code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def _A ( UpperCamelCase_ : list[int], UpperCamelCase_ : list[int]) -> None: '''simple docstring''' __lowercase = len(UpperCamelCase_) print("The following activities are selected:") # The first activity is always selected __lowercase = 0 print(UpperCamelCase_, end=",") # Consider rest of the activities for j in range(UpperCamelCase_): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCamelCase_, end=",") __lowercase = j if __name__ == "__main__": import doctest doctest.testmod() _a = [1, 3, 0, 5, 8, 5] _a = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
17
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Any = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase : Tuple = "3" print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
115
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
100
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
0
from manim import * class snake_case_ ( lowerCamelCase__ ): def __UpperCamelCase ( self : int ) -> Union[str, Any]: lowercase__ : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowercase__ : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowercase__ : Any = [mem.copy() for i in range(6 )] lowercase__ : Any = VGroup(*__A ).arrange(__A , buff=0 ) lowercase__ : List[str] = VGroup(*__A ).arrange(__A , buff=0 ) lowercase__ : Optional[int] = VGroup(__A , __A ).arrange(__A , buff=0 ) lowercase__ : Union[str, Any] = Text("CPU" , font_size=24 ) lowercase__ : int = Group(__A , __A ).arrange(__A , buff=0.5 , aligned_edge=__A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__A ) lowercase__ : Dict = [mem.copy() for i in range(1 )] lowercase__ : Optional[int] = VGroup(*__A ).arrange(__A , buff=0 ) lowercase__ : Dict = Text("GPU" , font_size=24 ) lowercase__ : List[str] = Group(__A , __A ).arrange(__A , buff=0.5 , aligned_edge=__A ) gpu.align_to(__A , __A ) gpu.set_x(gpu.get_x() - 1 ) self.add(__A ) lowercase__ : Optional[int] = [mem.copy() for i in range(6 )] lowercase__ : List[Any] = VGroup(*__A ).arrange(__A , buff=0 ) lowercase__ : Any = Text("Model" , font_size=24 ) lowercase__ : Union[str, Any] = Group(__A , __A ).arrange(__A , buff=0.5 , aligned_edge=__A ) model.move_to([3, -1.0, 0] ) self.play( Create(__A , run_time=1 ) , Create(__A , run_time=1 ) , Create(__A , run_time=1 ) , ) lowercase__ : Optional[int] = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) lowercase__ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : Optional[int] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__A , run_time=2.5 ) , Write(__A ) , Write(__A ) ) self.add(__A ) lowercase__ : Tuple = [] lowercase__ : Optional[int] = [] lowercase__ : str = [] for i, rect in enumerate(__A ): lowercase__ : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__A , opacity=0.7 ) cpu_target.move_to(__A ) cpu_target.generate_target() lowercase__ : Optional[Any] = 0.46 / 4 lowercase__ : Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__A ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__A , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__A , buff=0.0 ) cpu_targs.append(__A ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__A ) ) second_animations.append(MoveToTarget(__A , run_time=1.5 ) ) self.play(*__A ) self.play(*__A ) self.wait()
87
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : '''simple docstring''' def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[10, 20, 30, 40] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , ): _SCREAMING_SNAKE_CASE : List[str] = parent _SCREAMING_SNAKE_CASE : Tuple = batch_size _SCREAMING_SNAKE_CASE : List[Any] = image_size _SCREAMING_SNAKE_CASE : int = num_channels _SCREAMING_SNAKE_CASE : Dict = embeddings_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_sizes _SCREAMING_SNAKE_CASE : Union[str, Any] = depths _SCREAMING_SNAKE_CASE : Optional[Any] = is_training _SCREAMING_SNAKE_CASE : Optional[Any] = use_labels _SCREAMING_SNAKE_CASE : str = hidden_act _SCREAMING_SNAKE_CASE : Dict = num_labels _SCREAMING_SNAKE_CASE : List[str] = scope _SCREAMING_SNAKE_CASE : Optional[int] = len(__A ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : int = None if self.use_labels: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = TFRegNetModel(config=__A ) _SCREAMING_SNAKE_CASE : Optional[int] = model(__A , training=__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.num_labels _SCREAMING_SNAKE_CASE : List[str] = TFRegNetForImageClassification(__A ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () A_ : Tuple = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) A_ : List[str] = False A_ : str = False A_ : int = False A_ : Any = False A_ : Union[str, Any] = False def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = TFRegNetModelTester(self ) _SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=__A , has_text_modality=__A ) def UpperCAmelCase_ ( self ): return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ): super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Any = model_class(__A ) _SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : Dict = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCAmelCase_ ( self ): def check_hidden_states_output(__snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(__A ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(__A , __A ) , training=__A ) _SCREAMING_SNAKE_CASE : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Optional[int] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _SCREAMING_SNAKE_CASE : Tuple = layer_type _SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(__A , __A , __A ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__snake_case , __snake_case , __snake_case , __snake_case={} ): _SCREAMING_SNAKE_CASE : Optional[Any] = model(__A , return_dict=__A , **__A ) _SCREAMING_SNAKE_CASE : Any = model(__A , return_dict=__A , **__A ).to_tuple() def recursive_check(__snake_case , __snake_case ): if isinstance(__A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__A , __A ): recursive_check(__A , __A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__A , __A ) ) , msg=( """Tuple and dict output are not equal. Difference:""" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__A , __A ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__A ) _SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(__A , __A ) _SCREAMING_SNAKE_CASE : int = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A ) _SCREAMING_SNAKE_CASE : str = self._prepare_for_class(__A , __A , return_labels=__A ) _SCREAMING_SNAKE_CASE : int = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__A , __A ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A , {"""output_hidden_states""": True} ) _SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(__A , __A , return_labels=__A ) _SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def UpperCAmelCase_ ( self ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : int = TFRegNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.default_image_processor _SCREAMING_SNAKE_CASE : List[str] = prepare_img() _SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=__A , return_tensors="""tf""" ) # forward pass _SCREAMING_SNAKE_CASE : str = model(**__A , training=__A ) # verify the logits _SCREAMING_SNAKE_CASE : List[str] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __A ) _SCREAMING_SNAKE_CASE : Any = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __A , atol=1e-4 )
200
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
0
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
290
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _A = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( lowerCAmelCase=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase__ : Tuple = subparsers.add_parser("""tpu-config""" , description=_description ) else: UpperCAmelCase__ : Dict = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments UpperCAmelCase__ : Optional[int] = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=lowerCAmelCase , default=lowerCAmelCase , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=lowerCAmelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=lowerCAmelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) UpperCAmelCase__ : Union[str, Any] = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=lowerCAmelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def a__ ( lowerCAmelCase ) -> Union[str, Any]: UpperCAmelCase__ : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase__ : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase__ : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase__ : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase__ : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase__ : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase__ : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: UpperCAmelCase__ : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCAmelCase ): UpperCAmelCase__ : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase__ : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command UpperCAmelCase__ : int = '''; '''.join(lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase__ : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {' '.join(lowerCAmelCase )}""" ) return subprocess.run(lowerCAmelCase ) print("""Successfully setup pod.""" ) def a__ ( ) -> Any: UpperCAmelCase__ : Any = tpu_command_parser() UpperCAmelCase__ : Tuple = parser.parse_args() tpu_command_launcher(lowerCAmelCase )
171
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ): UpperCAmelCase : Any = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_choices def __magic_name__ ( self : str ): UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : int ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Any = True UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
336
0
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __UpperCamelCase ( _A ): lowerCAmelCase_ = [] for line in lines: lowerCAmelCase_ = re.sub(r'''#.*''' , '''''' , _A ) # remove comments if line: filtered_lines.append(_A ) lowerCAmelCase_ = '''\n'''.join(_A ) # Make a hash from all this code lowerCAmelCase_ = full_str.encode('''utf-8''' ) return shaaaa(_A ).hexdigest() # get importable module names and hash for caching _A = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _A = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _A = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _A = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
278
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.txt"} _lowerCamelCase : List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase : List[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def a__ ( UpperCAmelCase : List[str] ) -> Any: with open(UpperCAmelCase , '''r''' ) as f: UpperCAmelCase : Dict = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ): super().__init__(**__A ) UpperCAmelCase : Tuple = load_vocab_file(__A ) UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Union[str, Any] = unk_token UpperCAmelCase : Optional[Any] = cls_token UpperCAmelCase : Optional[int] = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : List[str] = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __magic_name__ ( self : Tuple, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : List[Any], __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ): return text.split() def __magic_name__ ( self : Optional[int], __A : Dict=False ): return len(self._id_to_token ) def __magic_name__ ( self : int ): return {token: i for i, token in enumerate(self.all_tokens )} def __magic_name__ ( self : Tuple, __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: mask += [0] * len(__A ) + [1] return mask def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ): UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__A, '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __magic_name__ ( self : Dict ): return self.get_vocab_size(with_added_tokens=__A ) def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ): return super()._add_tokens(__A, special_tokens=__A )
336
0
def _A ( ) -> int: """simple docstring""" return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_lowercase , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
310
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE = 'LayoutLMv3ImageProcessor' _SCREAMING_SNAKE_CASE = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Optional[Any] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Dict ) -> str: """simple docstring""" snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) snake_case_ = kwargs.pop("feature_extractor" ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A , __A ) def __call__( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _lowerCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _lowerCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Tuple , ) -> Dict: """simple docstring""" # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor snake_case_ = self.image_processor(images=__A , return_tensors=__A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__A , __A ): snake_case_ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case_ = features['''words'''] snake_case_ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel values snake_case_ = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case_ = self.get_overflowing_images(__A , encoded_inputs["overflow_to_sample_mapping"] ) snake_case_ = images return encoded_inputs def lowerCAmelCase__ ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__A ) != len(__A ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F''' {len(__A )} and {len(__A )}''' ) return images_with_overflow def lowerCAmelCase__ ( self : Any , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase__ ( self : Any , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def lowerCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , ) return self.image_processor_class @property def lowerCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , ) return self.image_processor
159
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" _a = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } _a = {value: key for key, value in encode_dict.items()} def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces") return encoded def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' if set(UpperCamelCase_) - {"A", "B", " "} != set(): raise Exception("decode() accepts only \'A\', \'B\' and spaces") __lowercase = '''''' for word in coded.split(): while len(UpperCamelCase_) != 0: decoded += decode_dict[word[:5]] __lowercase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
17
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _lowercase ( ctypes.Structure): """simple docstring""" A__ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowercase_ ( ): """simple docstring""" if os.name == "nt": lowerCamelCase__ : List[str] = CursorInfo() lowerCamelCase__ : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) lowerCamelCase__ : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def lowercase_ ( ): """simple docstring""" if os.name == "nt": lowerCamelCase__ : int = CursorInfo() lowerCamelCase__ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) lowerCamelCase__ : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def lowercase_ ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
184
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
"""simple docstring""" UpperCAmelCase : List[str] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
115
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __magic_name__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") __magic_name__ = F"""https://www.google.com/search?q={query}&num=100""" __magic_name__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: __magic_name__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: __magic_name__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
100
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase_ ( _lowerCamelCase : str): if "://" in dataset_path: lowercase__ : Optional[Any] = dataset_path.split("://")[1] return dataset_path def lowercase_ ( _lowerCamelCase : fsspec.AbstractFileSystem): if fs is not None and fs.protocol != "file": return True else: return False def lowercase_ ( _lowerCamelCase : fsspec.AbstractFileSystem , _lowerCamelCase : str , _lowerCamelCase : str): lowercase__ : Any = not is_remote_filesystem(_lowerCamelCase) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowerCamelCase) , fs._strip_protocol(_lowerCamelCase)) else: fs.mv(_lowerCamelCase , _lowerCamelCase , recursive=_lowerCamelCase) def lowercase_ ( ): if hasattr(fsspec.asyn , "reset_lock"): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase__ : Tuple = None lowercase__ : str = None lowercase__ : Tuple = threading.Lock()
87
