to model
__a : Tuple = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def __UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a )
def __UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__a : Any = type
self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a )
def __UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__a , __a , __a , __a , __a , __a , __a )
def __UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__a , __a , __a , __a , __a , __a , __a )
def __UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__a , __a , __a , __a , __a , __a , __a )
@slow
def __UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a : List[Any] = TFLayoutLMvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def lowerCamelCase ():
__a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def __UpperCAmelCase ( self ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None
@slow
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : str = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' )
__a : Tuple = self.default_image_processor
__a : List[Any] = prepare_img()
__a : int = image_processor(images=__a , return_tensors='tf' ).pixel_values
__a : Union[str, Any] = tf.constant([[1, 2]] )
__a : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__a : Tuple = model(input_ids=__a , bbox=__a , pixel_values=__a , training=__a )
# verify the logits
__a : List[Any] = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , __a )
__a : Optional[Any] = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) )
| 27 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class __UpperCAmelCase ( lowerCamelCase__ ):
def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
UpperCAmelCase : str = '''__cached_''' + self.fget.__name__
UpperCAmelCase : int = getattr(__A, __A, __A )
if cached is None:
UpperCAmelCase : Any = self.fget(__A )
setattr(__A, __A, __A )
return cached
def a__ ( UpperCAmelCase : Optional[Any] ) -> Any:
UpperCAmelCase : Any = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'''invalid truth value {val!r}''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_torch_fx_proxy(UpperCAmelCase ):
return True
if is_torch_available():
import torch
if isinstance(UpperCAmelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(UpperCAmelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]:
return isinstance(UpperCAmelCase , np.ndarray )
def a__ ( UpperCAmelCase : str ) -> Tuple:
return _is_numpy(UpperCAmelCase )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
import torch
return isinstance(UpperCAmelCase , torch.Tensor )
def a__ ( UpperCAmelCase : str ) -> List[Any]:
return False if not is_torch_available() else _is_torch(UpperCAmelCase )
def a__ ( UpperCAmelCase : Tuple ) -> List[str]:
import torch
return isinstance(UpperCAmelCase , torch.device )
def a__ ( UpperCAmelCase : Any ) -> Any:
return False if not is_torch_available() else _is_torch_device(UpperCAmelCase )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
import torch
if isinstance(UpperCAmelCase , UpperCAmelCase ):
if hasattr(UpperCAmelCase , UpperCAmelCase ):
UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase )
else:
return False
return isinstance(UpperCAmelCase , torch.dtype )
def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase )
def a__ ( UpperCAmelCase : Any ) -> str:
import tensorflow as tf
return isinstance(UpperCAmelCase , tf.Tensor )
def a__ ( UpperCAmelCase : int ) -> Union[str, Any]:
return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[str] ) -> Tuple:
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(UpperCAmelCase )
return type(UpperCAmelCase ) == tf.Tensor
def a__ ( UpperCAmelCase : int ) -> List[Any]:
return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase )
def a__ ( UpperCAmelCase : List[Any] ) -> Dict:
import jax.numpy as jnp # noqa: F811
return isinstance(UpperCAmelCase , jnp.ndarray )
def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]:
return False if not is_flax_available() else _is_jax(UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Tuple:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return [to_py_obj(UpperCAmelCase ) for o in obj]
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase ).tolist()
elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def a__ ( UpperCAmelCase : Any ) -> List[str]:
if isinstance(UpperCAmelCase , (dict, UserDict) ):
return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()}
elif isinstance(UpperCAmelCase , (list, tuple) ):
return np.array(UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
return obj.numpy()
elif is_torch_tensor(UpperCAmelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(UpperCAmelCase ):
return np.asarray(UpperCAmelCase )
else:
return obj
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Optional[Any] = fields(self )
# Safety and consistency checks
if not len(__A ):
raise ValueError(F'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' )
UpperCAmelCase : int = getattr(self, class_fields[0].name )
UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__A ):
if isinstance(__A, __A ):
UpperCAmelCase : Tuple = first_field.items()
UpperCAmelCase : Any = True
else:
try:
UpperCAmelCase : Optional[Any] = iter(__A )
UpperCAmelCase : Optional[Any] = True
except TypeError:
UpperCAmelCase : Optional[int] = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__A ):
if (
not isinstance(__A, (list, tuple) )
or not len(__A ) == 2
or not isinstance(element[0], __A )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
UpperCAmelCase : Any = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self, element[0], element[1] )
if element[1] is not None:
UpperCAmelCase : Union[str, Any] = element[1]
elif first_field is not None:
UpperCAmelCase : Union[str, Any] = first_field
else:
for field in class_fields:
UpperCAmelCase : Optional[Any] = getattr(self, field.name )
if v is not None:
UpperCAmelCase : Optional[int] = v
def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ):
raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ):
raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Any, *__A : Dict, **__A : str ):
raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ):
raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self : List[str], __A : List[str] ):
if isinstance(__A, __A ):
UpperCAmelCase : int = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__A, __A )
super().__setattr__(__A, __A )
def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ):
# Will raise a KeyException if needed
super().__setitem__(__A, __A )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__A, __A )
def __magic_name__ ( self : List[str] ):
return tuple(self[k] for k in self.keys() )
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
@classmethod
def __magic_name__ ( cls : List[Any], __A : Tuple ):
raise ValueError(
F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """longest"""
UpperCamelCase = """max_length"""
UpperCamelCase = """do_not_pad"""
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = """pt"""
UpperCamelCase = """tf"""
UpperCamelCase = """np"""
UpperCamelCase = """jax"""
class __UpperCAmelCase :
def __init__( self : Any, __A : List[ContextManager] ):
UpperCAmelCase : Tuple = context_managers
UpperCAmelCase : Tuple = ExitStack()
def __enter__( self : Any ):
for context_manager in self.context_managers:
self.stack.enter_context(__A )
def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ):
self.stack.__exit__(*__A, **__A )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> str:
UpperCAmelCase : int = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def a__ ( UpperCAmelCase : Dict ) -> Any:
UpperCAmelCase : List[Any] = model_class.__name__
UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase )
if framework == "tf":
UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models
else:
UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]:
def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ):
for k, v in d.items():
UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k
if v and isinstance(UpperCAmelCase , UpperCAmelCase ):
yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items()
else:
yield key, v
return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) )
@contextmanager
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]:
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]:
if is_numpy_array(UpperCAmelCase ):
return np.transpose(UpperCAmelCase , axes=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.T if axes is None else array.permute(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.reshape(*UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.reshape(UpperCAmelCase , UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.reshape(UpperCAmelCase , UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any:
if is_numpy_array(UpperCAmelCase ):
return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str:
if is_numpy_array(UpperCAmelCase ):
return np.expand_dims(UpperCAmelCase , UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.unsqueeze(dim=UpperCAmelCase )
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase )
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : Dict ) -> List[str]:
if is_numpy_array(UpperCAmelCase ):
return np.size(UpperCAmelCase )
elif is_torch_tensor(UpperCAmelCase ):
return array.numel()
elif is_tf_tensor(UpperCAmelCase ):
import tensorflow as tf
return tf.size(UpperCAmelCase )
elif is_jax_tensor(UpperCAmelCase ):
return array.size
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' )
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict:
for key, value in auto_map.items():
if isinstance(UpperCAmelCase , (tuple, list) ):
UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
UpperCAmelCase : List[Any] = f'''{repo_id}--{value}'''
return auto_map
def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]:
for base_class in inspect.getmro(UpperCAmelCase ):
UpperCAmelCase : Any = base_class.__module__
UpperCAmelCase : Dict = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'''Could not infer framework from class {model_class}.''' )
| 336 | 0 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __lowerCamelCase ( A__ , A__ = True , A__ = math.inf , A__ = -math.inf , A__ = math.inf , A__ = -math.inf , A__ = False , A__ = 100 , A__ = 0.01 , A__ = 1 , ) -> Any:
"""simple docstring"""
UpperCamelCase = False
UpperCamelCase = search_prob
UpperCamelCase = start_temperate
UpperCamelCase = []
UpperCamelCase = 0
UpperCamelCase = None
while not search_end:
UpperCamelCase = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCamelCase = current_state
scores.append(A__ )
iterations += 1
UpperCamelCase = None
UpperCamelCase = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCamelCase = random.randint(0 , len(A__ ) - 1 ) # picking a random neighbor
UpperCamelCase = neighbors.pop(A__ )
UpperCamelCase = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCamelCase = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCamelCase = picked_neighbor
else:
UpperCamelCase = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCamelCase = picked_neighbor
UpperCamelCase = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCamelCase = True
else:
UpperCamelCase = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(A__ ) , A__ )
plt.xlabel('Iterations' )
plt.ylabel('Function values' )
plt.show()
return best_state
if __name__ == "__main__":
def __lowerCamelCase ( A__ , A__ ) -> Union[str, Any]:
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_lowerCamelCase : Tuple = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_lowerCamelCase : Optional[Any] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_lowerCamelCase : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_lowerCamelCase : List[Any] = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def __lowerCamelCase ( A__ , A__ ) -> int:
"""simple docstring"""
return (3 * x**2) - (6 * y)
_lowerCamelCase : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_lowerCamelCase : Tuple = simulated_annealing(prob, find_max=False, visualization=True)
print(
"The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
f'''{local_min.score()}'''
)
_lowerCamelCase : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_lowerCamelCase : str = simulated_annealing(prob, find_max=True, visualization=True)
print(
"The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
f'''{local_min.score()}'''
)
| 28 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = LayoutLMTokenizer
UpperCamelCase = LayoutLMTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
def __magic_name__ ( self : Any ):
super().setUp()
UpperCAmelCase : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __magic_name__ ( self : Union[str, Any], **__A : List[str] ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A )
def __magic_name__ ( self : Optional[int], __A : int ):
UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running'''
UpperCAmelCase : Optional[int] = '''unwanted, running'''
return input_text, output_text
def __magic_name__ ( self : Any ):
UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file )
UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] )