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1_6000 ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = int(round(sample_rate * max_length ) ) if len(SCREAMING_SNAKE_CASE__ ) <= sample_length: return wav _SCREAMING_SNAKE_CASE : str = randint(0 , len(SCREAMING_SNAKE_CASE__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowercase__ : '''simple docstring''' A_ : Tuple = field(default=lowerCamelCase__ , metadata={"""help""": """Name of a dataset from the datasets package"""} ) A_ : Any = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) A_ : List[str] = field( default=lowerCamelCase__ , metadata={"""help""": """A file containing the training audio paths and labels."""} ) A_ : Any = field( default=lowerCamelCase__ , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) A_ : Tuple = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) A_ : Dict = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) A_ : Any = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) A_ : Optional[Any] = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) A_ : Any = field( default=lowerCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) A_ : Optional[Any] = field( default=lowerCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) A_ : Tuple = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class lowercase__ : '''simple docstring''' A_ : List[Any] = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) A_ : Optional[int] = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) A_ : List[Any] = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) A_ : Optional[Any] = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) A_ : Optional[int] = field( default=lowerCamelCase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) A_ : int = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) A_ : Optional[int] = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) A_ : List[Any] = field( default=lowerCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) A_ : Dict = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) A_ : List[Any] = field( default=lowerCamelCase__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def UpperCAmelCase_ ( self ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , __A , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Optional[int] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _SCREAMING_SNAKE_CASE : List[Any] = DatasetDict() _SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _SCREAMING_SNAKE_CASE : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ f"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ f"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _SCREAMING_SNAKE_CASE : Dict = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _SCREAMING_SNAKE_CASE : str = feature_extractor.model_input_names[0] def train_transforms(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : int = [] for audio in batch[data_args.audio_column_name]: _SCREAMING_SNAKE_CASE : List[Any] = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE : Dict = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )} _SCREAMING_SNAKE_CASE : Union[str, Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Optional[Any] = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE : str = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )} _SCREAMING_SNAKE_CASE : str = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _SCREAMING_SNAKE_CASE : int = raw_datasets['''train'''].features[data_args.label_column_name].names _SCREAMING_SNAKE_CASE : Any = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : str = label # Load the accuracy metric from the datasets package _SCREAMING_SNAKE_CASE : Dict = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : List[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=eval_pred.label_ids ) _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE__ ) , labelaid=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _SCREAMING_SNAKE_CASE : Any = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE : int = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE : Dict = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ ) # Initialize our trainer _SCREAMING_SNAKE_CASE : List[str] = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE : List[str] = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE : Optional[int] = last_checkpoint _SCREAMING_SNAKE_CASE : str = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE : str = trainer.evaluate() trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
200
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( lowerCamelCase__ ): def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: str = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__A , 'tf_padding')) self.parent.assertTrue(hasattr(__A , 'depth_multiplier')) class __snake_case : def __init__( self , lowercase , lowercase=13 , lowercase=3 , lowercase=32 , lowercase=0.25 , lowercase=8 , lowercase=8 , lowercase=6 , lowercase=32 , lowercase=True , lowercase=True , lowercase=True , lowercase="relu6" , lowercase=12_80 , lowercase=0.1 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=10 , lowercase=None , ) -> Any: '''simple docstring''' a__: Optional[int] = parent a__: List[str] = batch_size a__: List[str] = num_channels a__: str = image_size a__: Optional[int] = depth_multiplier a__: Union[str, Any] = depth_divisible_by a__: Optional[Any] = min_depth a__: List[str] = expand_ratio a__: Dict = tf_padding a__: str = output_stride a__: Union[str, Any] = first_layer_is_expansion a__: List[Any] = finegrained_output a__: Optional[Any] = hidden_act a__: str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) a__: Optional[Any] = classifier_dropout_prob a__: Dict = use_labels a__: List[str] = is_training a__: Tuple = num_labels a__: Union[str, Any] = initializer_range a__: Any = scope def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__: Dict = None a__: Any = None if self.use_labels: a__: Dict = ids_tensor([self.batch_size] , self.num_labels) a__: Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a__: Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Any = MobileNetVaModel(config=__A) model.to(__A) model.eval() a__: Optional[Any] = model(__A) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Optional[int] = self.num_labels a__: Any = MobileNetVaForImageClassification(__A) model.to(__A) model.eval() a__: Optional[int] = model(__A , labels=__A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__: Tuple = self.num_labels a__: Dict = MobileNetVaForSemanticSegmentation(__A) model.to(__A) model.eval() a__: Dict = model(__A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a__: Optional[Any] = model(__A , labels=__A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: List[str] = self.prepare_config_and_inputs() a__: int = config_and_inputs a__: Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): a__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) a__ = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: List[Any] = MobileNetVaModelTester(self) a__: List[Any] = MobileNetVaConfigTester(self , config_class=__A , has_text_modality=__A) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds') def lowerCamelCase_ ( self) -> str: '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings') def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not output attentions') def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Optional[Any] = model_class(__A) a__: Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: Union[str, Any] = [*signature.parameters.keys()] a__: Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__: Union[str, Any] = model_class(__A) model.to(__A) model.eval() with torch.no_grad(): a__: Dict = model(**self._prepare_for_class(__A , __A)) a__: Optional[Any] = outputs.hidden_states a__: List[Any] = 16 self.assertEqual(len(__A) , __A) a__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Tuple = True check_hidden_states_output(__A , __A , __A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__: Tuple = True check_hidden_states_output(__A , __A , __A) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A) @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Optional[Any] = MobileNetVaModel.from_pretrained(__A) self.assertIsNotNone(__A) def __a ( ) ->int: a__: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224') if is_vision_available() else None ) @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: List[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224').to(__A) a__: Optional[int] = self.default_image_processor a__: Optional[Any] = prepare_img() a__: Dict = image_processor(images=__A , return_tensors='pt').to(__A) # forward pass with torch.no_grad(): a__: str = model(**__A) # verify the logits a__: int = torch.Size((1, 10_01)) self.assertEqual(outputs.logits.shape , __A) a__: Tuple = torch.tensor([0.2445, -1.1993, 0.1905]).to(__A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4)) @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513') a__: List[Any] = model.to(__A) a__: Tuple = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513') a__: List[Any] = prepare_img() a__: int = image_processor(images=__A , return_tensors='pt').to(__A) # forward pass with torch.no_grad(): a__: Union[str, Any] = model(**__A) a__: Optional[Any] = outputs.logits # verify the logits a__: Tuple = torch.Size((1, 21, 65, 65)) self.assertEqual(logits.shape , __A) a__: Tuple = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4))
290
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
"""simple docstring""" def a__ ( lowerCAmelCase = 4_00_00_00 ) -> int: UpperCAmelCase__ : int = [0, 1] UpperCAmelCase__ : int = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCAmelCase__ : str = 0 for j in range(len(lowerCAmelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
171
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def SCREAMING_SNAKE_CASE__ ( *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): __snake_case = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = pipeline('''visual-question-answering''', model='''hf-internal-testing/tiny-vilt-random-vqa''' ) lowerCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = vqa_pipeline(__A, top_k=1 ) self.assertEqual( __A, [ [{'''score''': ANY(__A ), '''answer''': ANY(__A )}], [{'''score''': ANY(__A ), '''answer''': ANY(__A )}], ], ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = pipeline('''visual-question-answering''', model='''hf-internal-testing/tiny-vilt-random-vqa''' ) lowerCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowerCAmelCase_ = '''How many cats are there?''' lowerCAmelCase_ = vqa_pipeline(image=__A, question='''How many cats are there?''', top_k=2 ) self.assertEqual( __A, [{'''score''': ANY(__A ), '''answer''': ANY(__A )}, {'''score''': ANY(__A ), '''answer''': ANY(__A )}] ) lowerCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( __A, [{'''score''': ANY(__A ), '''answer''': ANY(__A )}, {'''score''': ANY(__A ), '''answer''': ANY(__A )}] ) @slow @require_torch def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = pipeline('''visual-question-answering''', model='''dandelin/vilt-b32-finetuned-vqa''' ) lowerCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowerCAmelCase_ = '''How many cats are there?''' lowerCAmelCase_ = vqa_pipeline(image=__A, question=__A, top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [{'''score''': 0.8_799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) lowerCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [{'''score''': 0.8_799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) lowerCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}], top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [[{'''score''': 0.8_799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}]] * 2, ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass
278
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase (lowerCamelCase__ , unittest.TestCase ): _lowercase = DiTPipeline _lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _lowercase = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } _lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = TransformeraDModel( sample_size=16,num_layers=2,patch_size=4,attention_head_dim=8,num_attention_heads=2,in_channels=4,out_channels=8,attention_bias=__A,activation_fn='gelu-approximate',num_embeds_ada_norm=1000,norm_type='ada_norm_zero',norm_elementwise_affine=__A,) __UpperCamelCase = AutoencoderKL() __UpperCamelCase = DDIMScheduler() __UpperCamelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def snake_case_ ( self: Any,A_: Union[str, Any],A_: Any=0 ): '''simple docstring''' if str(__A ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__A ) else: __UpperCamelCase = torch.Generator(device=__A ).manual_seed(__A ) __UpperCamelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = '''cpu''' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __UpperCamelCase = self.get_dummy_inputs(__A ) __UpperCamelCase = pipe(**__A ).images __UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 16, 16, 3) ) __UpperCamelCase = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) __UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A,1E-3 ) def snake_case_ ( self: Dict ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__A,expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: Dict ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __UpperCamelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] __UpperCamelCase = pipe.get_label_ids(__A ) __UpperCamelCase = pipe(__A,generator=__A,num_inference_steps=40,output_type='np' ).images for word, image in zip(__A,__A ): __UpperCamelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __UpperCamelCase = ['''vase''', '''umbrella'''] __UpperCamelCase = pipe.get_label_ids(__A ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe(__A,generator=__A,num_inference_steps=25,output_type='np' ).images for word, image in zip(__A,__A ): __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
310
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
0
def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :Any )->Optional[Any]: '''simple docstring''' print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :int )->Optional[int]: '''simple docstring''' snake_case_ = [[float("inf" ) for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): snake_case_ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCAmelCase_ ): # looping through rows of graph array for i in range(lowerCAmelCase_ ): # looping through columns of graph array for j in range(lowerCAmelCase_ ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case_ = dist[i][k] + dist[k][j] _print_dist(lowerCAmelCase_ , lowerCAmelCase_ ) return dist, v if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[Any] = int(input('''Enter number of vertices: ''')) SCREAMING_SNAKE_CASE :List[Any] = int(input('''Enter number of edges: ''')) SCREAMING_SNAKE_CASE :Optional[int] = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): SCREAMING_SNAKE_CASE :Optional[int] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) SCREAMING_SNAKE_CASE :Dict = int(input('''Enter source:''')) SCREAMING_SNAKE_CASE :Tuple = int(input('''Enter destination:''')) SCREAMING_SNAKE_CASE :Union[str, Any] = float(input('''Enter weight:''')) SCREAMING_SNAKE_CASE :str = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
159
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( lowerCamelCase__ ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = LEDTokenizer __UpperCAmelCase : Tuple = LEDTokenizerFast __UpperCAmelCase : Any = True def _lowercase ( self : int ): super().setUp() __lowercase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __lowercase = dict(zip(__A, range(len(__A ) ) ) ) __lowercase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowercase = {'''unk_token''': '''<unk>'''} __lowercase = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def _lowercase ( self : Any, **UpperCAmelCase__ : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **__A ) def _lowercase ( self : Tuple, **UpperCAmelCase__ : Dict ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **__A ) def _lowercase ( self : int, UpperCAmelCase__ : Tuple ): return "lower newer", "lower newer" @cached_property def _lowercase ( self : List[Any] ): return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _lowercase ( self : Any ): return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _lowercase ( self : Union[str, Any] ): __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowercase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase = tokenizer(__A, max_length=len(__A ), padding=__A, return_tensors="pt" ) self.assertIsInstance(__A, __A ) self.assertEqual((2, 9), batch.input_ids.shape ) self.assertEqual((2, 9), batch.attention_mask.shape ) __lowercase = batch.input_ids.tolist()[0] self.assertListEqual(__A, __A ) @require_torch def _lowercase ( self : Optional[int] ): __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase = tokenizer(__A, padding=__A, return_tensors="pt" ) self.assertIn("input_ids", __A ) self.assertIn("attention_mask", __A ) self.assertNotIn("labels", __A ) self.assertNotIn("decoder_attention_mask", __A ) @require_torch def _lowercase ( self : int ): __lowercase = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase = tokenizer(text_target=__A, max_length=3_2, padding="max_length", return_tensors="pt" ) self.assertEqual(3_2, targets["input_ids"].shape[1] ) @require_torch def _lowercase ( self : Optional[int] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase = tokenizer( ["I am a small frog" * 1_0_2_4, "I am a small frog"], padding=__A, truncation=__A, return_tensors="pt" ) self.assertIsInstance(__A, __A ) self.assertEqual(batch.input_ids.shape, (2, 5_1_2_2) ) @require_torch def _lowercase ( self : int ): __lowercase = ['''A long paragraph for summarization.'''] __lowercase = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase = tokenizer(__A, return_tensors="pt" ) __lowercase = tokenizer(text_target=__A, return_tensors="pt" ) __lowercase = inputs['''input_ids'''] __lowercase = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _lowercase ( self : int ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase = ['''Summary of the text.''', '''Another summary.'''] __lowercase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __lowercase = tokenizer(__A, padding=__A ) __lowercase = [[0] * len(__A ) for x in encoded_output['''input_ids''']] __lowercase = tokenizer.pad(__A ) self.assertSequenceEqual(outputs["global_attention_mask"], __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase = self.rust_tokenizer_class.from_pretrained(__A, **__A ) __lowercase = self.tokenizer_class.from_pretrained(__A, **__A ) __lowercase = '''A, <mask> AllenNLP sentence.''' __lowercase = tokenizer_r.encode_plus(__A, add_special_tokens=__A, return_token_type_ids=__A ) __lowercase = tokenizer_p.encode_plus(__A, add_special_tokens=__A, return_token_type_ids=__A ) self.assertEqual(sum(tokens_r["token_type_ids"] ), sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ), sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ), ) __lowercase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __lowercase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"], [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"], [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __A, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __A, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
17
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : Tuple = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCamelCase__ : Dict = MaskFormerConfig(backbone_config=_A ) lowerCamelCase__ : int = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok lowerCamelCase__ : Any = 847 lowerCamelCase__ : Optional[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok lowerCamelCase__ : List[str] = 150 lowerCamelCase__ : int = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok lowerCamelCase__ : str = 171 lowerCamelCase__ : Optional[Any] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO lowerCamelCase__ : str = 133 lowerCamelCase__ : str = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok lowerCamelCase__ : Tuple = 19 lowerCamelCase__ : Any = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok lowerCamelCase__ : Tuple = 65 lowerCamelCase__ : Optional[Any] = '''mapillary-vistas-id2label.json''' lowerCamelCase__ : List[Any] = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : str = {int(_A ): v for k, v in idalabel.items()} return config def lowercase_ ( _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") ) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def lowercase_ ( _A : Any , _A : Any , _A : List[str] ): """simple docstring""" lowerCamelCase__ : Any = dct.pop(_A ) lowerCamelCase__ : List[Any] = val def lowercase_ ( _A : Optional[Any] , _A : List[Any] ): """simple docstring""" lowerCamelCase__ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase__ : List[str] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ : List[Any] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCamelCase__ : Any = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : str = in_proj_weight[:dim, :] lowerCamelCase__ : int = in_proj_bias[: dim] lowerCamelCase__ : Dict = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ : Optional[Any] = in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ : Dict = in_proj_weight[ -dim :, : ] lowerCamelCase__ : List[str] = in_proj_bias[-dim :] # fmt: on def lowercase_ ( _A : str , _A : int ): """simple docstring""" lowerCamelCase__ : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ : Any = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) lowerCamelCase__ : Optional[int] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Tuple = in_proj_weight[: hidden_size, :] lowerCamelCase__ : Optional[int] = in_proj_bias[:config.hidden_size] lowerCamelCase__ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Optional[Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase__ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) lowerCamelCase__ : Dict = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Dict = in_proj_weight[: hidden_size, :] lowerCamelCase__ : Dict = in_proj_bias[:config.hidden_size] lowerCamelCase__ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Union[str, Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase__ : int = in_proj_bias[-hidden_size :] # fmt: on def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Dict = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowercase_ ( _A : str , _A : str , _A : str , _A : bool = False ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = get_maskformer_config(_A ) # load original state_dict with open(_A , "rb" ) as f: lowerCamelCase__ : Optional[Any] = pickle.load(_A ) lowerCamelCase__ : Any = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase__ : List[str] = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_swin_q_k_v(_A , config.backbone_config ) read_in_decoder_q_k_v(_A , _A ) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase__ : List[str] = torch.from_numpy(_A ) # load 🤗 model lowerCamelCase__ : Tuple = MaskFormerForInstanceSegmentation(_A ) model.eval() for name, param in model.named_parameters(): print(_A , param.shape ) lowerCamelCase__ : int = model.load_state_dict(_A , strict=_A ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_A ) == 0, F"Unexpected keys: {unexpected_keys}" # verify results lowerCamelCase__ : Optional[Any] = prepare_img() if "vistas" in model_name: lowerCamelCase__ : List[str] = 65 elif "cityscapes" in model_name: lowerCamelCase__ : List[str] = 65535 else: lowerCamelCase__ : str = 255 lowerCamelCase__ : Union[str, Any] = True if '''ade''' in model_name else False lowerCamelCase__ : Any = MaskFormerImageProcessor(ignore_index=_A , reduce_labels=_A ) lowerCamelCase__ : int = image_processor(_A , return_tensors="pt" ) lowerCamelCase__ : Any = model(**_A ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase__ : int = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"nielsr/{model_name}" ) image_processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A : Optional[int] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
184
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters UpperCAmelCase : str = (720, 1280) # Height, Width UpperCAmelCase : Dict = (0.4, 0.6) # if height or width lower than this scale, drop it. UpperCAmelCase : List[str] = 1 / 100 UpperCAmelCase : List[str] = "" UpperCAmelCase : Tuple = "" UpperCAmelCase : Optional[Any] = "" UpperCAmelCase : Tuple = 250 def lowerCamelCase ( ) -> None: '''simple docstring''' __UpperCAmelCase : int = get_dataset(_UpperCamelCase , _UpperCamelCase ) for index in range(_UpperCamelCase ): __UpperCAmelCase : str = random.sample(range(len(_UpperCamelCase ) ) , 4 ) __UpperCAmelCase : Union[str, Any] = update_image_and_anno( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , filter_scale=_UpperCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase : Dict = random_chars(3_2 ) __UpperCAmelCase : Union[str, Any] = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] __UpperCAmelCase : Optional[int] = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , _UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) __UpperCAmelCase : Tuple = [] for anno in new_annos: __UpperCAmelCase : str = anno[3] - anno[1] __UpperCAmelCase : Tuple = anno[4] - anno[2] __UpperCAmelCase : Dict = anno[1] + width / 2 __UpperCAmelCase : Any = anno[2] + height / 2 __UpperCAmelCase : List[str] = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_UpperCamelCase ) with open(f'''{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> tuple[list, list]: '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Any = [] for label_file in glob.glob(os.path.join(_UpperCamelCase , """*.txt""" ) ): __UpperCAmelCase : str = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(_UpperCamelCase ) as in_file: __UpperCAmelCase : Tuple = in_file.readlines() __UpperCAmelCase : int = os.path.join(_UpperCamelCase , f'''{label_name}.jpg''' ) __UpperCAmelCase : Any = [] for obj_list in obj_lists: __UpperCAmelCase : int = obj_list.rstrip("""\n""" ).split(""" """ ) __UpperCAmelCase : Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 __UpperCAmelCase : Optional[int] = float(obj[2] ) - float(obj[4] ) / 2 __UpperCAmelCase : Any = float(obj[1] ) + float(obj[3] ) / 2 __UpperCAmelCase : List[Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_UpperCamelCase ) labels.append(_UpperCamelCase ) return img_paths, labels def lowerCamelCase ( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list[int] , _UpperCamelCase : tuple[int, int] , _UpperCamelCase : tuple[float, float] , _UpperCamelCase : float = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' __UpperCAmelCase : List[str] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCAmelCase : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCAmelCase : Union[str, Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCAmelCase : Optional[int] = int(scale_x * output_size[1] ) __UpperCAmelCase : Any = int(scale_y * output_size[0] ) __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Any = [] for i, index in enumerate(_UpperCamelCase ): __UpperCAmelCase : List[str] = all_img_list[index] path_list.append(_UpperCamelCase ) __UpperCAmelCase : Dict = all_annos[index] __UpperCAmelCase : Tuple = cva.imread(_UpperCamelCase ) if i == 0: # top-left __UpperCAmelCase : Dict = cva.resize(_UpperCamelCase , (divid_point_x, divid_point_y) ) __UpperCAmelCase : Dict = img for bbox in img_annos: __UpperCAmelCase : List[Any] = bbox[1] * scale_x __UpperCAmelCase : Tuple = bbox[2] * scale_y __UpperCAmelCase : Union[str, Any] = bbox[3] * scale_x __UpperCAmelCase : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCAmelCase : List[Any] = cva.resize(_UpperCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCAmelCase : Tuple = img for bbox in img_annos: __UpperCAmelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCAmelCase : int = bbox[2] * scale_y __UpperCAmelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCAmelCase : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCAmelCase : Dict = cva.resize(_UpperCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCAmelCase : Optional[Any] = img for bbox in img_annos: __UpperCAmelCase : Union[str, Any] = bbox[1] * scale_x __UpperCAmelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) __UpperCAmelCase : Any = bbox[3] * scale_x __UpperCAmelCase : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCAmelCase : List[str] = cva.resize( _UpperCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCAmelCase : int = img for bbox in img_annos: __UpperCAmelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCAmelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) __UpperCAmelCase : int = scale_x + bbox[3] * (1 - scale_x) __UpperCAmelCase : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCAmelCase : Union[str, Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase : List[str] = ascii_lowercase + digits return "".join(random.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
115
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
"""simple docstring""" import numpy # List of input, output pairs __magic_name__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __magic_name__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) __magic_name__ = [2, 4, 1, 5] __magic_name__ = len(train_data) __magic_name__ = 0.009 def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_="train" ): return calculate_hypothesis_value(UpperCamelCase_ , UpperCamelCase_ ) - output( UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0 for i in range(len(UpperCamelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=m ): __SCREAMING_SNAKE_CASE = 0 for i in range(UpperCamelCase_ ): if index == -1: summation_value += _error(UpperCamelCase_ ) else: summation_value += _error(UpperCamelCase_ ) * train_data[i][0][index] return summation_value def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = summation_of_cost_derivative(UpperCamelCase_ , UpperCamelCase_ ) / m return cost_derivative_value def _lowerCAmelCase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output __SCREAMING_SNAKE_CASE = 0.000_002 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while True: j += 1 __SCREAMING_SNAKE_CASE = [0, 0, 0, 0] for i in range(0 , len(UpperCamelCase_ ) ): __SCREAMING_SNAKE_CASE = get_cost_derivative(i - 1 ) __SCREAMING_SNAKE_CASE = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_ , UpperCamelCase_ , atol=UpperCamelCase_ , rtol=UpperCamelCase_ , ): break __SCREAMING_SNAKE_CASE = temp_parameter_vector print(("""Number of iterations:""", j) ) def _lowerCAmelCase ( ): for i in range(len(UpperCamelCase_ ) ): print(("""Actual output value:""", output(UpperCamelCase_ , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(UpperCamelCase_ , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
100
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : Union[str, Any]): print("Loading config file...") def flatten_yaml_as_dict(_lowerCamelCase : Tuple , _lowerCamelCase : Any="" , _lowerCamelCase : Dict="."): lowercase__ : List[str] = [] for k, v in d.items(): lowercase__ : List[Any] = parent_key + sep + k if parent_key else k if isinstance(_lowerCamelCase , collections.abc.MutableMapping): items.extend(flatten_yaml_as_dict(_lowerCamelCase , _lowerCamelCase , sep=_lowerCamelCase).items()) else: items.append((new_key, v)) return dict(_lowerCamelCase) lowercase__ : List[str] = argparse.Namespace() with open(_lowerCamelCase , "r") as yaml_file: try: lowercase__ : List[str] = yaml.load(_lowerCamelCase , Loader=yaml.FullLoader) lowercase__ : Optional[int] = flatten_yaml_as_dict(_lowerCamelCase) for k, v in flat_cfg.items(): setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(_lowerCamelCase , str(_lowerCamelCase))) return config def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : int): lowercase__ : int = MobileViTVaConfig() lowercase__ : str = False # dataset if task_name.startswith("imagenet1k_"): lowercase__ : Any = 1000 if int(task_name.strip().split("_")[-1]) == 384: lowercase__ : Any = 384 else: lowercase__ : Tuple = 256 lowercase__ : int = '''imagenet-1k-id2label.json''' elif task_name.startswith("imagenet21k_to_1k_"): lowercase__ : Optional[Any] = 2_1000 if int(task_name.strip().split("_")[-1]) == 384: lowercase__ : str = 384 else: lowercase__ : Dict = 256 lowercase__ : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith("ade20k_"): lowercase__ : Optional[Any] = 151 lowercase__ : Tuple = 512 lowercase__ : Tuple = '''ade20k-id2label.json''' lowercase__ : Tuple = True elif task_name.startswith("voc_"): lowercase__ : Dict = 21 lowercase__ : str = 512 lowercase__ : Union[str, Any] = '''pascal-voc-id2label.json''' lowercase__ : Dict = True # orig_config lowercase__ : List[Any] = load_orig_config_file(_lowerCamelCase) assert getattr(_lowerCamelCase , "model.classification.name" , -1) == "mobilevit_v2", "Invalid model" lowercase__ : Tuple = getattr(_lowerCamelCase , "model.classification.mitv2.width_multiplier" , 1.0) assert ( getattr(_lowerCamelCase , "model.classification.mitv2.attn_norm_layer" , -1) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase__ : int = getattr(_lowerCamelCase , "model.classification.activation.name" , "swish") # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase__ : str = getattr(_lowerCamelCase , "model.segmentation.output_stride" , 16) if "_deeplabv3" in task_name: lowercase__ : int = getattr(_lowerCamelCase , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36]) lowercase__ : Any = getattr(_lowerCamelCase , "model.segmentation.deeplabv3.aspp_out_channels" , 512) lowercase__ : Optional[Any] = getattr(_lowerCamelCase , "model.segmentation.deeplabv3.aspp_dropout" , 0.1) # id2label lowercase__ : Union[str, Any] = '''huggingface/label-files''' lowercase__ : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset") , "r")) lowercase__ : Any = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : int = idalabel lowercase__ : Optional[int] = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]): lowercase__ : Union[str, Any] = dct.pop(_lowerCamelCase) lowercase__ : List[str] = val def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): if base_model: lowercase__ : Dict = '''''' else: lowercase__ : Dict = '''mobilevitv2.''' lowercase__ : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase__ : List[str] = k[8:] else: lowercase__ : Dict = k if ".block." in k: lowercase__ : List[Any] = k_new.replace(".block." , ".") if ".conv." in k: lowercase__ : Optional[int] = k_new.replace(".conv." , ".convolution.") if ".norm." in k: lowercase__ : List[str] = k_new.replace(".norm." , ".normalization.") if "conv_1." in k: lowercase__ : Union[str, Any] = k_new.replace("conv_1." , f'''{model_prefix}conv_stem.''') for i in [1, 2]: if f'''layer_{i}.''' in k: lowercase__ : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''') if ".exp_1x1." in k: lowercase__ : Optional[Any] = k_new.replace(".exp_1x1." , ".expand_1x1.") if ".red_1x1." in k: lowercase__ : int = k_new.replace(".red_1x1." , ".reduce_1x1.") for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: lowercase__ : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''') if f'''layer_{i}.1.local_rep.0.''' in k: lowercase__ : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''') if f'''layer_{i}.1.local_rep.1.''' in k: lowercase__ : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''') for i in [3, 4, 5]: if i == 3: lowercase__ : Dict = [0, 1] elif i == 4: lowercase__ : Dict = [0, 1, 2, 3] elif i == 5: lowercase__ : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: lowercase__ : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''') if f'''layer_{i}.1.global_rep.{j+1}.''' in k: lowercase__ : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''') if f'''layer_{i}.1.conv_proj.''' in k: lowercase__ : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''') if "pre_norm_attn.0." in k: lowercase__ : Optional[int] = k_new.replace("pre_norm_attn.0." , "layernorm_before.") if "pre_norm_attn.1." in k: lowercase__ : Optional[Any] = k_new.replace("pre_norm_attn.1." , "attention.") if "pre_norm_ffn.0." in k: lowercase__ : List[Any] = k_new.replace("pre_norm_ffn.0." , "layernorm_after.") if "pre_norm_ffn.1." in k: lowercase__ : List[Any] = k_new.replace("pre_norm_ffn.1." , "ffn.conv1.") if "pre_norm_ffn.3." in k: lowercase__ : Any = k_new.replace("pre_norm_ffn.3." , "ffn.conv2.") if "classifier.1." in k: lowercase__ : Optional[int] = k_new.replace("classifier.1." , "classifier.") if "seg_head." in k: lowercase__ : Union[str, Any] = k_new.replace("seg_head." , "segmentation_head.") if ".aspp_layer." in k: lowercase__ : Tuple = k_new.replace(".aspp_layer." , ".") if ".aspp_pool." in k: lowercase__ : Optional[int] = k_new.replace(".aspp_pool." , ".") rename_keys.append((k, k_new)) return rename_keys def lowercase_ ( _lowerCamelCase : Union[str, Any]): lowercase__ : str = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head."): keys_to_ignore.append(_lowerCamelCase) for k in keys_to_ignore: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( ): lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase__ : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any]): lowercase__ : Union[str, Any] = get_mobilevitva_config(_lowerCamelCase , _lowerCamelCase) # load original state_dict lowercase__ : List[str] = torch.load(_lowerCamelCase , map_location="cpu") # load huggingface model if task_name.startswith("ade20k_") or task_name.startswith("voc_"): lowercase__ : str = MobileViTVaForSemanticSegmentation(_lowerCamelCase).eval() lowercase__ : str = False else: lowercase__ : Union[str, Any] = MobileViTVaForImageClassification(_lowerCamelCase).eval() lowercase__ : Any = False # remove and rename some keys of load the original model lowercase__ : Optional[Any] = checkpoint remove_unused_keys(_lowerCamelCase) lowercase__ : Optional[Any] = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # load modified state_dict model.load_state_dict(_lowerCamelCase) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase__ : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) lowercase__ : Any = image_processor(images=prepare_img() , return_tensors="pt") lowercase__ : Union[str, Any] = model(**_lowerCamelCase) # verify classification model if task_name.startswith("imagenet"): lowercase__ : Optional[Any] = outputs.logits lowercase__ : int = logits.argmax(-1).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx]) if task_name.startswith("imagenet1k_256") and config.width_multiplier == 1.0: # expected_logits for base variant lowercase__ : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01]) assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' '''\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
87