def __magic_name__ ( self : Optional[int] ):
pass
| 336 | 0 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase (_snake_case ):
'''simple docstring'''
_snake_case : Dict = (DDIMParallelScheduler,)
_snake_case : List[Any] = (('''eta''', 0.0), ('''num_inference_steps''', 5_0))
def __UpperCAmelCase ( self , **_UpperCamelCase ) -> Union[str, Any]:
UpperCAmelCase_ : Dict = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**_UpperCamelCase )
return config
def __UpperCAmelCase ( self , **_UpperCamelCase ) -> int:
UpperCAmelCase_ : int = self.scheduler_classes[0]
UpperCAmelCase_ : Dict = self.get_scheduler_config(**_UpperCamelCase )
UpperCAmelCase_ : Dict = scheduler_class(**_UpperCamelCase )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = 1_0, 0.0
UpperCAmelCase_ : List[str] = self.dummy_model()
UpperCAmelCase_ : Optional[Any] = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCamelCase )
for t in scheduler.timesteps:
UpperCAmelCase_ : str = model(_UpperCamelCase , _UpperCamelCase )
UpperCAmelCase_ : Union[str, Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample
return sample
def __UpperCAmelCase ( self ) -> List[str]:
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> str:
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCamelCase )
UpperCAmelCase_ : Any = self.scheduler_classes[0]
UpperCAmelCase_ : Dict = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase_ : str = scheduler_class(**_UpperCamelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def __UpperCAmelCase ( self ) -> Optional[Any]:
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> int:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> List[Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> int:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> Any:
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> Optional[Any]:
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> str:
self.check_over_configs(thresholding=_UpperCamelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , )
def __UpperCAmelCase ( self ) -> int:
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> Tuple:
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=_UpperCamelCase , num_inference_steps=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> Optional[Any]:
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=_UpperCamelCase , eta=_UpperCamelCase )
def __UpperCAmelCase ( self ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.scheduler_classes[0]
UpperCAmelCase_ : List[str] = self.get_scheduler_config()
UpperCAmelCase_ : Any = scheduler_class(**_UpperCamelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_47_71 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_24_60 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1E-5
def __UpperCAmelCase ( self ) -> str:
UpperCAmelCase_ : List[Any] = self.scheduler_classes[0]
UpperCAmelCase_ : Any = self.get_scheduler_config()
UpperCAmelCase_ : Tuple = scheduler_class(**_UpperCamelCase )
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = 1_0, 0.0
scheduler.set_timesteps(_UpperCamelCase )
UpperCAmelCase_ : Optional[int] = self.dummy_model()
UpperCAmelCase_ : str = self.dummy_sample_deter
UpperCAmelCase_ : str = self.dummy_sample_deter + 0.1
UpperCAmelCase_ : List[Any] = self.dummy_sample_deter - 0.1
UpperCAmelCase_ : List[str] = samplea.shape[0]
UpperCAmelCase_ : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCAmelCase_ : str = torch.arange(_UpperCamelCase )[0:3, None].repeat(1 , _UpperCamelCase )
UpperCAmelCase_ : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCAmelCase_ : Dict = scheduler.batch_step_no_noise(_UpperCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _UpperCamelCase )
UpperCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase ) )
UpperCAmelCase_ : List[Any] = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2
assert abs(result_mean.item() - 0.49_82 ) < 1E-3
def __UpperCAmelCase ( self ) -> Tuple:
UpperCAmelCase_ : Optional[int] = self.full_loop()
UpperCAmelCase_ : List[str] = torch.sum(torch.abs(_UpperCamelCase ) )
UpperCAmelCase_ : Any = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3
def __UpperCAmelCase ( self ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = self.full_loop(prediction_type='v_prediction' )
UpperCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase ) )
UpperCAmelCase_ : List[str] = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 52.53_02 ) < 1E-2
assert abs(result_mean.item() - 0.06_84 ) < 1E-3
def __UpperCAmelCase ( self ) -> Tuple:
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : List[str] = self.full_loop(set_alpha_to_one=_UpperCamelCase , beta_start=0.01 )
UpperCAmelCase_ : int = torch.sum(torch.abs(_UpperCamelCase ) )
UpperCAmelCase_ : Tuple = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2
assert abs(result_mean.item() - 0.19_51 ) < 1E-3
def __UpperCAmelCase ( self ) -> Union[str, Any]:
# We specify different beta, so that the first alpha is 0.99
UpperCAmelCase_ : Dict = self.full_loop(set_alpha_to_one=_UpperCamelCase , beta_start=0.01 )
UpperCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_UpperCamelCase ) )
UpperCAmelCase_ : Optional[Any] = torch.mean(torch.abs(_UpperCamelCase ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2
assert abs(result_mean.item() - 0.19_41 ) < 1E-3
| 29 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __UpperCAmelCase :
def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : int = num_channels
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Union[str, Any] = use_labels
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Optional[int] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Tuple = mask_ratio
UpperCAmelCase : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCAmelCase : Tuple = (image_size // patch_size) ** 2
UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : str = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Optional[Any] ):
return ViTMAEConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, )
def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ):
UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A )
UpperCAmelCase : Tuple = model(__A, training=__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ):
UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A )
UpperCAmelCase : int = model(__A, training=__A )
# expected sequence length = num_patches
UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2
UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCAmelCase : Tuple = 1
UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A )
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = model(__A, training=__A )
UpperCAmelCase : Union[str, Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Dict = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs
UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = TFViTMAEModelTester(self )
UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) )
UpperCAmelCase : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) )
def __magic_name__ ( self : str ):
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Any = model_class(__A )
UpperCAmelCase : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : int = [*signature.parameters.keys()]
UpperCAmelCase : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__A )
def __magic_name__ ( self : int ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : str = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : Dict = model(__A, noise=__A )
UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A )
UpperCAmelCase : Dict = outputs_dict[0].numpy()
UpperCAmelCase : Tuple = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 )
def __magic_name__ ( self : Optional[Any] ):
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__A : Union[str, Any] ):
UpperCAmelCase : str = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__A ):
UpperCAmelCase : Tuple = v.numpy()
else:
UpperCAmelCase : str = np.array(__A )
return inputs_np_dict
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : Any = self._prepare_for_class(__A, __A )
UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A )
UpperCAmelCase : str = model(__A, noise=__A )
UpperCAmelCase : str = model(**__A, noise=__A )
self.assert_outputs_same(__A, __A )
def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ):
# make masks reproducible
np.random.seed(2 )
UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : int = tf.constant(__A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCAmelCase : List[Any] = tf_noise
super().check_pt_tf_models(__A, __A, __A )
def __magic_name__ ( self : str ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Union[str, Any] = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__A )
if module_member_name.endswith('''MainLayer''' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )]
for module_member in (getattr(__A, __A ),)
if isinstance(__A, __A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__A, '''_keras_serializable''', __A )
}
UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase : str = tf.convert_to_tensor(__A )
inputs_dict.update({'''noise''': noise} )
for main_layer_class in tf_main_layer_classes:
UpperCAmelCase : Tuple = main_layer_class(__A )
UpperCAmelCase : int = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) )
UpperCAmelCase : List[Any] = model(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' )
model.save(__A )
UpperCAmelCase : List[str] = tf.keras.models.load_model(
__A, custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__A, tf.keras.Model )
UpperCAmelCase : Tuple = model(__A )
self.assert_outputs_same(__A, __A )
@slow
def __magic_name__ ( self : Dict ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(__A )
UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A )
UpperCAmelCase : Union[str, Any] = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy()
UpperCAmelCase : Union[str, Any] = 0
else:
UpperCAmelCase : Optional[int] = outputs.logits.numpy()
UpperCAmelCase : int = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A, saved_model=__A )
UpperCAmelCase : Dict = model_class.from_pretrained(__A )
UpperCAmelCase : str = model(__A, noise=__A )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy()
UpperCAmelCase : Dict = 0
else:
UpperCAmelCase : Any = after_outputs['''logits'''].numpy()
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__A, 1E-5 )
def __magic_name__ ( self : Optional[Any] ):
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
UpperCAmelCase : int = self._prepare_for_class(__A, __A )
UpperCAmelCase : List[Any] = model(__A, noise=__A )
UpperCAmelCase : str = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__A )
UpperCAmelCase : int = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
UpperCAmelCase : str = model_class.from_config(model.config )
UpperCAmelCase : List[str] = new_model(__A ) # Build model
new_model.set_weights(model.get_weights() )
UpperCAmelCase : Tuple = new_model(__A, noise=__A )
self.assert_outputs_same(__A, __A )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def __magic_name__ ( self : Tuple ):
pass
@slow
def __magic_name__ ( self : str ):
UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__A )
def a__ ( ) -> Dict:
UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[str] ):
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def __magic_name__ ( self : str ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' )
UpperCAmelCase : List[str] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCAmelCase : Optional[int] = ViTMAEConfig()
UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) )
# forward pass
UpperCAmelCase : Optional[int] = model(**__A, noise=__A )
# verify the logits
UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : List[str] = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
| 336 | 0 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class lowercase__( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : List[str] ) -> List[Any]:
lowercase_ = 1_0
def _lowercase ( self : int ) -> List[str]:
lowercase_ = [1, 2, 3, 4]
lowercase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : int ) -> Optional[Any]:
lowercase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
lowercase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Union[str, Any] ) -> Optional[int]:
lowercase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3]
lowercase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Any ) -> List[Any]:
lowercase_ = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
lowercase_ , lowercase_ = process_story(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , [] )
def _lowercase ( self : List[str] ) -> List[str]:
lowercase_ = ''''''
lowercase_ , lowercase_ = process_story(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , [] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , [] )
def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]:
lowercase_ = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
lowercase_ , lowercase_ = process_story(SCREAMING_SNAKE_CASE_ )
lowercase_ = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase_ = ['''It was the best of times.''']
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Union[str, Any] ) -> Optional[Any]:
lowercase_ = torch.tensor([1, 2, 3, 4] )
lowercase_ = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 0 ).numpy() , expected.numpy() )
def _lowercase ( self : List[Any] ) -> Tuple:
lowercase_ = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] )
lowercase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 2_3 ).numpy() , expected.numpy() )
def _lowercase ( self : int ) -> Dict:
lowercase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
lowercase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 1 ).numpy() , expected.numpy() )
def _lowercase ( self : List[str] ) -> Tuple:
lowercase_ = 1_0_1
lowercase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] )
lowercase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
lowercase_ = compute_token_type_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
np.testing.assert_array_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 30 |
def a__ ( UpperCAmelCase : int ) -> int:
UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
UpperCAmelCase : Optional[Any] = 1
for n in range(m + 1 ):
for k in range(1 , UpperCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
_lowerCamelCase : List[Any] = int(input("Enter a number: ").strip())
print(partition(n))
except ValueError:
print("Please enter a number.")
else:
try:
_lowerCamelCase : str = int(sys.argv[1])
print(partition(n))
except ValueError:
print("Please pass a number.")
| 336 | 0 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 31 |
from __future__ import annotations
def a__ ( UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase )
# We need to create solution object to save path.
UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )]
UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase )
if solved:
print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) )
else:
print('''No solution exists!''' )
return solved
def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool:
UpperCAmelCase : Dict = len(UpperCAmelCase )
# Final check point.
if i == j == (size - 1):
UpperCAmelCase : Dict = 1
return True
UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds
UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
UpperCAmelCase : str = 1
# check for directions
if (
run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase )
or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase )
or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase )
):
return True
UpperCAmelCase : Any = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 336 | 0 |
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
UpperCAmelCase_ : Union[str, Any] = datasets.logging.get_logger(__name__)
UpperCAmelCase_ : Dict = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
UpperCAmelCase_ : str = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
UpperCAmelCase_ : int = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : List[str] , __A : List[Any]=False , __A : Tuple=False , __A : Union[str, Any]=True , __A : List[str]=False , __A : Optional[int]="dummy_doc" ) -> Any:
"""simple docstring"""
a_ : Any = {doc: key_lines}
a_ : List[Any] = {doc: sys_lines}
a_ : Union[str, Any] = {}
a_ : int = 0
a_ : List[Any] = 0
a_ : Union[str, Any] = 0
a_ : Union[str, Any] = 0
a_ : int = 0
a_ : Optional[int] = 0
a_ , a_ : Optional[int] = reader.get_doc_mentions(__A , key_doc_lines[doc] , __A )
key_singletons_num += singletons_num
if NP_only or min_span:
a_ : List[Any] = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A )
a_ , a_ : List[str] = reader.get_doc_mentions(__A , sys_doc_lines[doc] , __A )
sys_singletons_num += singletons_num
if NP_only or min_span:
a_ : int = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A )
if remove_nested:
a_ , a_ : Union[str, Any] = reader.remove_nested_coref_mentions(__A , __A )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
a_ , a_ : Union[str, Any] = reader.remove_nested_coref_mentions(__A , __A )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
a_ : Any = reader.get_mention_assignments(__A , __A )
a_ : List[str] = reader.get_mention_assignments(__A , __A )
a_ : Dict = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'Number of removed nested coreferring mentions in the key '
F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" )
logger.info(
'Number of resulting singleton clusters in the key '
F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" )
if not keep_singletons:
logger.info(
F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """
'files, respectively' )
return doc_coref_infos
def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : str , __A : str , __A : List[str] , __A : Any , __A : Optional[int] , __A : Dict ) -> Optional[int]:
"""simple docstring"""
a_ : Tuple = get_coref_infos(__A , __A , __A , __A , __A , __A )
a_ : Optional[int] = {}
a_ : Union[str, Any] = 0
a_ : str = 0
for name, metric in metrics:
a_ , a_ , a_ : Any = evaluator.evaluate_documents(__A , __A , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} )
logger.info(
name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , )
if conll_subparts_num == 3:
a_ : List[Any] = (conll / 3) * 1_00
logger.info(F"""CoNLL score: {conll:.2f}""" )
output_scores.update({'conll_score': conll} )
return output_scores
def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Union[str, Any]:
"""simple docstring"""
a_ : Union[str, Any] = False
for line in key_lines:
if not line.startswith('#' ):
if len(line.split() ) > 6:
a_ : str = line.split()[5]
if not parse_col == "-":
a_ : Optional[int] = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' ) ),
'references': datasets.Sequence(datasets.Value('string' ) ),
} ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[
'https://github.com/ns-moosavi/coval',
'https://www.aclweb.org/anthology/P16-1060',
'http://www.conll.cemantix.org/2012/data.html',
] , )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> List[str]:
a_ : str = [
('mentions', evaluator.mentions),
('muc', evaluator.muc),
('bcub', evaluator.b_cubed),
('ceafe', evaluator.ceafe),
('lea', evaluator.lea),
]
if min_span:
a_ : Tuple = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE__ )
if not has_gold_parse:
raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
a_ : List[str] = evaluate(
key_lines=SCREAMING_SNAKE_CASE__ , sys_lines=SCREAMING_SNAKE_CASE__ , metrics=SCREAMING_SNAKE_CASE__ , NP_only=SCREAMING_SNAKE_CASE__ , remove_nested=SCREAMING_SNAKE_CASE__ , keep_singletons=SCREAMING_SNAKE_CASE__ , min_span=SCREAMING_SNAKE_CASE__ , )
return score
| 32 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __UpperCAmelCase :
def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ):
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Any = batch_size
UpperCAmelCase : List[str] = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Optional[Any] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : str = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = scope
UpperCAmelCase : List[str] = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
UpperCAmelCase : str = (self.image_size // 3_2) ** 2
UpperCAmelCase : List[str] = num_patches + 1
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : str = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : Any ):
UpperCAmelCase : Dict = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [4, 8, 1_6, 3_2],
'''num_groups''': 2,
}
return ViTHybridConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, )
def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ):
UpperCAmelCase : int = ViTHybridModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Tuple = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ):
UpperCAmelCase : str = self.type_sequence_label_size
UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self : int ):
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs
UpperCAmelCase : int = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = ViTHybridModelTester(self )
UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 )
def __magic_name__ ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ):
pass
def __magic_name__ ( self : int ):
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(__A )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
UpperCAmelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A, nn.Linear ) )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[Any] = model_class(__A )
UpperCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : str = [*signature.parameters.keys()]
UpperCAmelCase : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Dict = _config_zero_init(__A )
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(config=__A )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', )
@slow
def __magic_name__ ( self : List[str] ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> Tuple:
UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : str ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__A )
UpperCAmelCase : Tuple = self.default_image_processor
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**__A )
# verify the logits
UpperCAmelCase : str = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
@require_accelerate
def __magic_name__ ( self : Dict ):
UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' )
UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' )
UpperCAmelCase : Tuple = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' )
UpperCAmelCase : Dict = model(**__A )
UpperCAmelCase : Any = outputs.logits
# model predicts one of the 1000 ImageNet classes
UpperCAmelCase : Dict = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
| 336 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
__A : List[str] = logging.get_logger(__name__)
@dataclass
class _UpperCAmelCase ( _A ):
SCREAMING_SNAKE_CASE_ : Any = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__( self : str , **A : List[Any] ) -> Union[str, Any]:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowercase_ : List[str] = deprecated_arg[3:]
setattr(self , A , not kwargs.pop(A ) )
logger.warning(
F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'''
F''' {positive_arg}={kwargs[positive_arg]}''' )
lowercase_ : Optional[Any] = kwargs.pop('''torchscript''' , self.torchscript )
lowercase_ : Tuple = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics )
lowercase_ : Any = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level )
super().__init__(**A )
SCREAMING_SNAKE_CASE_ : bool = field(default=_A , metadata={"help": "Trace the models using torchscript"} )
SCREAMING_SNAKE_CASE_ : bool = field(default=_A , metadata={"help": "Print Xla/PyTorch tpu metrics"} )
SCREAMING_SNAKE_CASE_ : str = field(
default="O1" , metadata={
"help": (
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html"
)
} , )
@cached_property
def A ( self : Optional[Any] ) -> Tuple["torch.device", int]:
requires_backends(self , ['''torch'''] )
logger.info('''PyTorch: setting up devices''' )
if not self.cuda:
lowercase_ : List[Any] = torch.device('''cpu''' )
lowercase_ : Optional[int] = 0
elif is_torch_tpu_available():
lowercase_ : Optional[Any] = xm.xla_device()
lowercase_ : Union[str, Any] = 0
else:
lowercase_ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
lowercase_ : str = torch.cuda.device_count()
return device, n_gpu
@property
def A ( self : Any ) -> str:
return is_torch_tpu_available() and self.tpu
@property
def A ( self : str ) -> int:
requires_backends(self , ['''torch'''] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def A ( self : int ) -> "torch.device":
requires_backends(self , ['''torch'''] )
return self._setup_devices[0]
@property
def A ( self : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
return self._setup_devices[1]
@property
def A ( self : List[str] ) -> Optional[Any]:
return self.n_gpu > 0
| 33 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def a__ ( ) -> tuple[list[int], int]:
UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )]
UpperCAmelCase : Any = randint(-5_000 , 5_000 )
return (arr, r)
_lowerCamelCase : Any = make_dataset()
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]:
for triplet in permutations(UpperCAmelCase , 3 ):
if sum(UpperCAmelCase ) == target:
return tuple(sorted(UpperCAmelCase ) )
return (0, 0, 0)
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]:
arr.sort()
UpperCAmelCase : Tuple = len(UpperCAmelCase )
for i in range(n - 1 ):
UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def a__ ( ) -> tuple[float, float]:
UpperCAmelCase : Union[str, Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
UpperCAmelCase : Tuple = '''
triplet_sum1(*dataset)
'''
UpperCAmelCase : List[str] = '''
triplet_sum2(*dataset)
'''
UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 )