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowercase__ ( lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = """donut-swin""" A_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __snake_case=224 , __snake_case=4 , __snake_case=3 , __snake_case=96 , __snake_case=[2, 2, 6, 2] , __snake_case=[3, 6, 12, 24] , __snake_case=7 , __snake_case=4.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , **__snake_case , ): super().__init__(**__A ) _SCREAMING_SNAKE_CASE : str = image_size _SCREAMING_SNAKE_CASE : Dict = patch_size _SCREAMING_SNAKE_CASE : Any = num_channels _SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim _SCREAMING_SNAKE_CASE : List[Any] = depths _SCREAMING_SNAKE_CASE : List[Any] = len(__A ) _SCREAMING_SNAKE_CASE : Dict = num_heads _SCREAMING_SNAKE_CASE : List[str] = window_size _SCREAMING_SNAKE_CASE : List[Any] = mlp_ratio _SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Tuple = drop_path_rate _SCREAMING_SNAKE_CASE : Any = hidden_act _SCREAMING_SNAKE_CASE : List[Any] = use_absolute_embeddings _SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps _SCREAMING_SNAKE_CASE : Tuple = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _SCREAMING_SNAKE_CASE : Union[str, Any] = int(embed_dim * 2 ** (len(__A ) - 1) )
200
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
0
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: # Initialise PyTorch model a__: Union[str, Any] = BigBirdConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: a__: str = BigBirdForQuestionAnswering(_SCREAMING_SNAKE_CASE ) else: a__: str = BigBirdForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , is_trivia_qa=_SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) lowercase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
290
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
0
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Any: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True ) -> Dict: model.train() UpperCAmelCase__ : Optional[int] = model(lowerCAmelCase ) UpperCAmelCase__ : Dict = F.mse_loss(lowerCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase=False ) -> Optional[int]: set_seed(42 ) UpperCAmelCase__ : Optional[Any] = RegressionModel() UpperCAmelCase__ : Any = deepcopy(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = RegressionDataset(length=80 ) UpperCAmelCase__ : Union[str, Any] = DataLoader(lowerCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase__ : Optional[int] = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase__ : Optional[int] = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase__ : str = LambdaLR(lowerCAmelCase , lr_lambda=lambda lowerCAmelCase : epoch**0.65 ) UpperCAmelCase__ : Any = LambdaLR(lowerCAmelCase , lr_lambda=lambda lowerCAmelCase : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase__ : List[str] = accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase__ : List[str] = accelerator.prepare(lowerCAmelCase , lowerCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def a__ ( lowerCAmelCase ) -> Any: # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase__ : Tuple = get_training_setup(lowerCAmelCase ) # Use a single batch UpperCAmelCase__ : Union[str, Any] = next(iter(lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase__ : Any = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase ): step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: # Sync grads step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase__ : List[Any] = ddp_input[torch.randperm(len(lowerCAmelCase ) )] def a__ ( lowerCAmelCase ) -> str: # Test on distributed setup that context manager behaves properly UpperCAmelCase__ : Any = get_training_setup(lowerCAmelCase ) # Use a single batch UpperCAmelCase__ : Optional[int] = next(iter(lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase ): step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: # Sync grads step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase__ : int = ddp_input[torch.randperm(len(lowerCAmelCase ) )] def a__ ( lowerCAmelCase=False , lowerCAmelCase=False ) -> Optional[Any]: UpperCAmelCase__ : Tuple = Accelerator( split_batches=lowerCAmelCase , dispatch_batches=lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase__ : Optional[int] = get_training_setup(lowerCAmelCase ) for iteration, batch in enumerate(lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase__ : Tuple = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase ): step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase__ : Any = ddp_input[torch.randperm(len(lowerCAmelCase ) )] GradientState._reset_state() def a__ ( lowerCAmelCase=False , lowerCAmelCase=False ) -> str: UpperCAmelCase__ : List[str] = Accelerator( split_batches=lowerCAmelCase , dispatch_batches=lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase__ : int = get_training_setup(lowerCAmelCase , lowerCAmelCase ) for iteration, batch in enumerate(lowerCAmelCase ): UpperCAmelCase__ : Dict = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase__ : List[str] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase ): step_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" UpperCAmelCase__ : Any = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def a__ ( ) -> Dict: UpperCAmelCase__ : Union[str, Any] = Accelerator() UpperCAmelCase__ : Optional[Any] = RegressionDataset(length=80 ) UpperCAmelCase__ : Any = DataLoader(lowerCAmelCase , batch_size=16 ) UpperCAmelCase__ : List[str] = RegressionDataset(length=96 ) UpperCAmelCase__ : List[Any] = DataLoader(lowerCAmelCase , batch_size=16 ) UpperCAmelCase__ : str = accelerator.prepare(lowerCAmelCase , lowerCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase ) if iteration < len(lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase ) if batch_num < len(lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def a__ ( ) -> List[str]: UpperCAmelCase__ : Optional[Any] = Accelerator() UpperCAmelCase__ : Optional[Any] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(lowerCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(lowerCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(lowerCAmelCase , lowerCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase , lowerCAmelCase ) def a__ ( lowerCAmelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
171
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ): UpperCAmelCase : Any = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_choices def __magic_name__ ( self : str ): UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : int ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Any = True UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
336
0
def __UpperCamelCase ( _A ): if length <= 0 or not isinstance(_A , _A ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
278
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.txt"} _lowerCamelCase : List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase : List[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def a__ ( UpperCAmelCase : List[str] ) -> Any: with open(UpperCAmelCase , '''r''' ) as f: UpperCAmelCase : Dict = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ): super().__init__(**__A ) UpperCAmelCase : Tuple = load_vocab_file(__A ) UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Union[str, Any] = unk_token UpperCAmelCase : Optional[Any] = cls_token UpperCAmelCase : Optional[int] = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : List[str] = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __magic_name__ ( self : Tuple, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : List[Any], __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ): return text.split() def __magic_name__ ( self : Optional[int], __A : Dict=False ): return len(self._id_to_token ) def __magic_name__ ( self : int ): return {token: i for i, token in enumerate(self.all_tokens )} def __magic_name__ ( self : Tuple, __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: mask += [0] * len(__A ) + [1] return mask def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ): UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__A, '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __magic_name__ ( self : Dict ): return self.get_vocab_size(with_added_tokens=__A ) def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ): return super()._add_tokens(__A, special_tokens=__A )
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
310
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[int] = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
159
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME _a = ["small", "medium", "large"] _a = "lm_head.decoder.weight" _a = "lm_head.weight" def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' __lowercase = torch.load(UpperCamelCase_) __lowercase = d.pop(UpperCamelCase_) os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) torch.save(UpperCamelCase_, os.path.join(UpperCamelCase_, UpperCamelCase_)) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) _a = parser.parse_args() for MODEL in DIALOGPT_MODELS: _a = os.path.join(args.dialogpt_path, F"{MODEL}_ft.pkl") _a = F"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
17
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
from __future__ import annotations def lowercase_ ( _A : list[list[int]] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = len(_A ) # We need to create solution object to save path. lowerCamelCase__ : int = [[0 for _ in range(_A )] for _ in range(_A )] lowerCamelCase__ : Union[str, Any] = run_maze(_A , 0 , 0 , _A ) if solved: print("\n".join(str(_A ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowercase_ ( _A : list[list[int]] , _A : int , _A : int , _A : list[list[int]] ): """simple docstring""" lowerCamelCase__ : Dict = len(_A ) # Final check point. if i == j == (size - 1): lowerCamelCase__ : Dict = 1 return True lowerCamelCase__ : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds lowerCamelCase__ : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCamelCase__ : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCamelCase__ : str = 1 # check for directions if ( run_maze(_A , i + 1 , _A , _A ) or run_maze(_A , _A , j + 1 , _A ) or run_maze(_A , i - 1 , _A , _A ) or run_maze(_A , _A , j - 1 , _A ) ): return True lowerCamelCase__ : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
184
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
"""simple docstring""" import cva import numpy as np class lowerCamelCase__ : """simple docstring""" def __init__( self : int , UpperCamelCase : float , UpperCamelCase : int ): '''simple docstring''' if k in (0.04, 0.06): __UpperCAmelCase : Tuple = k __UpperCAmelCase : str = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Any ): '''simple docstring''' return str(self.k ) def lowerCamelCase__ ( self : str , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Tuple = cva.imread(__A , 0 ) __UpperCAmelCase : int = img.shape __UpperCAmelCase : list[list[int]] = [] __UpperCAmelCase : int = img.copy() __UpperCAmelCase : Union[str, Any] = cva.cvtColor(__A , cva.COLOR_GRAY2RGB ) __UpperCAmelCase : Union[str, Any] = np.gradient(__A ) __UpperCAmelCase : int = dx**2 __UpperCAmelCase : Dict = dy**2 __UpperCAmelCase : str = dx * dy __UpperCAmelCase : Optional[int] = 0.04 __UpperCAmelCase : str = self.window_size // 2 for y in range(__A , h - offset ): for x in range(__A , w - offset ): __UpperCAmelCase : Any = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase : str = (wxx * wyy) - (wxy**2) __UpperCAmelCase : Any = wxx + wyy __UpperCAmelCase : Optional[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = HarrisCorner(0.04, 3) UpperCAmelCase : Any = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
115
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __SCREAMING_SNAKE_CASE = i + 1 else: __SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
100
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case_ ( lowerCamelCase__ ): __A : str = "Speech2TextFeatureExtractor" __A : int = "Speech2TextTokenizer" def __init__( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : str ) -> Tuple: super().__init__(__A , __A ) lowercase__ : str = self.feature_extractor lowercase__ : Any = False def __call__( self : str , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowercase__ : Optional[Any] = kwargs.pop("raw_speech" ) else: lowercase__ : List[Any] = kwargs.pop("audio" , __A ) lowercase__ : Optional[int] = kwargs.pop("sampling_rate" , __A ) lowercase__ : Tuple = kwargs.pop("text" , __A ) if len(__A ) > 0: lowercase__ : List[str] = args[0] lowercase__ : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowercase__ : int = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if text is not None: lowercase__ : Union[str, Any] = self.tokenizer(__A , **__A ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ : Optional[Any] = encodings['''input_ids'''] return inputs def __UpperCamelCase ( self : str , *lowercase_ : Union[str, Any] , **lowercase_ : Union[str, Any] ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def __UpperCamelCase ( self : Optional[int] , *lowercase_ : Any , **lowercase_ : Dict ) -> Dict: return self.tokenizer.decode(*__A , **__A ) @contextmanager def __UpperCamelCase ( self : Any ) -> Optional[int]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowercase__ : List[str] = True lowercase__ : List[Any] = self.tokenizer yield lowercase__ : Tuple = self.feature_extractor lowercase__ : Union[str, Any] = False
87
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCAmelCase_ : int = logging.get_logger(__name__) @dataclass class lowercase__ ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **__snake_case ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _SCREAMING_SNAKE_CASE : Any = deprecated_arg[3:] _SCREAMING_SNAKE_CASE : List[str] = not kwargs.pop(__A ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) _SCREAMING_SNAKE_CASE : Any = kwargs.pop("""tpu_name""" , self.tpu_name ) _SCREAMING_SNAKE_CASE : str = kwargs.pop("""device_idx""" , self.device_idx ) _SCREAMING_SNAKE_CASE : Any = kwargs.pop("""eager_mode""" , self.eager_mode ) _SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**__A ) A_ : List[str] = field( default=lowerCamelCase__ , metadata={"""help""": """Name of TPU"""} , ) A_ : Dict = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) A_ : List[str] = field(default=lowerCamelCase__ , metadata={"""help""": """Benchmark models in eager model."""} ) A_ : List[Any] = field( default=lowerCamelCase__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def UpperCAmelCase_ ( self ): requires_backends(self , ["""tf"""] ) _SCREAMING_SNAKE_CASE : Any = None if self.tpu: try: if self.tpu_name: _SCREAMING_SNAKE_CASE : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _SCREAMING_SNAKE_CASE : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _SCREAMING_SNAKE_CASE : Optional[Any] = None return tpu @cached_property def UpperCAmelCase_ ( self ): requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _SCREAMING_SNAKE_CASE : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU _SCREAMING_SNAKE_CASE : Optional[Any] = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCAmelCase_ ( self ): requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def UpperCAmelCase_ ( self ): requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def UpperCAmelCase_ ( self ): requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def UpperCAmelCase_ ( self ): requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCAmelCase_ ( self ): return self.n_gpu > 0
200
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def __a ( _SCREAMING_SNAKE_CASE ) ->str: if not sentence: return "" a__: Union[str, Any] = dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
290
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _A = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def a__ ( lowerCAmelCase = "dhaka" , lowerCAmelCase = 5 ) -> int: UpperCAmelCase__ : List[Any] = min(lowerCAmelCase , 50 ) # Prevent abuse! UpperCAmelCase__ : Tuple = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } UpperCAmelCase__ : Optional[Any] = requests.get("""https://www.google.com/search""" , params=lowerCAmelCase , headers=lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = BeautifulSoup(html.text , """html.parser""" ) UpperCAmelCase__ : Optional[Any] = ''''''.join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) UpperCAmelCase__ : Tuple = json.dumps(lowerCAmelCase ) UpperCAmelCase__ : Dict = json.loads(lowerCAmelCase ) UpperCAmelCase__ : Any = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , lowerCAmelCase , ) if not matched_google_image_data: return 0 UpperCAmelCase__ : Optional[Any] = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(lowerCAmelCase ) , ) UpperCAmelCase__ : List[Any] = re.findall( R"""(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , lowerCAmelCase , ) for index, fixed_full_res_image in enumerate(lowerCAmelCase ): if index >= max_images: return index UpperCAmelCase__ : Tuple = bytes(lowerCAmelCase , """ascii""" ).decode( """unicode-escape""" ) UpperCAmelCase__ : int = bytes(lowerCAmelCase , """ascii""" ).decode( """unicode-escape""" ) UpperCAmelCase__ : str = urllib.request.build_opener() UpperCAmelCase__ : Union[str, Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(lowerCAmelCase ) UpperCAmelCase__ : int = F"""query_{query.replace(' ' , '_' )}""" if not os.path.exists(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 lowerCAmelCase , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: _A = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print("""Please provide a search term.""") raise
171
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
from abc import ABC, abstractmethod from typing import List, Optional class A ( lowerCamelCase__ ): def __init__( self ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = False while not completed: if counter == 1: self.reset() lowerCAmelCase_ = self.advance() if not self.does_advance(__A ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) lowerCAmelCase_ = self.update(__A ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=False ): """simple docstring""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class A ( lowerCamelCase__ ): def __init__( self, UpperCamelCase__ ): """simple docstring""" super(__A, self ).__init__() if not isinstance(__A, __A ) or len(__A ) == 0: raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(__A, __A ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) lowerCAmelCase_ = token_ids lowerCAmelCase_ = len(self.token_ids ) lowerCAmelCase_ = -1 # the index of the currently fulfilled step lowerCAmelCase_ = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(__A, __A ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(__A )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(__A, __A ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(__A )}" ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False if self.does_advance(__A ): self.fulfilled_idx += 1 lowerCAmelCase_ = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase_ = True lowerCAmelCase_ = completed else: # failed to make progress. lowerCAmelCase_ = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = False lowerCAmelCase_ = 0 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=False ): """simple docstring""" lowerCAmelCase_ = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase_ = self.seqlen lowerCAmelCase_ = self.fulfilled_idx lowerCAmelCase_ = self.completed return new_constraint class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=True ): """simple docstring""" lowerCAmelCase_ = max([len(__A ) for one in nested_token_ids] ) lowerCAmelCase_ = {} for token_ids in nested_token_ids: lowerCAmelCase_ = root for tidx, token_id in enumerate(__A ): if token_id not in level: lowerCAmelCase_ = {} lowerCAmelCase_ = level[token_id] if no_subsets and self.has_subsets(__A, __A ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f" {nested_token_ids}." ) lowerCAmelCase_ = root def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.trie for current_token in current_seq: lowerCAmelCase_ = start[current_token] lowerCAmelCase_ = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.next_tokens(__A ) return len(__A ) == 0 def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = list(root.values() ) if len(__A ) == 0: return 1 else: return sum([self.count_leaves(__A ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.count_leaves(__A ) return len(__A ) != leaf_count class A ( lowerCamelCase__ ): def __init__( self, UpperCamelCase__ ): """simple docstring""" super(__A, self ).__init__() if not isinstance(__A, __A ) or len(__A ) == 0: raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(__A, __A ) for token_ids in nested_token_ids ): raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(__A, __A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) lowerCAmelCase_ = DisjunctiveTrie(__A ) lowerCAmelCase_ = nested_token_ids lowerCAmelCase_ = self.trie.max_height lowerCAmelCase_ = [] lowerCAmelCase_ = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.trie.next_tokens(self.current_seq ) if len(__A ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(__A, __A ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__A )}" ) lowerCAmelCase_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(__A, __A ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__A )}" ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False if self.does_advance(__A ): self.current_seq.append(__A ) lowerCAmelCase_ = True else: lowerCAmelCase_ = True self.reset() lowerCAmelCase_ = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase_ = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = False lowerCAmelCase_ = [] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=False ): """simple docstring""" lowerCAmelCase_ = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase_ = self.seqlen lowerCAmelCase_ = self.current_seq lowerCAmelCase_ = self.completed return new_constraint class A : def __init__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase_ = max([c.seqlen for c in constraints] ) lowerCAmelCase_ = len(__A ) lowerCAmelCase_ = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = None lowerCAmelCase_ = [constraint.copy(stateful=__A ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase_ = constraint.advance() if isinstance(__A, __A ): token_list.append(__A ) elif isinstance(__A, __A ): token_list.extend(__A ) else: lowerCAmelCase_ = self.inprogress_constraint.advance() if isinstance(__A, __A ): token_list.append(__A ) elif isinstance(__A, __A ): token_list.extend(__A ) if len(__A ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase_ = self.add(__A ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(__A, __A ): raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`." ) lowerCAmelCase_ = False, False if self.completed: lowerCAmelCase_ = True lowerCAmelCase_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase_ = self.inprogress_constraint.update(__A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__A ) ) lowerCAmelCase_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase_ = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__A ): lowerCAmelCase_ = pending_constraint.update(__A ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__A ) lowerCAmelCase_ = None if not complete and stepped: lowerCAmelCase_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=True ): """simple docstring""" lowerCAmelCase_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase_ = [ constraint.copy(stateful=__A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase_ = self.inprogress_constraint.copy(stateful=__A ) lowerCAmelCase_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
278
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
0
import argparse from collections import defaultdict import yaml __snake_case = "docs/source/en/_toctree.yml" def _A ( _lowercase ) -> List[str]: """simple docstring""" __UpperCamelCase = defaultdict(_lowercase ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCamelCase = [key for key, value in counts.items() if value > 1] __UpperCamelCase = [] for duplicate_key in duplicates: __UpperCamelCase = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(_lowercase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(_lowercase , key=lambda _lowercase : s["title"].lower() ) def _A ( _lowercase=False ) -> List[Any]: """simple docstring""" with open(_lowercase , encoding='utf-8' ) as f: __UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc __UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCamelCase = content[api_idx]['''sections'''] # Then to the model doc __UpperCamelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCamelCase = api_doc[model_idx]['''sections'''] __UpperCamelCase = [(idx, section) for idx, section in enumerate(_lowercase ) if '''sections''' in section] __UpperCamelCase = False for idx, modality_doc in modalities_docs: __UpperCamelCase = modality_doc['''sections'''] __UpperCamelCase = clean_model_doc_toc(_lowercase ) if old_modality_doc != new_modality_doc: __UpperCamelCase = True if overwrite: __UpperCamelCase = new_modality_doc if diff: if overwrite: __UpperCamelCase = model_doc __UpperCamelCase = api_doc with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowercase , allow_unicode=_lowercase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_model_doc(args.fix_and_overwrite)
310
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
0
def _lowerCAmelCase ( lowerCAmelCase_ :str )->str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
159
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
"""simple docstring""" def _A ( UpperCamelCase_ : int) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
17
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
from __future__ import annotations def lowercase_ ( _A : float , _A : float , _A : float , ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
184
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int , _UpperCamelCase : list[int] , _UpperCamelCase : int ) -> bool: '''simple docstring''' if index == len(_UpperCamelCase ): return True # Recursive Step for i in range(_UpperCamelCase ): if valid_coloring(graph[index] , _UpperCamelCase , _UpperCamelCase ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def lowerCamelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : int ) -> list[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [-1] * len(_UpperCamelCase ) if util_color(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , 0 ): return colored_vertices return []
115
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=0.6 , lowerCAmelCase__=None , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = mask_ratio __SCREAMING_SNAKE_CASE = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def snake_case_ ( self): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFViTMAEModel(config=__A) __SCREAMING_SNAKE_CASE = model(__A , training=__A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining(__A) __SCREAMING_SNAKE_CASE = model(__A , training=__A) # expected sequence length = num_patches __SCREAMING_SNAKE_CASE = (self.image_size // self.patch_size) ** 2 __SCREAMING_SNAKE_CASE = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining(__A) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = model(__A , training=__A) __SCREAMING_SNAKE_CASE = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() (__SCREAMING_SNAKE_CASE) = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __lowercase : str = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowercase : Tuple = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} __lowercase : Dict = False __lowercase : Dict = False __lowercase : str = False __lowercase : List[str] = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFViTMAEModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""") def snake_case_ ( self): pass def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__A) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , tf.keras.layers.Layer)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__A) __SCREAMING_SNAKE_CASE = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A) def snake_case_ ( self): # make the mask reproducible np.random.seed(2) __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2) __SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__A) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__A , __A) __SCREAMING_SNAKE_CASE = model(__A , noise=__A) __SCREAMING_SNAKE_CASE = copy.deepcopy(self._prepare_for_class(__A , __A)) __SCREAMING_SNAKE_CASE = model(**__A , noise=__A) __SCREAMING_SNAKE_CASE = outputs_dict[0].numpy() __SCREAMING_SNAKE_CASE = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)) , 1E-6) def snake_case_ ( self): # make the mask reproducible np.random.seed(2) __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2) __SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) def prepare_numpy_arrays(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A): __SCREAMING_SNAKE_CASE = v.numpy() else: __SCREAMING_SNAKE_CASE = np.array(__A) return inputs_np_dict for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__A) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__A , __A) __SCREAMING_SNAKE_CASE = prepare_numpy_arrays(__A) __SCREAMING_SNAKE_CASE = model(__A , noise=__A) __SCREAMING_SNAKE_CASE = model(**__A , noise=__A) self.assert_outputs_same(__A , __A) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): # make masks reproducible np.random.seed(2) __SCREAMING_SNAKE_CASE = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2) __SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) __SCREAMING_SNAKE_CASE = tf.constant(__A) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __SCREAMING_SNAKE_CASE = tf_noise super().check_pt_tf_models(__A , __A , __A) def snake_case_ ( self): # make mask reproducible np.random.seed(2) __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(__A) if module_member_name.endswith("""MainLayer""") # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""")] == model_class.__name__[: -len("""Model""")] for module_member in (getattr(__A , __A),) if isinstance(__A , __A) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A , """_keras_serializable""" , __A) } __SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2) __SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor(__A) inputs_dict.update({"""noise""": noise}) for main_layer_class in tf_main_layer_classes: __SCREAMING_SNAKE_CASE = main_layer_class(__A) __SCREAMING_SNAKE_CASE = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype) for name, tensor in inputs_dict.items() } __SCREAMING_SNAKE_CASE = tf.keras.Model(__A , outputs=main_layer(__A)) __SCREAMING_SNAKE_CASE = model(__A) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = os.path.join(__A , """keras_model.h5""") model.save(__A) __SCREAMING_SNAKE_CASE = tf.keras.models.load_model( __A , custom_objects={main_layer_class.__name__: main_layer_class}) assert isinstance(__A , tf.keras.Model) __SCREAMING_SNAKE_CASE = model(__A) self.assert_outputs_same(__A , __A) @slow def snake_case_ ( self): # make mask reproducible np.random.seed(2) __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2) __SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__A) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__A , __A) __SCREAMING_SNAKE_CASE = model(__A , noise=__A) if model_class.__name__ == "TFViTMAEModel": __SCREAMING_SNAKE_CASE = outputs.last_hidden_state.numpy() __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = outputs.logits.numpy() __SCREAMING_SNAKE_CASE = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A , saved_model=__A) __SCREAMING_SNAKE_CASE = model_class.from_pretrained(__A) __SCREAMING_SNAKE_CASE = model(__A , noise=__A) if model_class.__name__ == "TFViTMAEModel": __SCREAMING_SNAKE_CASE = after_outputs['''last_hidden_state'''].numpy() __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = after_outputs['''logits'''].numpy() __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__A , 1E-5) def snake_case_ ( self): # make mask reproducible np.random.seed(2) __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2) __SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__A) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__A , __A) __SCREAMING_SNAKE_CASE = model(__A , noise=__A) __SCREAMING_SNAKE_CASE = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A) __SCREAMING_SNAKE_CASE = model_class.from_config(model.get_config()) # make sure it also accepts a normal config __SCREAMING_SNAKE_CASE = model_class.from_config(model.config) __SCREAMING_SNAKE_CASE = new_model(__A) # Build model new_model.set_weights(model.get_weights()) __SCREAMING_SNAKE_CASE = new_model(__A , noise=__A) self.assert_outputs_same(__A , __A) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""") def snake_case_ ( self): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""") def snake_case_ ( self): pass @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""") self.assertIsNotNone(__A) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case_ ( self): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""") if is_vision_available() else None @slow def snake_case_ ( self): # make random mask reproducible across the PT and TF model np.random.seed(2) __SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""") __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__A , return_tensors="""tf""") # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __SCREAMING_SNAKE_CASE = ViTMAEConfig() __SCREAMING_SNAKE_CASE = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) __SCREAMING_SNAKE_CASE = np.random.uniform(size=(1, num_patches)) # forward pass __SCREAMING_SNAKE_CASE = model(**__A , noise=__A) # verify the logits __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([1, 1_9_6, 7_6_8]) self.assertEqual(outputs.logits.shape , __A) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __A , atol=1E-4)
100
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowercase__ ( lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = """vit_msn""" def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-06 , __snake_case=224 , __snake_case=16 , __snake_case=3 , __snake_case=True , **__snake_case , ): super().__init__(**__A ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size _SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers _SCREAMING_SNAKE_CASE : List[str] = num_attention_heads _SCREAMING_SNAKE_CASE : int = intermediate_size _SCREAMING_SNAKE_CASE : str = hidden_act _SCREAMING_SNAKE_CASE : str = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = initializer_range _SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps _SCREAMING_SNAKE_CASE : Optional[int] = image_size _SCREAMING_SNAKE_CASE : Tuple = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : List[str] = qkv_bias
200
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowercase__ = "" lowercase__ = "" lowercase__ = "" lowercase__ = 1 # (0 is vertical, 1 is horizontal) def __a ( ) ->None: a__: str = get_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print('Processing...' ) a__: List[Any] = update_image_and_anno(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for index, image in enumerate(_SCREAMING_SNAKE_CASE ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a__: int = random_chars(32 ) a__: int = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] a__: List[str] = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(F'/{file_root}.jpg' , _SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Success {index+1}/{len(_SCREAMING_SNAKE_CASE )} with {file_name}' ) a__: List[str] = [] for anno in new_annos[index]: a__: str = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(_SCREAMING_SNAKE_CASE ) with open(F'/{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->tuple[list, list]: a__: Tuple = [] a__: Union[str, Any] = [] for label_file in glob.glob(os.path.join(_SCREAMING_SNAKE_CASE , '*.txt' ) ): a__: Optional[Any] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_SCREAMING_SNAKE_CASE ) as in_file: a__: Any = in_file.readlines() a__: int = os.path.join(_SCREAMING_SNAKE_CASE , F'{label_name}.jpg' ) a__: str = [] for obj_list in obj_lists: a__: str = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_SCREAMING_SNAKE_CASE ) labels.append(_SCREAMING_SNAKE_CASE ) return img_paths, labels def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 ) ->tuple[list, list, list]: a__: Union[str, Any] = [] a__: List[str] = [] a__: Optional[Any] = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): a__: Dict = [] a__: int = img_list[idx] path_list.append(_SCREAMING_SNAKE_CASE ) a__: int = anno_list[idx] a__: Any = cva.imread(_SCREAMING_SNAKE_CASE ) if flip_type == 1: a__: Any = cva.flip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for bbox in img_annos: a__: Any = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: a__: int = cva.flip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for bbox in img_annos: a__: str = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_SCREAMING_SNAKE_CASE ) new_imgs_list.append(_SCREAMING_SNAKE_CASE ) return new_imgs_list, new_annos_lists, path_list def __a ( _SCREAMING_SNAKE_CASE = 32 ) ->str: assert number_char > 1, "The number of character should greater than 1" a__: Dict = ascii_lowercase + digits return "".join(random.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print('DONE ✅')
290