return (min(UpperCAmelCase ), min(UpperCAmelCase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCamelCase : int = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 336 | 0 |
'''simple docstring'''
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def snake_case_ (_a : Optional[int] , _a : List[Any] , _a : int ):
UpperCAmelCase = AutoConfig.from_pretrained(_a )
UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=_a )
UpperCAmelCase = checkpoints.load_tax_checkpoint(_a )
UpperCAmelCase = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp''']
if config.model_type == "t5":
UpperCAmelCase = '''SelfAttention'''
if config.model_type == "longt5" and config.encoder_attention_type == "local":
UpperCAmelCase = '''LocalSelfAttention'''
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCAmelCase = '''TransientGlobalSelfAttention'''
else:
raise ValueError(
'''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'''
''' attribute with a value from [\'local\', \'transient-global].''' )
# Encoder
for layer_index in range(config.num_layers ):
UpperCAmelCase = F"layers_{str(_a )}"
# Self-Attention
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel''']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale''']
# Layer Normalization
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale''']
if split_mlp_wi:
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
UpperCAmelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
UpperCAmelCase = flax_model.params['''encoder''']['''block'''][str(_a )]['''layer''']
UpperCAmelCase = tax_attention_key
UpperCAmelCase = tax_attention_out
UpperCAmelCase = tax_attention_query
UpperCAmelCase = tax_attention_value
UpperCAmelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCAmelCase = tax_global_layer_norm
if split_mlp_wi:
UpperCAmelCase = tax_mlp_wi_a
UpperCAmelCase = tax_mlp_wi_a
else:
UpperCAmelCase = tax_mlp_wi
UpperCAmelCase = tax_mlp_wo
UpperCAmelCase = tax_mlp_layer_norm
UpperCAmelCase = flax_model_encoder_layer_block
# Only for layer 0:
UpperCAmelCase = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T
UpperCAmelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCAmelCase = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T
UpperCAmelCase = tax_encoder_global_rel_embedding
# Assigning
UpperCAmelCase = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale''']
UpperCAmelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
UpperCAmelCase = F"layers_{str(_a )}"
# Self-Attention
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel''']
# Layer Normalization
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][
'''scale'''
]
# Encoder-Decoder-Attention
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention''']
UpperCAmelCase = tax_enc_dec_attention_module['''key''']['''kernel''']
UpperCAmelCase = tax_enc_dec_attention_module['''out''']['''kernel''']
UpperCAmelCase = tax_enc_dec_attention_module['''query''']['''kernel''']
UpperCAmelCase = tax_enc_dec_attention_module['''value''']['''kernel''']
# Layer Normalization
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale''']
# MLP
if split_mlp_wi:
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
UpperCAmelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
UpperCAmelCase = flax_model.params['''decoder''']['''block'''][str(_a )]['''layer''']
UpperCAmelCase = tax_attention_key
UpperCAmelCase = tax_attention_out
UpperCAmelCase = tax_attention_query
UpperCAmelCase = tax_attention_value
UpperCAmelCase = tax_pre_attention_layer_norm
UpperCAmelCase = tax_enc_dec_attention_key
UpperCAmelCase = tax_enc_dec_attention_out
UpperCAmelCase = tax_enc_dec_attention_query
UpperCAmelCase = tax_enc_dec_attention_value
UpperCAmelCase = tax_cross_layer_norm
if split_mlp_wi:
UpperCAmelCase = tax_mlp_wi_a
UpperCAmelCase = tax_mlp_wi_a
else:
UpperCAmelCase = tax_mlp_wi
UpperCAmelCase = tax_mlp_wo
UpperCAmelCase = txa_mlp_layer_norm
UpperCAmelCase = flax_model_decoder_layer_block
# Decoder Normalization
UpperCAmelCase = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale''']
UpperCAmelCase = txa_decoder_norm
# Only for layer 0:
UpperCAmelCase = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T
UpperCAmelCase = tax_decoder_rel_embedding
# Token Embeddings
UpperCAmelCase = tax_model['''target''']['''token_embedder''']['''embedding''']
UpperCAmelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
UpperCAmelCase = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel''']
flax_model.save_pretrained(_a )
print('''T5X Model was sucessfully converted!''' )
if __name__ == "__main__":
A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
A =parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 34 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class __UpperCAmelCase :
def __magic_name__ ( self : int, __A : Dict ):
raise NotImplementedError()
def __magic_name__ ( self : int ):
raise NotImplementedError()
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ):
UpperCAmelCase : List[str] = tokenizer
UpperCAmelCase : str = skip_prompt
UpperCAmelCase : List[str] = decode_kwargs
# variables used in the streaming process
UpperCAmelCase : Dict = []
UpperCAmelCase : List[str] = 0
UpperCAmelCase : Union[str, Any] = True
def __magic_name__ ( self : Dict, __A : Optional[int] ):
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('''TextStreamer only supports batch size 1''' )
elif len(value.shape ) > 1:
UpperCAmelCase : Union[str, Any] = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
UpperCAmelCase : Optional[int] = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('''\n''' ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
UpperCAmelCase : int = []
UpperCAmelCase : int = 0
# If the last token is a CJK character, we print the characters.
elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
UpperCAmelCase : Union[str, Any] = text[self.print_len :]
self.print_len += len(__A )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1]
self.print_len += len(__A )
self.on_finalized_text(__A )
def __magic_name__ ( self : str ):
# Flush the cache, if it exists
if len(self.token_cache ) > 0:
UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs )
UpperCAmelCase : Dict = text[self.print_len :]
UpperCAmelCase : List[Any] = []
UpperCAmelCase : List[Any] = 0
else:
UpperCAmelCase : Dict = ''''''
UpperCAmelCase : str = True
self.on_finalized_text(__A, stream_end=__A )
def __magic_name__ ( self : List[str], __A : str, __A : bool = False ):
print(__A, flush=__A, end='''''' if not stream_end else None )
def __magic_name__ ( self : List[Any], __A : Optional[int] ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
class __UpperCAmelCase ( lowerCamelCase__ ):
def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ):
super().__init__(__A, __A, **__A )
UpperCAmelCase : Dict = Queue()
UpperCAmelCase : Any = None
UpperCAmelCase : Any = timeout
def __magic_name__ ( self : Dict, __A : str, __A : bool = False ):
self.text_queue.put(__A, timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal, timeout=self.timeout )
def __iter__( self : int ):
return self
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 336 | 0 |
'''simple docstring'''
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def __snake_case( _lowerCAmelCase ) -> Union[str, Any]:
if isinstance(_lowerCAmelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] ):
pass
def lowerCamelCase ( self : Optional[int] ):
pass
def lowerCamelCase ( self : Optional[Any] ):
pass
def lowerCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Optional[Any]=None , **snake_case_ : List[Any] ):
snake_case__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ )
snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel(snake_case_ )
snake_case__ : Tuple = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : List[Any]=None , **snake_case_ : Union[str, Any] ):
snake_case__ , snake_case__ : List[str] = self.get_vision_text_model(snake_case_ , snake_case_ )
snake_case__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ )
snake_case__ : int = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : str=None , **snake_case_ : Union[str, Any] ):
snake_case__ , snake_case__ : Dict = self.get_vision_text_model(snake_case_ , snake_case_ )
snake_case__ : Dict = {"""vision_model""": vision_model, """text_model""": text_model}
snake_case__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ )
snake_case__ : Dict = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCamelCase ( self : Any , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : int=None , **snake_case_ : str ):
snake_case__ , snake_case__ : Union[str, Any] = self.get_vision_text_model(snake_case_ , snake_case_ )
snake_case__ : Any = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ )
snake_case__ : int = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ )
snake_case__ : int = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ )
snake_case__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ )
snake_case__ : Dict = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ )
snake_case__ : Tuple = after_output[0].numpy()
snake_case__ : int = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(snake_case_ , 1E-5 )
def lowerCamelCase ( self : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[str]=None , **snake_case_ : List[str] ):
snake_case__ , snake_case__ : Optional[int] = self.get_vision_text_model(snake_case_ , snake_case_ )
snake_case__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ )
snake_case__ : int = model(
input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ )
snake_case__ : List[Any] = output.vision_model_output.attentions
self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
snake_case__ : Optional[Any] = to_atuple(vision_model.config.image_size )
snake_case__ : str = to_atuple(vision_model.config.patch_size )
snake_case__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
snake_case__ : Union[str, Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
snake_case__ : Any = output.text_model_output.attentions
self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCamelCase ( self : str , snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : float ):
snake_case__ : List[Any] = np.abs((a - b) ).max()
self.assertLessEqual(snake_case_ , snake_case_ , f"Difference between torch and flax is {diff} (>= {tol})." )
def lowerCamelCase ( self : Any ):
snake_case__ : int = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**snake_case_ )
def lowerCamelCase ( self : Any ):
snake_case__ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**snake_case_ )
def lowerCamelCase ( self : str ):
snake_case__ : int = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**snake_case_ )
def lowerCamelCase ( self : List[Any] ):
snake_case__ : Optional[int] = self.prepare_config_and_inputs()
self.check_save_load(**snake_case_ )
def lowerCamelCase ( self : int ):
snake_case__ : Optional[int] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**snake_case_ )
@slow
def lowerCamelCase ( self : str ):
snake_case__ , snake_case__ : Any = self.get_pretrained_model_and_inputs()
snake_case__ : Union[str, Any] = model_a(**snake_case_ )
snake_case__ : Union[str, Any] = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(snake_case_ )
snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ )
snake_case__ : int = model_a(**snake_case_ )
snake_case__ : Dict = after_outputs[0].numpy()
snake_case__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(snake_case_ , 1E-5 )
@require_tf
class UpperCAmelCase_ ( _a , unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase ( self : Optional[int] ):
snake_case__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" )
snake_case__ : Optional[int] = 13
snake_case__ : Tuple = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
snake_case__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
snake_case__ : Any = random_attention_mask([batch_size, 4] )
snake_case__ : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Optional[int] ):
snake_case__ : Union[str, Any] = TFViTModel(snake_case_ , name="""vision_model""" )
snake_case__ : Any = TFBertModel(snake_case_ , name="""text_model""" )
return vision_model, text_model
def lowerCamelCase ( self : str ):
snake_case__ : Union[str, Any] = TFViTModelTester(self )
snake_case__ : str = TFBertModelTester(self )
snake_case__ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs()
snake_case__ : Any = bert_model_tester.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Optional[Any] = vision_config_and_inputs
(
(
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) ,
) : Any = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class UpperCAmelCase_ ( _a , unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase ( self : Dict ):
# DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's
# just reinitialize it.
snake_case__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" )
snake_case__ : Any = 13
snake_case__ : Optional[int] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
snake_case__ : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
snake_case__ : Optional[Any] = random_attention_mask([batch_size, 4] )
snake_case__ : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowerCamelCase ( self : List[str] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int]=None , **snake_case_ : Optional[Any] ):
snake_case__ , snake_case__ : Any = self.get_vision_text_model(snake_case_ , snake_case_ )
snake_case__ : Tuple = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ )
snake_case__ : Union[str, Any] = model(
input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ )
snake_case__ : str = output.vision_model_output.attentions
self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
snake_case__ : Tuple = to_atuple(vision_model.config.image_size )
snake_case__ : List[Any] = to_atuple(vision_model.config.patch_size )
snake_case__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
snake_case__ : Dict = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
snake_case__ : Optional[Any] = output.text_model_output.attentions
self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCamelCase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] ):
snake_case__ : Union[str, Any] = TFDeiTModel(snake_case_ , name="""vision_model""" )
snake_case__ : Tuple = TFRobertaModel(snake_case_ , name="""text_model""" )
return vision_model, text_model
def lowerCamelCase ( self : List[str] ):
snake_case__ : int = TFDeiTModelTester(self )
snake_case__ : Union[str, Any] = TFRobertaModelTester(self )
snake_case__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs()
snake_case__ : str = bert_model_tester.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = vision_config_and_inputs
(
(
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) ,
) : Dict = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class UpperCAmelCase_ ( _a , unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase ( self : Union[str, Any] ):
snake_case__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"""Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" )
snake_case__ : Tuple = 13
snake_case__ : Tuple = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
snake_case__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
snake_case__ : str = random_attention_mask([batch_size, 4] )
snake_case__ : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : int ):
snake_case__ : List[str] = TFCLIPVisionModel(snake_case_ , name="""vision_model""" )
snake_case__ : Optional[Any] = TFBertModel(snake_case_ , name="""text_model""" )
return vision_model, text_model
def lowerCamelCase ( self : Dict ):
snake_case__ : int = TFCLIPVisionModelTester(self )
snake_case__ : Optional[int] = TFBertModelTester(self )
snake_case__ : str = clip_model_tester.prepare_config_and_inputs()
snake_case__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
snake_case__ , snake_case__ : List[Any] = vision_config_and_inputs
(
(
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) ,
) : str = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowerCamelCase ( self : List[Any] ):
snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(
"""clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=snake_case_ )
snake_case__ : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
snake_case__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case__ : List[str] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=snake_case_ , padding=snake_case_ , return_tensors="""np""" )
snake_case__ : int = model(**snake_case_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
snake_case__ : Optional[int] = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , snake_case_ , atol=1E-3 ) )
| 35 |
import numpy
# List of input, output pairs
_lowerCamelCase : Dict = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
_lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
_lowerCamelCase : Dict = [2, 4, 1, 5]
_lowerCamelCase : Dict = len(train_data)
_lowerCamelCase : int = 0.0_0_9
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict:
return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output(
UpperCAmelCase , UpperCAmelCase )
def a__ ( UpperCAmelCase : int ) -> Any:
UpperCAmelCase : str = 0
for i in range(len(UpperCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict:
UpperCAmelCase : Optional[int] = 0
for i in range(UpperCAmelCase ):
if index == -1:
summation_value += _error(UpperCAmelCase )
else:
summation_value += _error(UpperCAmelCase ) * train_data[i][0][index]
return summation_value
def a__ ( UpperCAmelCase : Dict ) -> Dict:
UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m
return cost_derivative_value
def a__ ( ) -> List[Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase : List[str] = 0.000002
UpperCAmelCase : Any = 0
UpperCAmelCase : Dict = 0
while True:
j += 1
UpperCAmelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase ) ):
UpperCAmelCase : List[str] = get_cost_derivative(i - 1 )
UpperCAmelCase : Tuple = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ):
break
UpperCAmelCase : int = temp_parameter_vector
print(('''Number of iterations:''', j) )
def a__ ( ) -> List[Any]:
for i in range(len(UpperCAmelCase ) ):
print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 336 | 0 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
_snake_case = "pt"
elif is_tf_available():
_snake_case = "tf"
else:
_snake_case = "jax"
class UpperCAmelCase_ ( a , unittest.TestCase):
lowerCamelCase__ = ByTaTokenizer
lowerCamelCase__ = False
def snake_case__ ( self):
'''simple docstring'''
super().setUp()
_lowerCAmelCase : Union[str, Any] = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def snake_case__ ( self):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("google/byt5-small")
def snake_case__ ( self, **__a):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **__a)
def snake_case__ ( self, __a, __a=False, __a=20, __a=5):
'''simple docstring'''
_lowerCAmelCase : List[str] = []
for i in range(len(__a)):
try:
_lowerCAmelCase : Tuple = tokenizer.decode([i], clean_up_tokenization_spaces=__a)
except UnicodeDecodeError:
pass
toks.append((i, tok))
_lowerCAmelCase : Tuple = list(filter(lambda __a: re.match(R"^[ a-zA-Z]+$", t[1]), __a))
_lowerCAmelCase : str = list(filter(lambda __a: [t[0]] == tokenizer.encode(t[1], add_special_tokens=__a), __a))
if max_length is not None and len(__a) > max_length:
_lowerCAmelCase : int = toks[:max_length]
if min_length is not None and len(__a) < min_length and len(__a) > 0:
while len(__a) < min_length:
_lowerCAmelCase : Dict = toks + toks
# toks_str = [t[1] for t in toks]
_lowerCAmelCase : int = [t[0] for t in toks]
# Ensure consistency
_lowerCAmelCase : int = tokenizer.decode(__a, clean_up_tokenization_spaces=__a)
if " " not in output_txt and len(__a) > 1:
_lowerCAmelCase : Union[str, Any] = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=__a)
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=__a)
)
if with_prefix_space:
_lowerCAmelCase : Optional[int] = " " + output_txt
_lowerCAmelCase : Tuple = tokenizer.encode(__a, add_special_tokens=__a)
return output_txt, output_ids
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Any = self.ta_base_tokenizer
_lowerCAmelCase : Any = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
_lowerCAmelCase : int = tokenizer(["hi", "I went to the gym", ""])
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : int = self.ta_base_tokenizer
_lowerCAmelCase : int = "Unicode €."
_lowerCAmelCase : Dict = tokenizer(__a)
_lowerCAmelCase : Union[str, Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["input_ids"], __a)
# decoding
_lowerCAmelCase : str = tokenizer.decode(__a)
self.assertEqual(__a, "Unicode €.</s>")
_lowerCAmelCase : Dict = tokenizer("e è é ê ë")
_lowerCAmelCase : Tuple = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["input_ids"], __a)
# decoding
_lowerCAmelCase : Optional[Any] = tokenizer.decode(__a)
self.assertEqual(__a, "e è é ê ë</s>")
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë")), "e è é ê ë</s>")
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.ta_base_tokenizer
_lowerCAmelCase : Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
_lowerCAmelCase : List[str] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_lowerCAmelCase : Tuple = tokenizer(__a, padding=__a, return_tensors=__a)
self.assertIsInstance(__a, __a)
if FRAMEWORK != "jax":
_lowerCAmelCase : int = list(batch.input_ids.numpy()[0])
else:
_lowerCAmelCase : Tuple = list(batch.input_ids.tolist()[0])
self.assertListEqual(__a, __a)
self.assertEqual((2, 37), batch.input_ids.shape)
self.assertEqual((2, 37), batch.attention_mask.shape)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.ta_base_tokenizer
_lowerCAmelCase : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_lowerCAmelCase : int = tokenizer(__a, padding=__a, return_tensors=__a)
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids", __a)
self.assertIn("attention_mask", __a)
self.assertNotIn("decoder_input_ids", __a)
self.assertNotIn("decoder_attention_mask", __a)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Dict = self.ta_base_tokenizer
_lowerCAmelCase : List[str] = [
"Summary of the text.",
"Another summary.",
]
_lowerCAmelCase : Optional[int] = tokenizer(
text_target=__a, max_length=32, padding="max_length", truncation=__a, return_tensors=__a)
self.assertEqual(32, targets["input_ids"].shape[1])
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.ta_base_tokenizer
_lowerCAmelCase : str = ["A long paragraph for summarization. </s>"]
_lowerCAmelCase : List[str] = ["Summary of the text. </s>"]
# fmt: off
_lowerCAmelCase : Dict = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_lowerCAmelCase : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_lowerCAmelCase : Tuple = tokenizer(__a, text_target=__a)
self.assertEqual(__a, batch["input_ids"][0])
self.assertEqual(__a, batch["labels"][0])
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
self.assertNotEqual(tokenizer.model_max_length, 42)
# Now let's start the test
_lowerCAmelCase : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
_lowerCAmelCase : Any = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = " He is very happy, UNwant\u00E9d,running"
_lowerCAmelCase : int = tokenizer.encode(__a, add_special_tokens=__a)
tokenizer.save_pretrained(__a)
_lowerCAmelCase : Union[str, Any] = tokenizer.__class__.from_pretrained(__a)
_lowerCAmelCase : Optional[int] = after_tokenizer.encode(__a, add_special_tokens=__a)
self.assertListEqual(__a, __a)
shutil.rmtree(__a)
_lowerCAmelCase : Optional[int] = self.get_tokenizers(model_max_length=42)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
_lowerCAmelCase : str = tempfile.mkdtemp()
_lowerCAmelCase : Union[str, Any] = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"])
_lowerCAmelCase : str = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token")
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
_lowerCAmelCase : Optional[int] = tokenizer.encode(__a, add_special_tokens=__a)
tokenizer.save_pretrained(__a)
_lowerCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__a)
_lowerCAmelCase : str = after_tokenizer.encode(__a, add_special_tokens=__a)
self.assertListEqual(__a, __a)
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
self.assertEqual(after_tokenizer.model_max_length, 42)
_lowerCAmelCase : Any = tokenizer.__class__.from_pretrained(__a, model_max_length=43)
self.assertEqual(tokenizer.model_max_length, 43)
shutil.rmtree(__a)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__a)
with open(os.path.join(__a, "special_tokens_map.json"), encoding="utf-8") as json_file:
_lowerCAmelCase : Union[str, Any] = json.load(__a)
with open(os.path.join(__a, "tokenizer_config.json"), encoding="utf-8") as json_file:
_lowerCAmelCase : Union[str, Any] = json.load(__a)
_lowerCAmelCase : str = [f"<extra_id_{i}>" for i in range(125)]
_lowerCAmelCase : Dict = added_tokens_extra_ids + [
"an_additional_special_token"
]
_lowerCAmelCase : Optional[Any] = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(__a, "special_tokens_map.json"), "w", encoding="utf-8") as outfile:
json.dump(__a, __a)
with open(os.path.join(__a, "tokenizer_config.json"), "w", encoding="utf-8") as outfile:
json.dump(__a, __a)
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowerCAmelCase : Dict = tokenizer_class.from_pretrained(
__a, )
self.assertIn(
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens)
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowerCAmelCase : List[Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=__a)]
_lowerCAmelCase : Optional[Any] = tokenizer_class.from_pretrained(
__a, additional_special_tokens=__a, )
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
self.assertEqual(
["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])), )
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__a)
_lowerCAmelCase : List[Any] = tokenizer_class.from_pretrained(__a)
self.assertTrue(tokenizer.decode([255]) == "")
def snake_case__ ( self):
'''simple docstring'''
pass
def snake_case__ ( self):
'''simple docstring'''
pass
def snake_case__ ( self):
'''simple docstring'''
pass
def snake_case__ ( self):
'''simple docstring'''
pass
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : int = self.get_tokenizers(fast=__a, do_lower_case=__a)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
_lowerCAmelCase : Tuple = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"]
_lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_string(__a)
self.assertIsInstance(__a, __a)
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
_lowerCAmelCase : Tuple = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(
__a, skip_special_tokens=__a)
for attr in attributes_list:
setattr(__a, attr + "_id", __a)
self.assertEqual(getattr(__a, __a), __a)
self.assertEqual(getattr(__a, attr + "_id"), __a)
setattr(__a, attr + "_id", __a)
self.assertEqual(getattr(__a, __a), __a)
self.assertEqual(getattr(__a, attr + "_id"), __a)
setattr(__a, "additional_special_tokens_ids", [])
self.assertListEqual(getattr(__a, "additional_special_tokens"), [])
self.assertListEqual(getattr(__a, "additional_special_tokens_ids"), [])