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _A = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCamelCase ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE = None def a__ ( lowerCAmelCase , lowerCAmelCase , ) -> Optional[int]: import pyspark def generate_fn(): UpperCAmelCase__ : Any = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: UpperCAmelCase__ : Optional[Any] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) UpperCAmelCase__ : Optional[Any] = partition_df.collect() UpperCAmelCase__ : Optional[int] = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowerCamelCase ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : List[Any] = df UpperCAmelCase__ : Optional[int] = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCAmelCase__ : str = _generate_iterable_examples(self.df , self.partition_order ) def __iter__(self ): """simple docstring""" yield from self.generate_examples_fn() def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__A ) return SparkExamplesIterable(self.df , partition_order=__A ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.split_shard_indices_by_worker(__A , __A ) return SparkExamplesIterable(self.df , partition_order=__A ) @property def _a (self ): """simple docstring""" return len(self.partition_order ) class lowerCamelCase ( datasets.DatasetBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE = SparkConfig def __init__(self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" import pyspark UpperCAmelCase__ : List[str] = pyspark.sql.SparkSession.builder.getOrCreate() UpperCAmelCase__ : Optional[Any] = df UpperCAmelCase__ : Tuple = working_dir super().__init__( cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , ) def _a (self ): """simple docstring""" def create_cache_and_write_probe(_lowerCamelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__A ) UpperCAmelCase__ : str = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__A , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCAmelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def _a (self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _a (self , _lowerCamelCase ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _a (self , _lowerCamelCase ): """simple docstring""" import pyspark def get_arrow_batch_size(_lowerCamelCase ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) UpperCAmelCase__ : List[str] = self.df.count() UpperCAmelCase__ : Optional[int] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCAmelCase__ : List[str] = ( self.df.limit(__A ) .repartition(1 ) .mapInArrow(__A , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCAmelCase__ : Optional[int] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCAmelCase__ : Tuple = min(__A , int(approx_total_size / max_shard_size ) ) UpperCAmelCase__ : Union[str, Any] = self.df.repartition(__A ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" import pyspark UpperCAmelCase__ : Tuple = ParquetWriter if file_format == '''parquet''' else ArrowWriter UpperCAmelCase__ : Dict = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath UpperCAmelCase__ : Optional[int] = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCAmelCase__ : str = self.config.features UpperCAmelCase__ : Tuple = self._writer_batch_size UpperCAmelCase__ : int = self._fs.storage_options def write_arrow(_lowerCamelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCAmelCase__ : Any = pyspark.TaskContext().taskAttemptId() UpperCAmelCase__ : Tuple = next(__A , __A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[Any] = writer_class( features=__A , path=working_fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) UpperCAmelCase__ : int = pa.Table.from_batches([first_batch] ) writer.write_table(__A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCAmelCase__ : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 UpperCAmelCase__ : int = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) UpperCAmelCase__ : List[str] = pa.Table.from_batches([batch] ) writer.write_table(__A ) if writer._num_bytes > 0: UpperCAmelCase__ : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__A ) ): UpperCAmelCase__ : Any = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) ) shutil.move(__A , __A ) UpperCAmelCase__ : str = ( self.df.mapInArrow(__A , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _a (self , _lowerCamelCase , _lowerCamelCase = "arrow" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" self._validate_cache_dir() UpperCAmelCase__ : List[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__A ) UpperCAmelCase__ : Dict = not is_remote_filesystem(self._fs ) UpperCAmelCase__ : Any = os.path.join if is_local else posixpath.join UpperCAmelCase__ : int = '''-TTTTT-SSSSS-of-NNNNN''' UpperCAmelCase__ : Optional[Any] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" UpperCAmelCase__ : Tuple = path_join(self._output_dir , __A ) UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : int = [] UpperCAmelCase__ : Union[str, Any] = [] for task_id, content in self._prepare_split_single(__A , __A , __A ): ( UpperCAmelCase__ ) : str = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__A ) UpperCAmelCase__ : List[str] = total_num_examples UpperCAmelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: UpperCAmelCase__ : Dict = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCAmelCase__ : Any = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): rename( __A , fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , F"""{global_shard_id:05d}""" ).replace("""NNNNN""" , F"""{total_shards:05d}""" ) , ) UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Tuple = 0 for i in range(len(__A ) ): UpperCAmelCase__ : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(__A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda _lowerCamelCase : _rename_shard(*__A ) ).collect() else: # don't use any pattern UpperCAmelCase__ : str = 0 UpperCAmelCase__ : int = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , fpath.replace(__A , """""" ) , ) def _a (self , _lowerCamelCase , ): """simple docstring""" return SparkExamplesIterable(self.df )
171
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ): UpperCAmelCase : Any = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_choices def __magic_name__ ( self : str ): UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : int ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Any = True UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
336
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = 0 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__A, __A ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = Path(__A ) / '''preprocessor_config.json''' lowerCAmelCase_ = Path(__A ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), ) json.dump({'''model_type''': '''clip'''}, open(__A, '''w''' ) ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained(__A ) self.assertIsInstance(__A, __A ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = Path(__A ) / '''preprocessor_config.json''' lowerCAmelCase_ = Path(__A ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), ) json.dump({'''model_type''': '''clip'''}, open(__A, '''w''' ) ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained(__A ) self.assertIsInstance(__A, __A ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase_ = Path(__A ) / '''preprocessor_config.json''' lowerCAmelCase_ = Path(__A ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), ) json.dump({'''model_type''': '''clip'''}, open(__A, '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase_ = AutoImageProcessor.from_pretrained(__A ).to_dict() config_dict.pop('''image_processor_type''' ) lowerCAmelCase_ = CLIPImageProcessor(**__A ) # save in new folder model_config.save_pretrained(__A ) config.save_pretrained(__A ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained(__A ) # make sure private variable is not incorrectly saved lowerCAmelCase_ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__A, __A ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = Path(__A ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained(__A ) self.assertIsInstance(__A, __A ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaisesRegex( __A, '''clip-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaisesRegex( __A, R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase_ = AutoImageProcessor.from_pretrained(__A, revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaisesRegex( __A, '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''', ): lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaises(__A ): lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): lowerCAmelCase_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=__A ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=__A ) self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__A ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained(__A, trust_remote_code=__A ) self.assertEqual(reloaded_image_processor.__class__.__name__, '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" try: AutoConfig.register('''custom''', __A ) AutoImageProcessor.register(__A, __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoImageProcessor.register(__A, __A ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = Path(__A ) / '''preprocessor_config.json''' lowerCAmelCase_ = Path(__A ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''}, open(__A, '''w''' ), ) json.dump({'''model_type''': '''clip'''}, open(__A, '''w''' ) ) lowerCAmelCase_ = CustomImageProcessor.from_pretrained(__A ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__A ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained(__A ) self.assertIsInstance(__A, __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" class A ( lowerCamelCase__ ): __snake_case = True try: AutoConfig.register('''custom''', __A ) AutoImageProcessor.register(__A, __A ) # If remote code is not set, the default is to use local lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=__A ) self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''', trust_remote_code=__A ) self.assertEqual(image_processor.__class__.__name__, '''NewImageProcessor''' ) self.assertTrue(not hasattr(__A, '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
278
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.txt"} _lowerCamelCase : List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase : List[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def a__ ( UpperCAmelCase : List[str] ) -> Any: with open(UpperCAmelCase , '''r''' ) as f: UpperCAmelCase : Dict = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ): super().__init__(**__A ) UpperCAmelCase : Tuple = load_vocab_file(__A ) UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Union[str, Any] = unk_token UpperCAmelCase : Optional[Any] = cls_token UpperCAmelCase : Optional[int] = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : List[str] = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __magic_name__ ( self : Tuple, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : List[Any], __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ): return text.split() def __magic_name__ ( self : Optional[int], __A : Dict=False ): return len(self._id_to_token ) def __magic_name__ ( self : int ): return {token: i for i, token in enumerate(self.all_tokens )} def __magic_name__ ( self : Tuple, __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: mask += [0] * len(__A ) + [1] return mask def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ): UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__A, '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __magic_name__ ( self : Dict ): return self.get_vocab_size(with_added_tokens=__A ) def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ): return super()._add_tokens(__A, special_tokens=__A )
336
0
from __future__ import annotations import math __snake_case = "2020.9.26" __snake_case = "xcodz-dot, cclaus, dhruvmanila" def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> tuple[float, float]: """simple docstring""" if not all(isinstance(_lowercase , (float, int) ) for val in locals().values() ): __UpperCamelCase = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_lowercase ) __UpperCamelCase = ((x * distance) / (z + distance)) * scale __UpperCamelCase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> tuple[float, float, float]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('Axis must be a str' ) __UpperCamelCase = locals() del input_variables["axis"] if not all(isinstance(_lowercase , (float, int) ) for val in input_variables.values() ): __UpperCamelCase = ( '''Input values except axis must either be float or int: ''' f'''{list(input_variables.values() )}''' ) raise TypeError(_lowercase ) __UpperCamelCase = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": __UpperCamelCase = x * math.cos(_lowercase ) - y * math.sin(_lowercase ) __UpperCamelCase = y * math.cos(_lowercase ) + x * math.sin(_lowercase ) __UpperCamelCase = z elif axis == "x": __UpperCamelCase = y * math.cos(_lowercase ) - z * math.sin(_lowercase ) __UpperCamelCase = z * math.cos(_lowercase ) + y * math.sin(_lowercase ) __UpperCamelCase = x elif axis == "y": __UpperCamelCase = x * math.cos(_lowercase ) - z * math.sin(_lowercase ) __UpperCamelCase = z * math.cos(_lowercase ) + x * math.sin(_lowercase ) __UpperCamelCase = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }""")
310
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : int ) -> List[Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" snake_case_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case_ = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def lowerCAmelCase__ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" snake_case_ = object_detector(examples[0] , threshold=0.0 ) snake_case_ = len(__A ) self.assertGreater(__A , 0 ) self.assertEqual( __A , [ { "score": ANY(__A ), "label": ANY(__A ), "box": {"xmin": ANY(__A ), "ymin": ANY(__A ), "xmax": ANY(__A ), "ymax": ANY(__A )}, } for i in range(__A ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCAmelCase__ ( self : Any ) -> int: """simple docstring""" pass @require_torch def lowerCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" snake_case_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case_ = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) snake_case_ = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ [ {"score": 0.7_235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7_184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6_748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6_456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6_419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def lowerCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case_ = pipeline("zero-shot-object-detection" ) snake_case_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) snake_case_ = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1_474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1_208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass @require_torch @slow def lowerCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" snake_case_ = 0.2 snake_case_ = pipeline("zero-shot-object-detection" ) snake_case_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=__A , ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2_537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def lowerCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" snake_case_ = 2 snake_case_ = pipeline("zero-shot-object-detection" ) snake_case_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=__A , ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.2_868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
159
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
17
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _lowercase : """simple docstring""" A__ = None A__ = None A__ = None # sigma(t_i) @classmethod def lowerCAmelCase ( cls : Any ): '''simple docstring''' return cls() @dataclass class _lowercase ( lowerCamelCase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 class _lowercase ( lowerCamelCase__ , lowerCamelCase__): """simple docstring""" @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return True @register_to_config def __init__( self : Optional[int] , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 100 , __lowerCamelCase : float = 1.0_0_7 , __lowerCamelCase : float = 80 , __lowerCamelCase : float = 0.0_5 , __lowerCamelCase : float = 50 , ): '''simple docstring''' pass def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return KarrasVeSchedulerState.create() def lowerCAmelCase ( self : int , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : int , __lowerCamelCase : Tuple = () ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = jnp.arange(0 , __A )[::-1].copy() lowerCamelCase__ : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A , schedule=jnp.array(__A , dtype=jnp.floataa ) , timesteps=__A , ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : float , __lowerCamelCase : random.KeyArray , ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase__ : int = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowerCamelCase__ : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase__ : Union[str, Any] = random.split(__A , num=1 ) lowerCamelCase__ : List[str] = self.config.s_noise * random.normal(key=__A , shape=sample.shape ) lowerCamelCase__ : Tuple = sigma + gamma * sigma lowerCamelCase__ : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCAmelCase ( self : Tuple , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : bool = True , ): '''simple docstring''' lowerCamelCase__ : int = sample_hat + sigma_hat * model_output lowerCamelCase__ : Dict = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase__ : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A , derivative=__A , state=__A ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : bool = True , ): '''simple docstring''' lowerCamelCase__ : Tuple = sample_prev + sigma_prev * model_output lowerCamelCase__ : List[str] = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase__ : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A , derivative=__A , state=__A ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' raise NotImplementedError()
184