setattr(__a, "additional_special_tokens_ids", [token_id_to_test_setters])
self.assertListEqual(getattr(__a, "additional_special_tokens"), [token_to_test_setters])
self.assertListEqual(getattr(__a, "additional_special_tokens_ids"), [token_id_to_test_setters])
| 36 |
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
UpperCAmelCase : Optional[Any] = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
UpperCAmelCase : Any = left
UpperCAmelCase : List[str] = point
elif point > right:
UpperCAmelCase : Any = right
UpperCAmelCase : List[str] = point
else:
if item < current_item:
UpperCAmelCase : Optional[int] = point - 1
else:
UpperCAmelCase : str = point + 1
return None
def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCAmelCase ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
elif point > right:
return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 )
else:
return interpolation_search_by_recursion(
UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase )
def a__ ( UpperCAmelCase : Union[str, Any] ) -> int:
if collection != sorted(UpperCAmelCase ):
raise ValueError('''Collection must be ascending sorted''' )
return True
if __name__ == "__main__":
import sys
_lowerCamelCase : Optional[int] = 0
if debug == 1:
_lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
_lowerCamelCase : List[Any] = 6_7
_lowerCamelCase : Optional[Any] = interpolation_search(collection, target)
if result is not None:
print(f"""{target} found at positions: {result}""")
else:
print("Not found")
| 336 | 0 |
'''simple docstring'''
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=0.999 , UpperCamelCase="cosine" , ):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(UpperCamelCase ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(UpperCamelCase ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
lowerCAmelCase__ : Optional[Any] = []
for i in range(UpperCamelCase ):
lowerCAmelCase__ : Union[str, Any] = i / num_diffusion_timesteps
lowerCAmelCase__ : Tuple = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(UpperCamelCase ) / alpha_bar_fn(UpperCamelCase ) , UpperCamelCase ) )
return torch.tensor(UpperCamelCase , dtype=torch.floataa )
class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[Any] = [e.name for e in KarrasDiffusionSchedulers]
__lowercase : str = 2
@register_to_config
def __init__( self ,__UpperCAmelCase = 1000 ,__UpperCAmelCase = 0.0_0_0_8_5 ,__UpperCAmelCase = 0.0_1_2 ,__UpperCAmelCase = "linear" ,__UpperCAmelCase = None ,__UpperCAmelCase = "epsilon" ,__UpperCAmelCase = "linspace" ,__UpperCAmelCase = 0 ,) -> List[Any]:
if trained_betas is not None:
lowerCAmelCase__ : Union[str, Any] = torch.tensor(__UpperCAmelCase ,dtype=torch.floataa )
elif beta_schedule == "linear":
lowerCAmelCase__ : List[str] = torch.linspace(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
lowerCAmelCase__ : Union[str, Any] = (
torch.linspace(beta_start**0.5 ,beta_end**0.5 ,__UpperCAmelCase ,dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
lowerCAmelCase__ : Any = betas_for_alpha_bar(__UpperCAmelCase )
else:
raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" )
lowerCAmelCase__ : List[Any] = 1.0 - self.betas
lowerCAmelCase__ : Optional[Any] = torch.cumprod(self.alphas ,dim=0 )
# set all values
self.set_timesteps(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Tuple:
if schedule_timesteps is None:
lowerCAmelCase__ : int = self.timesteps
lowerCAmelCase__ : str = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
lowerCAmelCase__ : Dict = 1 if len(__UpperCAmelCase ) > 1 else 0
else:
lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(__UpperCAmelCase ) else timestep
lowerCAmelCase__ : Optional[Any] = self._index_counter[timestep_int]
return indices[pos].item()
@property
def UpperCAmelCase_ ( self ) -> str:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,) -> torch.FloatTensor:
lowerCAmelCase__ : int = self.index_for_timestep(__UpperCAmelCase )
if self.state_in_first_order:
lowerCAmelCase__ : Tuple = self.sigmas[step_index]
else:
lowerCAmelCase__ : Any = self.sigmas_interpol[step_index]
lowerCAmelCase__ : List[Any] = sample / ((sigma**2 + 1) ** 0.5)
return sample
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> int:
lowerCAmelCase__ : Tuple = num_inference_steps
lowerCAmelCase__ : Dict = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
lowerCAmelCase__ : Dict = np.linspace(0 ,num_train_timesteps - 1 ,__UpperCAmelCase ,dtype=__UpperCAmelCase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
lowerCAmelCase__ : int = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
lowerCAmelCase__ : Dict = (np.arange(0 ,__UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(__UpperCAmelCase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
lowerCAmelCase__ : str = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
lowerCAmelCase__ : Tuple = (np.arange(__UpperCAmelCase ,0 ,-step_ratio )).round().copy().astype(__UpperCAmelCase )
timesteps -= 1
else:
raise ValueError(
F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" )
lowerCAmelCase__ : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
lowerCAmelCase__ : List[str] = torch.from_numpy(np.log(__UpperCAmelCase ) ).to(__UpperCAmelCase )
lowerCAmelCase__ : Optional[int] = np.interp(__UpperCAmelCase ,np.arange(0 ,len(__UpperCAmelCase ) ) ,__UpperCAmelCase )
lowerCAmelCase__ : Optional[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
lowerCAmelCase__ : Optional[Any] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase )
# interpolate sigmas
lowerCAmelCase__ : Dict = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp()
lowerCAmelCase__ : Dict = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
lowerCAmelCase__ : List[Any] = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(__UpperCAmelCase ).startswith("""mps""" ):
# mps does not support float64
lowerCAmelCase__ : List[str] = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase ,dtype=torch.floataa )
else:
lowerCAmelCase__ : Optional[Any] = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase )
# interpolate timesteps
lowerCAmelCase__ : Tuple = self.sigma_to_t(__UpperCAmelCase ).to(__UpperCAmelCase ,dtype=timesteps.dtype )
lowerCAmelCase__ : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten()
lowerCAmelCase__ : Tuple = torch.cat([timesteps[:1], interleaved_timesteps] )
lowerCAmelCase__ : List[str] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
lowerCAmelCase__ : Any = defaultdict(__UpperCAmelCase )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int:
# get log sigma
lowerCAmelCase__ : str = sigma.log()
# get distribution
lowerCAmelCase__ : Union[str, Any] = log_sigma - self.log_sigmas[:, None]
# get sigmas range
lowerCAmelCase__ : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
lowerCAmelCase__ : List[str] = low_idx + 1
lowerCAmelCase__ : Any = self.log_sigmas[low_idx]
lowerCAmelCase__ : Optional[Any] = self.log_sigmas[high_idx]
# interpolate sigmas
lowerCAmelCase__ : List[Any] = (low - log_sigma) / (low - high)
lowerCAmelCase__ : Union[str, Any] = w.clamp(0 ,1 )
# transform interpolation to time range
lowerCAmelCase__ : Tuple = (1 - w) * low_idx + w * high_idx
lowerCAmelCase__ : Union[str, Any] = t.view(sigma.shape )
return t
@property
def UpperCAmelCase_ ( self ) -> Tuple:
return self.sample is None
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = True ,) -> Union[SchedulerOutput, Tuple]:
lowerCAmelCase__ : Optional[Any] = self.index_for_timestep(__UpperCAmelCase )
# advance index counter by 1
lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(__UpperCAmelCase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
lowerCAmelCase__ : int = self.sigmas[step_index]
lowerCAmelCase__ : Optional[int] = self.sigmas_interpol[step_index + 1]
lowerCAmelCase__ : List[str] = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
lowerCAmelCase__ : Optional[int] = self.sigmas[step_index - 1]
lowerCAmelCase__ : Dict = self.sigmas_interpol[step_index]
lowerCAmelCase__ : List[Any] = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
lowerCAmelCase__ : List[str] = 0
lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_interpol
lowerCAmelCase__ : Tuple = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
lowerCAmelCase__ : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol
lowerCAmelCase__ : Dict = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("""prediction_type not implemented yet: sample""" )
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
lowerCAmelCase__ : Optional[int] = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
lowerCAmelCase__ : Dict = sigma_interpol - sigma_hat
# store for 2nd order step
lowerCAmelCase__ : Optional[int] = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
lowerCAmelCase__ : Any = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
lowerCAmelCase__ : Optional[Any] = sigma_next - sigma_hat
lowerCAmelCase__ : Tuple = self.sample
lowerCAmelCase__ : int = None
lowerCAmelCase__ : List[Any] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=__UpperCAmelCase )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
lowerCAmelCase__ : List[Any] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(__UpperCAmelCase ):
# mps does not support float64
lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ,dtype=torch.floataa )
lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa )
else:
lowerCAmelCase__ : List[str] = self.timesteps.to(original_samples.device )
lowerCAmelCase__ : Union[str, Any] = timesteps.to(original_samples.device )
lowerCAmelCase__ : List[Any] = [self.index_for_timestep(__UpperCAmelCase ,__UpperCAmelCase ) for t in timesteps]
lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
lowerCAmelCase__ : Dict = sigma.unsqueeze(-1 )
lowerCAmelCase__ : str = original_samples + noise * sigma
return noisy_samples
def __len__( self ) -> int:
return self.config.num_train_timesteps
| 37 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Any = logging.get_logger(__name__)
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else ''''''
UpperCAmelCase : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''),
(f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''),
(f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''),
(f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any:
for i in range(config.num_hidden_layers ):
UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' )
UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' )
UpperCAmelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase : str = q_bias
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : int = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' )
UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' )
UpperCAmelCase : str = gamma_a
UpperCAmelCase : Dict = gamma_a
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase )
UpperCAmelCase : str = val
def a__ ( ) -> Optional[int]:
UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
return im
@torch.no_grad()
def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]:
UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True
UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
UpperCAmelCase : List[Any] = 1_024
UpperCAmelCase : Optional[Any] = 4_096
UpperCAmelCase : Any = 24
UpperCAmelCase : Union[str, Any] = 16
# labels
if "rvlcdip" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 16
UpperCAmelCase : List[Any] = '''huggingface/label-files'''
UpperCAmelCase : Any = '''rvlcdip-id2label.json'''
UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = idalabel
UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model''']
UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase )
for src, dest in rename_keys:
rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase )
# load HuggingFace model
UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase )
model.eval()
model.load_state_dict(UpperCAmelCase )
# Check outputs on an image
UpperCAmelCase : Dict = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase )
UpperCAmelCase : List[str] = prepare_img()
UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' )
UpperCAmelCase : str = encoding['''pixel_values''']
UpperCAmelCase : Any = model(UpperCAmelCase )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify logits
UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected"
Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if push_to_hub:
if has_lm_head:
UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , )
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 336 | 0 |
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : int ) -> Tuple:
"""simple docstring"""
return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :]
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Any="attention" ) -> str:
"""simple docstring"""
UpperCamelCase :str = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] )
UpperCamelCase :Optional[Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
UpperCamelCase :Dict = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] )
UpperCamelCase :List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
UpperCamelCase :List[str] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] )
UpperCamelCase :int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
UpperCamelCase :Optional[Any] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] )
UpperCamelCase :int = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Any=False ) -> Tuple:
"""simple docstring"""
if split_mlp_wi:
UpperCamelCase :Optional[Any] = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :]
UpperCamelCase :List[str] = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :]
UpperCamelCase :Dict = (wi_a, wi_a)
else:
UpperCamelCase :Union[str, Any] = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :]
UpperCamelCase :Tuple = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :]
return wi, wo
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i]
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : dict , *, __magic_name__ : int , __magic_name__ : bool , __magic_name__ : bool = False ) -> Dict:
"""simple docstring"""
UpperCamelCase :Dict = traverse_util.flatten_dict(variables["""target"""] )
UpperCamelCase :int = {"""/""".join(__magic_name__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
UpperCamelCase :str = """encoder/encoder/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , __magic_name__ )
UpperCamelCase :Optional[int] = collections.OrderedDict()