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase__ ): """simple docstring""" __a = ["""input_features"""] def __init__( self : List[str] , UpperCamelCase : Union[str, Any]=80 , UpperCamelCase : Optional[int]=16_000 , UpperCamelCase : Optional[Any]=160 , UpperCamelCase : Tuple=30 , UpperCamelCase : Dict=400 , UpperCamelCase : Any=0.0 , UpperCamelCase : Any=False , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__( feature_size=__A , sampling_rate=__A , padding_value=__A , return_attention_mask=__A , **__A , ) __UpperCAmelCase : List[str] = n_fft __UpperCAmelCase : Union[str, Any] = hop_length __UpperCAmelCase : Tuple = chunk_length __UpperCAmelCase : Union[str, Any] = chunk_length * sampling_rate __UpperCAmelCase : List[Any] = self.n_samples // hop_length __UpperCAmelCase : Union[str, Any] = sampling_rate __UpperCAmelCase : str = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__A , norm="""slaney""" , mel_scale="""slaney""" , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : np.array ): '''simple docstring''' __UpperCAmelCase : Tuple = spectrogram( __A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) __UpperCAmelCase : Optional[Any] = log_spec[:, :-1] __UpperCAmelCase : Union[str, Any] = np.maximum(__A , log_spec.max() - 8.0 ) __UpperCAmelCase : Tuple = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase__ ( UpperCamelCase : List[np.ndarray] , UpperCamelCase : List[np.ndarray] , UpperCamelCase : float = 0.0 ): '''simple docstring''' if attention_mask is not None: __UpperCAmelCase : Union[str, Any] = np.array(__A , np.intaa ) __UpperCAmelCase : int = [] for vector, length in zip(__A , attention_mask.sum(-1 ) ): __UpperCAmelCase : int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase : int = padding_value normed_input_values.append(__A ) else: __UpperCAmelCase : Any = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[Any] , UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase : bool = True , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[str] = "max_length" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __UpperCAmelCase : List[str] = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCAmelCase : List[str] = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Optional[int] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): __UpperCAmelCase : Optional[Any] = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : List[Any] = [np.asarray([raw_speech] ).T] __UpperCAmelCase : Any = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding __UpperCAmelCase : Union[str, Any] = self.pad( __A , padding=__A , max_length=max_length if max_length else self.n_samples , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase : Any = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) __UpperCAmelCase : Optional[Any] = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format __UpperCAmelCase : Optional[Any] = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) __UpperCAmelCase : Dict = [self._np_extract_fbank_features(__A ) for waveform in input_features[0]] if isinstance(input_features[0] , __A ): __UpperCAmelCase : Dict = [np.asarray(__A , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase : int = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase : Optional[int] = padded_inputs.convert_to_tensors(__A ) return padded_inputs def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
115
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __lowercase : int = XLNetTokenizer __lowercase : Optional[int] = XLNetTokenizerFast __lowercase : Tuple = True __lowercase : Union[str, Any] = True def snake_case_ ( self): super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLNetTokenizer(__A , keep_accents=__A) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = '''<s>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A) , __A) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A) , __A) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<unk>""") self.assertEqual(vocab_keys[1] , """<s>""") self.assertEqual(vocab_keys[-1] , """<eod>""") self.assertEqual(len(__A) , 1_0_0_6) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(__A , keep_accents=__A) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""") self.assertListEqual(__A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__A) self.assertListEqual(__A , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4]) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__A) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(__A , do_lower_case=__A) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( __A , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""▁he""", """ll""", """o"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(__A , do_lower_case=__A) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer.from_pretrained("""xlnet-base-cased""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=__A) __SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__A) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__A , __A) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case_ ( self): # fmt: off __SCREAMING_SNAKE_CASE = {'''input_ids''': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
100
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Tuple = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Dict: lowercase__ : Optional[Any] = tempfile.mkdtemp() lowercase__ : List[Any] = BlipImageProcessor() lowercase__ : Union[str, Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) lowercase__ : Optional[int] = BlipProcessor(__A , __A ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : str , **lowercase_ : str ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).tokenizer def __UpperCamelCase ( self : List[Any] , **lowercase_ : str ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor def __UpperCamelCase ( self : Tuple ) -> Any: shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase__ : str = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : str ) -> Dict: lowercase__ : List[str] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ : Tuple = self.get_image_processor(do_normalize=__A , padding_value=1.0 ) lowercase__ : Union[str, Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : int = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : Union[str, Any] = BlipProcessor(tokenizer=__A , image_processor=__A ) lowercase__ : List[str] = self.prepare_image_inputs() lowercase__ : Optional[Any] = image_processor(__A , return_tensors="np" ) lowercase__ : Tuple = processor(images=__A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Optional[int] = self.get_image_processor() lowercase__ : Any = self.get_tokenizer() lowercase__ : int = BlipProcessor(tokenizer=__A , image_processor=__A ) lowercase__ : Optional[int] = '''lower newer''' lowercase__ : Any = processor(text=__A ) lowercase__ : Optional[int] = tokenizer(__A , return_token_type_ids=__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : int = BlipProcessor(tokenizer=__A , image_processor=__A ) lowercase__ : Any = '''lower newer''' lowercase__ : Optional[int] = self.prepare_image_inputs() lowercase__ : Tuple = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def __UpperCamelCase ( self : Tuple ) -> Tuple: lowercase__ : Dict = self.get_image_processor() lowercase__ : Any = self.get_tokenizer() lowercase__ : Dict = BlipProcessor(tokenizer=__A , image_processor=__A ) lowercase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : List[str] = processor.batch_decode(__A ) lowercase__ : int = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: lowercase__ : Any = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : str = BlipProcessor(tokenizer=__A , image_processor=__A ) lowercase__ : Dict = '''lower newer''' lowercase__ : Optional[int] = self.prepare_image_inputs() lowercase__ : Optional[Any] = processor(text=__A , images=__A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
87
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): _SCREAMING_SNAKE_CASE : Optional[Any] = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(__A ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = '''sshleifer/tiny-gpt2''' _SCREAMING_SNAKE_CASE : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__A , multi_process=__A , ) _SCREAMING_SNAKE_CASE : Tuple = TensorFlowBenchmark(__A ) _SCREAMING_SNAKE_CASE : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = '''sgugger/tiny-distilbert-classification''' _SCREAMING_SNAKE_CASE : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , only_pretrain_model=__A , ) _SCREAMING_SNAKE_CASE : List[str] = TensorFlowBenchmark(__A ) _SCREAMING_SNAKE_CASE : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = '''sshleifer/tiny-gpt2''' _SCREAMING_SNAKE_CASE : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = TensorFlowBenchmark(__A ) _SCREAMING_SNAKE_CASE : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = '''sshleifer/tiny-gpt2''' _SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(__A ) _SCREAMING_SNAKE_CASE : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__A , multi_process=__A , ) _SCREAMING_SNAKE_CASE : Tuple = TensorFlowBenchmark(__A , [config] ) _SCREAMING_SNAKE_CASE : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = '''sshleifer/tiny-gpt2''' _SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(__A ) _SCREAMING_SNAKE_CASE : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = TensorFlowBenchmark(__A , [config] ) _SCREAMING_SNAKE_CASE : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = '''sshleifer/tiny-gpt2''' _SCREAMING_SNAKE_CASE : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _SCREAMING_SNAKE_CASE : Optional[int] = TensorFlowBenchmark(__A ) _SCREAMING_SNAKE_CASE : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = '''sshleifer/tiny-gpt2''' _SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(__A ) _SCREAMING_SNAKE_CASE : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _SCREAMING_SNAKE_CASE : int = TensorFlowBenchmark(__A , [config] ) _SCREAMING_SNAKE_CASE : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(__A ) _SCREAMING_SNAKE_CASE : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _SCREAMING_SNAKE_CASE : List[Any] = TensorFlowBenchmark(__A , configs=[config] ) _SCREAMING_SNAKE_CASE : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = '''sshleifer/tiny-gpt2''' _SCREAMING_SNAKE_CASE : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__A , multi_process=__A , ) _SCREAMING_SNAKE_CASE : str = TensorFlowBenchmark(__A ) _SCREAMING_SNAKE_CASE : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__A , save_to_csv=__A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__A , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(__A , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(__A , """env.csv""" ) , multi_process=__A , ) _SCREAMING_SNAKE_CASE : Optional[Any] = TensorFlowBenchmark(__A ) benchmark.run() self.assertTrue(Path(os.path.join(__A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__A , """env.csv""" ) ).exists() ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(__snake_case ): self.assertTrue(hasattr(__A , """sequential""" ) ) self.assertTrue(hasattr(__A , """cumulative""" ) ) self.assertTrue(hasattr(__A , """current""" ) ) self.assertTrue(hasattr(__A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__A , """log.txt""" ) , log_print=__A , trace_memory_line_by_line=__A , eager_mode=__A , multi_process=__A , ) _SCREAMING_SNAKE_CASE : Optional[Any] = TensorFlowBenchmark(__A ) _SCREAMING_SNAKE_CASE : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__A , """log.txt""" ) ).exists() )
200
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->int: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or number < 0: raise ValueError('Input must be a non-negative integer' ) a__: Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
290
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[int] = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCAmelCase : Tuple , UpperCAmelCase : Any="" , UpperCAmelCase : Dict="." ): UpperCAmelCase : List[str] = [] for k, v in d.items(): UpperCAmelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(UpperCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCAmelCase , UpperCAmelCase , sep=UpperCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(UpperCAmelCase ) UpperCAmelCase : List[str] = argparse.Namespace() with open(UpperCAmelCase , '''r''' ) as yaml_file: try: UpperCAmelCase : List[str] = yaml.load(UpperCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase : Optional[int] = flatten_yaml_as_dict(UpperCAmelCase ) for k, v in flat_cfg.items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(UpperCAmelCase , str(UpperCAmelCase ) ) ) return config def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase : int = MobileViTVaConfig() UpperCAmelCase : str = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase : Any = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : Any = 384 else: UpperCAmelCase : Tuple = 256 UpperCAmelCase : int = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase : Optional[Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase : str = 384 else: UpperCAmelCase : Dict = 256 UpperCAmelCase : List[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase : Optional[Any] = 151 UpperCAmelCase : Tuple = 512 UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Tuple = True elif task_name.startswith('''voc_''' ): UpperCAmelCase : Dict = 21 UpperCAmelCase : str = 512 UpperCAmelCase : Union[str, Any] = '''pascal-voc-id2label.json''' UpperCAmelCase : Dict = True # orig_config UpperCAmelCase : List[Any] = load_orig_config_file(UpperCAmelCase ) assert getattr(UpperCAmelCase , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase : Tuple = getattr(UpperCAmelCase , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(UpperCAmelCase , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase : str = getattr(UpperCAmelCase , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase : int = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase : Any = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : List[str] = val def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=False ) -> Union[str, Any]: if base_model: UpperCAmelCase : Dict = '''''' else: UpperCAmelCase : Dict = '''mobilevitv2.''' UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase : List[str] = k[8:] else: UpperCAmelCase : Dict = k if ".block." in k: UpperCAmelCase : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase : List[str] = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase : int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase : Any = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase : str = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase : int = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase : Dict = [0, 1] elif i == 4: UpperCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: UpperCAmelCase : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase : Optional[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase : Any = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase : Union[str, Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase : Optional[int] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase : List[Any] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase : Any = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase : Optional[int] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase : Union[str, Any] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase : Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(UpperCAmelCase ) for k in keys_to_ignore: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = get_mobilevitva_config(UpperCAmelCase , UpperCAmelCase ) # load original state_dict UpperCAmelCase : List[str] = torch.load(UpperCAmelCase , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase : str = MobileViTVaForSemanticSegmentation(UpperCAmelCase ).eval() UpperCAmelCase : str = False else: UpperCAmelCase : Union[str, Any] = MobileViTVaForImageClassification(UpperCAmelCase ).eval() UpperCAmelCase : Any = False # remove and rename some keys of load the original model UpperCAmelCase : Optional[Any] = checkpoint remove_unused_keys(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = create_rename_keys(UpperCAmelCase , base_model=UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load modified state_dict model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase : str = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _A = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __UpperCamelCase ( _A ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __UpperCamelCase ( ): lowerCAmelCase_ = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_A ) lowerCAmelCase_ = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_A ) EnvironmentCommand.register_subcommand(_A ) TestCommand.register_subcommand(_A ) RunBeamCommand.register_subcommand(_A ) DummyDataCommand.register_subcommand(_A ) # Parse args lowerCAmelCase_ = parser.parse_known_args() if not hasattr(_A , '''func''' ): parser.print_help() exit(1 ) lowerCAmelCase_ = parse_unknown_args(_A ) # Run lowerCAmelCase_ = args.func(_A , **_A ) service.run() if __name__ == "__main__": main()
278
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
0
from __future__ import annotations import math def _A ( _lowercase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __snake_case = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def _A ( _lowercase ) -> list[int]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __UpperCamelCase = [] for num in range(len(_lowercase ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(_lowercase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_lowercase ) == n: return list_nums return [] def _A ( ) -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
310