# Shared embeddings.
UpperCamelCase :Dict = old["""token_embedder/embedding"""]
# Encoder.
for i in range(__magic_name__ ):
# Block i, layer 0 (Self Attention).
UpperCamelCase :Optional[int] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_attention_layer_norm""" )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = tax_attention_lookup(__magic_name__ , __magic_name__ , """encoder""" , """attention""" )
UpperCamelCase :Union[str, Any] = layer_norm
UpperCamelCase :Tuple = k.T
UpperCamelCase :Optional[Any] = o.T
UpperCamelCase :Dict = q.T
UpperCamelCase :List[str] = v.T
# Block i, layer 1 (MLP).
UpperCamelCase :Optional[Any] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_mlp_layer_norm""" )
UpperCamelCase , UpperCamelCase :Dict = tax_mlp_lookup(__magic_name__ , __magic_name__ , """encoder""" , __magic_name__ )
UpperCamelCase :List[Any] = layer_norm
if split_mlp_wi:
UpperCamelCase :Any = wi[0].T
UpperCamelCase :Optional[Any] = wi[1].T
else:
UpperCamelCase :Optional[int] = wi.T
UpperCamelCase :Any = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCamelCase :Optional[Any] = tax_relpos_bias_lookup(
__magic_name__ , __magic_name__ , """encoder""" ).T
UpperCamelCase :Tuple = old["""encoder/encoder_norm/scale"""]
if not scalable_attention:
UpperCamelCase :Dict = tax_relpos_bias_lookup(
__magic_name__ , 0 , """encoder""" ).T
UpperCamelCase :Tuple = tax_relpos_bias_lookup(
__magic_name__ , 0 , """decoder""" ).T
if not is_encoder_only:
# Decoder.
for i in range(__magic_name__ ):
# Block i, layer 0 (Self Attention).
UpperCamelCase :Dict = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_self_attention_layer_norm""" )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Dict = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """self_attention""" )
UpperCamelCase :int = layer_norm
UpperCamelCase :Optional[Any] = k.T
UpperCamelCase :Tuple = o.T
UpperCamelCase :Optional[Any] = q.T
UpperCamelCase :int = v.T
# Block i, layer 1 (Cross Attention).
UpperCamelCase :str = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_cross_attention_layer_norm""" )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """encoder_decoder_attention""" )
UpperCamelCase :str = layer_norm
UpperCamelCase :List[str] = k.T
UpperCamelCase :Optional[int] = o.T
UpperCamelCase :Union[str, Any] = q.T
UpperCamelCase :Tuple = v.T
# Block i, layer 2 (MLP).
UpperCamelCase :Optional[Any] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_mlp_layer_norm""" )
UpperCamelCase , UpperCamelCase :Optional[int] = tax_mlp_lookup(__magic_name__ , __magic_name__ , """decoder""" , __magic_name__ )
UpperCamelCase :str = layer_norm
if split_mlp_wi:
UpperCamelCase :Any = wi[0].T
UpperCamelCase :int = wi[1].T
else:
UpperCamelCase :List[str] = wi.T
UpperCamelCase :Union[str, Any] = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCamelCase :Union[str, Any] = tax_relpos_bias_lookup(__magic_name__ , __magic_name__ , """decoder""" ).T
UpperCamelCase :int = old["""decoder/decoder_norm/scale"""]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
UpperCamelCase :Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : bool ) -> List[Any]:
"""simple docstring"""
UpperCamelCase :Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
UpperCamelCase :int = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
UpperCamelCase :List[str] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
UpperCamelCase :Optional[Any] = state_dict["""shared.weight"""]
return state_dict
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
UpperCamelCase :Any = checkpoints.load_tax_checkpoint(__magic_name__ )
UpperCamelCase :int = convert_tax_to_pytorch(
__magic_name__ , num_layers=config.num_layers , is_encoder_only=__magic_name__ , scalable_attention=__magic_name__ )
UpperCamelCase :Any = make_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ , strict=__magic_name__ )
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : bool = False , __magic_name__ : bool = False , ) -> Dict:
"""simple docstring"""
UpperCamelCase :Optional[Any] = MTaConfig.from_json_file(__magic_name__ )
print(f"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
UpperCamelCase :List[str] = UMTaEncoderModel(__magic_name__ )
else:
UpperCamelCase :List[Any] = UMTaForConditionalGeneration(__magic_name__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(__magic_name__ )
# Verify that we can load the checkpoint.
model.from_pretrained(__magic_name__ )
print("""Done""" )
if __name__ == "__main__":
UpperCAmelCase_ : str = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''')
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False
)
parser.add_argument(
'''--scalable_attention''',
action='''store_true''',
help='''Whether the model uses scaled attention (umt5 model)''',
default=False,
)
UpperCAmelCase_ : Tuple = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 38 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ):
UpperCAmelCase : Any = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Any = seq_length
UpperCAmelCase : Tuple = is_training
UpperCAmelCase : str = use_attention_mask
UpperCAmelCase : List[str] = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Optional[int] = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Optional[Any] = type_vocab_size
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : Any = num_choices
def __magic_name__ ( self : str ):
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : List[Any] = None
if self.use_attention_mask:
UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Any = None
if self.use_token_type_ids:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = RobertaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def __magic_name__ ( self : int ):
UpperCAmelCase : Any = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs
UpperCAmelCase : Any = True
UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = True
UpperCamelCase = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Dict = FlaxRobertaModelTester(self )
@slow
def __magic_name__ ( self : Any ):
for model_class_name in self.all_model_classes:
UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A )
UpperCAmelCase : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__A )
| 336 | 0 |
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
_a = [
# (stable-diffusion, HF Diffusers)
('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''),
('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''),
('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''),
('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''),
('''input_blocks.0.0.weight''', '''conv_in.weight'''),
('''input_blocks.0.0.bias''', '''conv_in.bias'''),
('''out.0.weight''', '''conv_norm_out.weight'''),
('''out.0.bias''', '''conv_norm_out.bias'''),
('''out.2.weight''', '''conv_out.weight'''),
('''out.2.bias''', '''conv_out.bias'''),
]
_a = [
# (stable-diffusion, HF Diffusers)
('''in_layers.0''', '''norm1'''),
('''in_layers.2''', '''conv1'''),
('''out_layers.0''', '''norm2'''),
('''out_layers.3''', '''conv2'''),
('''emb_layers.1''', '''time_emb_proj'''),
('''skip_connection''', '''conv_shortcut'''),
]
_a = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
_a = F'''down_blocks.{i}.resnets.{j}.'''
_a = F'''input_blocks.{3*i + j + 1}.0.'''
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
_a = F'''down_blocks.{i}.attentions.{j}.'''
_a = F'''input_blocks.{3*i + j + 1}.1.'''
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
_a = F'''up_blocks.{i}.resnets.{j}.'''
_a = F'''output_blocks.{3*i + j}.0.'''
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
_a = F'''up_blocks.{i}.attentions.{j}.'''
_a = F'''output_blocks.{3*i + j}.1.'''
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
_a = F'''down_blocks.{i}.downsamplers.0.conv.'''
_a = F'''input_blocks.{3*(i+1)}.0.op.'''
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
_a = F'''up_blocks.{i}.upsamplers.0.'''
_a = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.'''
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
_a = '''mid_block.attentions.0.'''
_a = '''middle_block.1.'''
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
_a = F'''mid_block.resnets.{j}.'''
_a = F'''middle_block.{2*j}.'''
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def __A ( __lowerCAmelCase )-> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
_UpperCAmelCase = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
_UpperCAmelCase = v.replace(__lowerCAmelCase , __lowerCAmelCase )
_UpperCAmelCase = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
_UpperCAmelCase = v.replace(__lowerCAmelCase , __lowerCAmelCase )
_UpperCAmelCase = v
_UpperCAmelCase = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
_a = [
# (stable-diffusion, HF Diffusers)
('''nin_shortcut''', '''conv_shortcut'''),
('''norm_out''', '''conv_norm_out'''),
('''mid.attn_1.''', '''mid_block.attentions.0.'''),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
_a = F'''encoder.down_blocks.{i}.resnets.{j}.'''
_a = F'''encoder.down.{i}.block.{j}.'''
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
_a = F'''down_blocks.{i}.downsamplers.0.'''
_a = F'''down.{i}.downsample.'''
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
_a = F'''up_blocks.{i}.upsamplers.0.'''
_a = F'''up.{3-i}.upsample.'''
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
_a = F'''decoder.up_blocks.{i}.resnets.{j}.'''
_a = F'''decoder.up.{3-i}.block.{j}.'''
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
_a = F'''mid_block.resnets.{i}.'''
_a = F'''mid.block_{i+1}.'''
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
_a = [
# (stable-diffusion, HF Diffusers)
('''norm.''', '''group_norm.'''),
('''q.''', '''query.'''),
('''k.''', '''key.'''),
('''v.''', '''value.'''),
('''proj_out.''', '''proj_attn.'''),
]
def __A ( __lowerCAmelCase )-> Optional[int]:
"""simple docstring"""
return w.reshape(*w.shape , 1 , 1 )
def __A ( __lowerCAmelCase )-> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
_UpperCAmelCase = v.replace(__lowerCAmelCase , __lowerCAmelCase )
_UpperCAmelCase = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
_UpperCAmelCase = v.replace(__lowerCAmelCase , __lowerCAmelCase )
_UpperCAmelCase = v
_UpperCAmelCase = {v: vae_state_dict[k] for k, v in mapping.items()}
_UpperCAmelCase = ['q', 'k', 'v', 'proj_out']
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if F"""mid.attn_1.{weight_name}.weight""" in k:
print(F"""Reshaping {k} for SD format""" )
_UpperCAmelCase = reshape_weight_for_sd(__lowerCAmelCase )
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
_a = [
# (stable-diffusion, HF Diffusers)
('''resblocks.''', '''text_model.encoder.layers.'''),
('''ln_1''', '''layer_norm1'''),
('''ln_2''', '''layer_norm2'''),
('''.c_fc.''', '''.fc1.'''),
('''.c_proj.''', '''.fc2.'''),
('''.attn''', '''.self_attn'''),
('''ln_final.''', '''transformer.text_model.final_layer_norm.'''),
('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''),
('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''),
]
_a = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
_a = re.compile('''|'''.join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
_a = {'''q''': 0, '''k''': 1, '''v''': 2}
def __A ( __lowerCAmelCase )-> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = {}
_UpperCAmelCase = {}
for k, v in text_enc_dict.items():
if (
k.endswith('.self_attn.q_proj.weight' )
or k.endswith('.self_attn.k_proj.weight' )
or k.endswith('.self_attn.v_proj.weight' )
):
_UpperCAmelCase = k[: -len('.q_proj.weight' )]
_UpperCAmelCase = k[-len('q_proj.weight' )]
if k_pre not in capture_qkv_weight:
_UpperCAmelCase = [None, None, None]
_UpperCAmelCase = v
continue
if (
k.endswith('.self_attn.q_proj.bias' )
or k.endswith('.self_attn.k_proj.bias' )
or k.endswith('.self_attn.v_proj.bias' )
):
_UpperCAmelCase = k[: -len('.q_proj.bias' )]
_UpperCAmelCase = k[-len('q_proj.bias' )]
if k_pre not in capture_qkv_bias:
_UpperCAmelCase = [None, None, None]
_UpperCAmelCase = v
continue
_UpperCAmelCase = textenc_pattern.sub(lambda __lowerCAmelCase : protected[re.escape(m.group(0 ) )] , __lowerCAmelCase )
_UpperCAmelCase = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
_UpperCAmelCase = textenc_pattern.sub(lambda __lowerCAmelCase : protected[re.escape(m.group(0 ) )] , __lowerCAmelCase )
_UpperCAmelCase = torch.cat(__lowerCAmelCase )
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
_UpperCAmelCase = textenc_pattern.sub(lambda __lowerCAmelCase : protected[re.escape(m.group(0 ) )] , __lowerCAmelCase )
_UpperCAmelCase = torch.cat(__lowerCAmelCase )
return new_state_dict
def __A ( __lowerCAmelCase )-> Optional[Any]:
"""simple docstring"""
return text_enc_dict
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''')
parser.add_argument(
'''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.'''
)
_a = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
_a = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''')
_a = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''')
_a = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''')
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
_a = load_file(unet_path, device='''cpu''')
else:
_a = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''')
_a = torch.load(unet_path, map_location='''cpu''')
if osp.exists(vae_path):
_a = load_file(vae_path, device='''cpu''')
else:
_a = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''')
_a = torch.load(vae_path, map_location='''cpu''')
if osp.exists(text_enc_path):
_a = load_file(text_enc_path, device='''cpu''')
else:
_a = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''')
_a = torch.load(text_enc_path, map_location='''cpu''')
# Convert the UNet model
_a = convert_unet_state_dict(unet_state_dict)
_a = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
_a = convert_vae_state_dict(vae_state_dict)
_a = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
_a = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict
if is_vaa_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
_a = {'''transformer.''' + k: v for k, v in text_enc_dict.items()}
_a = convert_text_enc_state_dict_vaa(text_enc_dict)
_a = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()}
else:
_a = convert_text_enc_state_dict(text_enc_dict)
_a = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
_a = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
if args.half:
_a = {k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
_a = {'''state_dict''': state_dict}
torch.save(state_dict, args.checkpoint_path)
| 39 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : Dict = {"vocab_file": "vocab.txt"}
_lowerCamelCase : List[str] = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
_lowerCamelCase : List[Any] = {
"facebook/esm2_t6_8M_UR50D": 1_0_2_4,
"facebook/esm2_t12_35M_UR50D": 1_0_2_4,
}
def a__ ( UpperCAmelCase : List[str] ) -> Any:
with open(UpperCAmelCase , '''r''' ) as f:
UpperCAmelCase : Dict = f.read().splitlines()
return [l.strip() for l in lines]
class __UpperCAmelCase ( lowerCamelCase__ ):
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ):
super().__init__(**__A )
UpperCAmelCase : Tuple = load_vocab_file(__A )
UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) )
UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase : Union[str, Any] = unk_token
UpperCAmelCase : Optional[Any] = cls_token
UpperCAmelCase : Optional[int] = pad_token
UpperCAmelCase : Optional[int] = mask_token
UpperCAmelCase : List[str] = eos_token
UpperCAmelCase : Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def __magic_name__ ( self : Tuple, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : List[Any], __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ):
return text.split()
def __magic_name__ ( self : Optional[int], __A : Dict=False ):
return len(self._id_to_token )
def __magic_name__ ( self : int ):
return {token: i for i, token in enumerate(self.all_tokens )}
def __magic_name__ ( self : Tuple, __A : str ):
return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) )
def __magic_name__ ( self : Any, __A : int ):
return self._id_to_token.get(__A, self.unk_token )
def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ):
UpperCAmelCase : Optional[int] = [self.cls_token_id]
UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
mask += [0] * len(__A ) + [1]
return mask
def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ):
UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(__A, '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def __magic_name__ ( self : Dict ):
return self.get_vocab_size(with_added_tokens=__A )
def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ):
return super()._add_tokens(__A, special_tokens=__A )
| 336 | 0 |
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
__lowercase = True
except (ImportError, ModuleNotFoundError):
__lowercase = False
if NLTK_AVAILABLE:
with FileLock(""".lock""") as lock:
nltk.download("""punkt""", quiet=True)
def lowercase ( A_ )-> str:
'''simple docstring'''
re.sub("<n>" , "" , A_ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(A_ ) )
| 40 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __UpperCAmelCase ( lowerCamelCase__ ):
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : str = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) )
self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) )
class __UpperCAmelCase :
def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ):
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : List[str] = num_channels
UpperCAmelCase : str = image_size
UpperCAmelCase : Optional[int] = depth_multiplier
UpperCAmelCase : Union[str, Any] = depth_divisible_by
UpperCAmelCase : Optional[Any] = min_depth
UpperCAmelCase : List[str] = expand_ratio
UpperCAmelCase : Dict = tf_padding
UpperCAmelCase : str = output_stride
UpperCAmelCase : Union[str, Any] = first_layer_is_expansion
UpperCAmelCase : List[Any] = finegrained_output
UpperCAmelCase : Optional[Any] = hidden_act
UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
UpperCAmelCase : Optional[Any] = classifier_dropout_prob
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : List[str] = is_training
UpperCAmelCase : Tuple = num_labels
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Any = scope
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Dict = None
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels )
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def __magic_name__ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ):
UpperCAmelCase : Any = MobileNetVaModel(config=__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[Any] = model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
self.parent.assertEqual(
result.pooler_output.shape, (self.batch_size, self.last_hidden_size), )
def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ):
UpperCAmelCase : Optional[int] = self.num_labels
UpperCAmelCase : Any = MobileNetVaForImageClassification(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Optional[int] = model(__A, labels=__A )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ):
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A )
model.to(__A )
model.eval()
UpperCAmelCase : Dict = model(__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCAmelCase : Optional[Any] = model(__A, labels=__A )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs
UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
"""feature-extraction""": MobileNetVaModel,
"""image-classification""": MobileNetVaForImageClassification,
"""image-segmentation""": MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : List[Any] = MobileNetVaModelTester(self )
UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A )
def __magic_name__ ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' )
def __magic_name__ ( self : Tuple ):
pass
@unittest.skip(reason='''MobileNetV2 does not output attentions''' )
def __magic_name__ ( self : Any ):
pass
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(__A )
UpperCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase : Any = ['''pixel_values''']
self.assertListEqual(arg_names[:1], __A )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __magic_name__ ( self : int ):
def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ):
UpperCAmelCase : Union[str, Any] = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) )
UpperCAmelCase : Optional[Any] = outputs.hidden_states
UpperCAmelCase : List[Any] = 1_6
self.assertEqual(len(__A ), __A )
UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : Tuple = True
check_hidden_states_output(__A, __A, __A )
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __magic_name__ ( self : int ):
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__A )
@slow
def __magic_name__ ( self : Dict ):
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def a__ ( ) -> int:
UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : List[Any] ):
return (
MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None
)
@slow
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A )
UpperCAmelCase : Optional[int] = self.default_image_processor
UpperCAmelCase : Optional[Any] = prepare_img()
UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : str = model(**__A )
# verify the logits
UpperCAmelCase : int = torch.Size((1, 1_0_0_1) )
self.assertEqual(outputs.logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) )
@slow
def __magic_name__ ( self : Optional[int] ):
UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = model.to(__A )
UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' )
UpperCAmelCase : List[Any] = prepare_img()
UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(**__A )
UpperCAmelCase : Optional[Any] = outputs.logits
# verify the logits
UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) )
self.assertEqual(logits.shape, __A )
UpperCAmelCase : Tuple = torch.tensor(
[
[[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]],
[[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]],
[[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]],
], device=__A, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
| 336 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.