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : str, __A : Dict=1_3, __A : int=3_0, __A : Tuple=2, __A : Union[str, Any]=3, __A : Any=True, __A : str=True, __A : Dict=3_2, __A : List[Any]=2, __A : Optional[Any]=4, __A : Union[str, Any]=3_7, __A : int="gelu", __A : int=0.1, __A : List[Any]=0.1, __A : Tuple=1_0, __A : Tuple=0.0_2, __A : Any=3, __A : List[str]=0.6, __A : Any=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = mask_ratio UpperCAmelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def __magic_name__ ( self : str, __A : List[Any], __A : Any, __A : Any ): UpperCAmelCase : Optional[Any] = TFViTMAEModel(config=__A ) UpperCAmelCase : Tuple = model(__A, training=__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : str, __A : int, __A : str ): UpperCAmelCase : Dict = TFViTMAEForPreTraining(__A ) UpperCAmelCase : int = model(__A, training=__A ) # expected sequence length = num_patches UpperCAmelCase : int = (self.image_size // self.patch_size) ** 2 UpperCAmelCase : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase : Tuple = 1 UpperCAmelCase : List[Any] = TFViTMAEForPreTraining(__A ) UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(__A, training=__A ) UpperCAmelCase : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = TFViTMAEModelTester(self ) UpperCAmelCase : int = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, tf.keras.layers.Layer ) ) def __magic_name__ ( self : str ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : int = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def __magic_name__ ( self : int ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : Dict = model(__A, noise=__A ) UpperCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = model(**__A, noise=__A ) UpperCAmelCase : Dict = outputs_dict[0].numpy() UpperCAmelCase : Tuple = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def __magic_name__ ( self : Optional[Any] ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A : Union[str, Any] ): UpperCAmelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(__A ): UpperCAmelCase : Tuple = v.numpy() else: UpperCAmelCase : str = np.array(__A ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A ) UpperCAmelCase : Optional[int] = prepare_numpy_arrays(__A ) UpperCAmelCase : str = model(__A, noise=__A ) UpperCAmelCase : str = model(**__A, noise=__A ) self.assert_outputs_same(__A, __A ) def __magic_name__ ( self : int, __A : str, __A : Union[str, Any], __A : Optional[Any] ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : int = tf.constant(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase : List[Any] = tf_noise super().check_pt_tf_models(__A, __A, __A ) def __magic_name__ ( self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__A ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__A, __A ),) if isinstance(__A, __A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__A, '''_keras_serializable''', __A ) } UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase : str = tf.convert_to_tensor(__A ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase : Tuple = main_layer_class(__A ) UpperCAmelCase : int = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase : List[Any] = tf.keras.Model(__A, outputs=main_layer(__A ) ) UpperCAmelCase : List[Any] = model(__A ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Any = os.path.join(__A, '''keras_model.h5''' ) model.save(__A ) UpperCAmelCase : List[str] = tf.keras.models.load_model( __A, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__A, tf.keras.Model ) UpperCAmelCase : Tuple = model(__A ) self.assert_outputs_same(__A, __A ) @slow def __magic_name__ ( self : Dict ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__A ) UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy() UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : Optional[int] = outputs.logits.numpy() UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A, saved_model=__A ) UpperCAmelCase : Dict = model_class.from_pretrained(__A ) UpperCAmelCase : str = model(__A, noise=__A ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase : int = after_outputs['''last_hidden_state'''].numpy() UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Any = after_outputs['''logits'''].numpy() UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A, 1E-5 ) def __magic_name__ ( self : Optional[Any] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) UpperCAmelCase : List[Any] = model(__A, noise=__A ) UpperCAmelCase : str = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__A ) UpperCAmelCase : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase : str = model_class.from_config(model.config ) UpperCAmelCase : List[str] = new_model(__A ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase : Tuple = new_model(__A, noise=__A ) self.assert_outputs_same(__A, __A ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @slow def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__A ) def a__ ( ) -> Dict: UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : str = image_processor(images=__A, return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase : Optional[int] = ViTMAEConfig() UpperCAmelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase : Optional[int] = model(**__A, noise=__A ) # verify the logits UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __A, atol=1E-4 )
336
0
from __future__ import annotations SCREAMING_SNAKE_CASE :Dict = [True] * 1_00_00_01 SCREAMING_SNAKE_CASE :List[Any] = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): SCREAMING_SNAKE_CASE :List[Any] = False i += 1 def _lowerCAmelCase ( lowerCAmelCase_ :int )->bool: '''simple docstring''' return seive[n] def _lowerCAmelCase ( lowerCAmelCase_ :int )->bool: '''simple docstring''' return any(digit in "02468" for digit in str(lowerCAmelCase_ ) ) def _lowerCAmelCase ( lowerCAmelCase_ :int = 1_000_000 )->list[int]: '''simple docstring''' snake_case_ = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowerCAmelCase_ ) and not contains_an_even_digit(lowerCAmelCase_ ): snake_case_ = str(lowerCAmelCase_ ) snake_case_ = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowerCAmelCase_ ) )] if all(is_prime(lowerCAmelCase_ ) for i in list_nums ): result.append(lowerCAmelCase_ ) return result def _lowerCAmelCase ( )->int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
159
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() def _lowercase ( self : Union[str, Any] ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __lowercase = '''xvjiarui/stable-diffusion-2-inpainting''' __lowercase = FlaxStableDiffusionInpaintPipeline.from_pretrained(__A, safety_checker=__A ) __lowercase = '''Face of a yellow cat, high resolution, sitting on a park bench''' __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = num_samples * [init_image] __lowercase = num_samples * [mask_image] __lowercase = pipeline.prepare_inputs(__A, __A, __A ) # shard inputs and rng __lowercase = replicate(__A ) __lowercase = jax.random.split(__A, jax.device_count() ) __lowercase = shard(__A ) __lowercase = shard(__A ) __lowercase = shard(__A ) __lowercase = pipeline( __A, __A, __A, __A, __A, __A, jit=__A ) __lowercase = output.images.reshape(__A, 5_1_2, 5_1_2, 3 ) __lowercase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
17
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
def lowercase_ ( _A : int ): """simple docstring""" if number > 0: raise ValueError("input must be a negative integer" ) lowerCamelCase__ : int = len(bin(_A )[3:] ) lowerCamelCase__ : List[str] = bin(abs(_A ) - (1 << binary_number_length) )[3:] lowerCamelCase__ : str = ( ( '''1''' + '''0''' * (binary_number_length - len(_A )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
184
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = {"vocab_file": "spiece.model"} UpperCAmelCase : Dict = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase : Any = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } UpperCAmelCase : List[Any] = "▁" class lowerCamelCase__ ( lowerCamelCase__ ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] def __init__( self : int , UpperCamelCase : Any , UpperCamelCase : Any="</s>" , UpperCamelCase : List[str]="<unk>" , UpperCamelCase : Dict="<pad>" , UpperCamelCase : List[Any]=100 , UpperCamelCase : Any=None , UpperCamelCase : Optional[Dict[str, Any]] = None , UpperCamelCase : List[str]=True , **UpperCamelCase : Tuple , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : Any = [f'''<extra_id_{i}>''' for i in range(__A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase : Union[str, Any] = len(set(filter(lambda UpperCamelCase : bool("""extra_id""" in str(__A ) ) , __A ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) __UpperCAmelCase : List[Any] = legacy __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__A , unk_token=__A , pad_token=__A , extra_ids=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , legacy=__A , **__A , ) __UpperCAmelCase : Union[str, Any] = vocab_file __UpperCAmelCase : str = extra_ids __UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) @staticmethod def lowerCamelCase__ ( UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __UpperCAmelCase : int = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __A , ) return max_model_length @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : str , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__A )) + [1] return ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] def lowerCamelCase__ ( self : str ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase : bool(re.search(R"""<extra_id_\d+>""" , __A ) ) is not None , self.additional_special_tokens ) ) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return [self._convert_token_to_id(__A ) for token in self.get_sentinel_tokens()] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[int] ): '''simple docstring''' if len(__A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = self._add_eos_if_not_present(__A ) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase : Union[str, Any] = self._add_eos_if_not_present(__A ) return token_ids_a + token_ids_a def __getstate__( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.__dict__.copy() __UpperCAmelCase : List[Any] = None return state def __setstate__( self : List[str] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __UpperCAmelCase : List[str] = {} __UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : "TextInput" , **UpperCamelCase : List[str] ): '''simple docstring''' if not self.legacy: __UpperCAmelCase : int = SPIECE_UNDERLINE + text.replace(__A , """ """ ) return super().tokenize(__A , **__A ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Tuple , **UpperCamelCase : Any ): '''simple docstring''' if not self.legacy: __UpperCAmelCase : int = text.startswith(__A ) if is_first: __UpperCAmelCase : str = text[1:] __UpperCAmelCase : str = self.sp_model.encode(__A , out_type=__A ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(__A ): __UpperCAmelCase : Optional[Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Dict ): '''simple docstring''' if token.startswith("""<extra_id_""" ): __UpperCAmelCase : Union[str, Any] = re.match(R"""<extra_id_(\d+)>""" , __A ) __UpperCAmelCase : Optional[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__A ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' if index < self.sp_model.get_piece_size(): __UpperCAmelCase : Union[str, Any] = self.sp_model.IdToPiece(__A ) else: __UpperCAmelCase : Tuple = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Any = '''''' __UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : int = [] else: current_sub_tokens.append(__A ) __UpperCAmelCase : Any = False out_string += self.sp_model.decode(__A ) return out_string.strip() def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Optional[Any] = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , """wb""" ) as fi: __UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
115
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : Optional[int] = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : int = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : str = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : Optional[Any] = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : Tuple = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : str = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : Optional[int] = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : Union[str, Any] = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : Dict = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : str = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : List[str] = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : Optional[int] = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCamelCase__ ): """simple docstring""" __lowercase : Union[str, Any] = ['''flax'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""]) @classmethod def snake_case_ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""flax"""])
100
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
import numpy # List of input, output pairs _lowerCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _lowerCamelCase : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _lowerCamelCase : Dict = [2, 4, 1, 5] _lowerCamelCase : Dict = len(train_data) _lowerCamelCase : int = 0.0_0_9 def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]="train" ) -> Dict: return calculate_hypothesis_value(UpperCAmelCase , UpperCAmelCase ) - output( UpperCAmelCase , UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Any: UpperCAmelCase : str = 0 for i in range(len(UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : str=m ) -> Dict: UpperCAmelCase : Optional[int] = 0 for i in range(UpperCAmelCase ): if index == -1: summation_value += _error(UpperCAmelCase ) else: summation_value += _error(UpperCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase : Dict = summation_of_cost_derivative(UpperCAmelCase , UpperCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : List[str] = 0.000002 UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = 0 while True: j += 1 UpperCAmelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase ) ): UpperCAmelCase : List[str] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase , rtol=UpperCAmelCase , ): break UpperCAmelCase : int = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ) -> List[Any]: for i in range(len(UpperCAmelCase ) ): print(('''Actual output value:''', output(UpperCAmelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCAmelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
336
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = emb.weight.shape _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : str = emb.weight.data return lin_layer def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE : int = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] _SCREAMING_SNAKE_CASE : Dict = mam_aaa['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : List[str] = state_dict['''encoder.embed_tokens.weight'''].shape[0] _SCREAMING_SNAKE_CASE : Optional[int] = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _SCREAMING_SNAKE_CASE : List[str] = state_dict['''decoder.embed_tokens.weight'''] _SCREAMING_SNAKE_CASE : Dict = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : int = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
200
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
0
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase__ = HfApi() lowercase__ = {} # fmt: off lowercase__ = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) lowercase__ = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) lowercase__ = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) lowercase__ = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) lowercase__ = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) lowercase__ = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) lowercase__ = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) lowercase__ = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) lowercase__ = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) lowercase__ = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) lowercase__ = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) lowercase__ = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) lowercase__ = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) lowercase__ = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) lowercase__ = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on lowercase__ = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase__ = "/home/patrick/google_checkpoints/" + mod.modelId.split('/')[-1] print(f"Started running {mod.modelId}!!!") if mod.modelId.startswith('CompVis'): lowercase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: lowercase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(f"{mod.modelId} has passed successfully!!!")
290
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = str(id_ ) UpperCAmelCase__ : int = None UpperCAmelCase__ : Any = None UpperCAmelCase__ : str = [] UpperCAmelCase__ : Any = {} # {vertex:distance} def __lt__(self , _lowerCamelCase ): """simple docstring""" return self.key < other.key def __repr__(self ): """simple docstring""" return self.id def _a (self , _lowerCamelCase ): """simple docstring""" self.neighbors.append(__A ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = weight def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> list: UpperCAmelCase__ : Optional[Any] = [] for u in graph: UpperCAmelCase__ : int = math.inf UpperCAmelCase__ : Dict = None UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : List[Any] = graph[:] while q: UpperCAmelCase__ : int = min(lowerCAmelCase ) q.remove(lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase__ : Tuple = u UpperCAmelCase__ : List[str] = u.edges[v.id] for i in range(1 , len(lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Iterator[tuple]: for u in graph: UpperCAmelCase__ : Optional[Any] = math.inf UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : Tuple = list(lowerCAmelCase ) hq.heapify(lowerCAmelCase ) while h: UpperCAmelCase__ : int = hq.heappop(lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase__ : int = u UpperCAmelCase__ : Any = u.edges[v.id] hq.heapify(lowerCAmelCase ) for i in range(1 , len(lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
171
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int], __A : Optional[int], __A : Any=1_3, __A : str=7, __A : Optional[int]=True, __A : Tuple=True, __A : Union[str, Any]=True, __A : Any=True, __A : Optional[int]=9_9, __A : Tuple=3_2, __A : str=5, __A : Union[str, Any]=4, __A : List[str]=3_7, __A : Tuple="gelu", __A : Optional[int]=0.1, __A : int=0.1, __A : Optional[Any]=5_1_2, __A : int=1_6, __A : Optional[Any]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=4, ): UpperCAmelCase : Any = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Any = num_choices def __magic_name__ ( self : str ): UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__A, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : int ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Any = True UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Dict = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : Dict = model_class_name.from_pretrained('''roberta-base''', from_pt=__A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
336
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCamelCase ( _A , _A , _A , _A ): lowerCAmelCase_ = s.rsplit(_A , _A ) return new.join(_A ) def __UpperCamelCase ( _A ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = {} lowerCAmelCase_ = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCAmelCase_ = key.replace(f"{group_key}." , f"{group_key}.group." ) if "res_path" in key: lowerCAmelCase_ = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): lowerCAmelCase_ = rreplace(_A , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): lowerCAmelCase_ = rreplace(_A , '''.b''' , '''.bias''' , 1 ) lowerCAmelCase_ = value.float() return upgrade @torch.no_grad() def __UpperCamelCase ( _A , _A , _A=None , _A=True ): from dall_e import Encoder lowerCAmelCase_ = Encoder() if os.path.exists(_A ): lowerCAmelCase_ = torch.load(_A ) else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A ) if isinstance(_A , _A ): lowerCAmelCase_ = ckpt.state_dict() encoder.load_state_dict(_A ) if config_path is not None: lowerCAmelCase_ = FlavaImageCodebookConfig.from_pretrained(_A ) else: lowerCAmelCase_ = FlavaImageCodebookConfig() lowerCAmelCase_ = FlavaImageCodebook(_A ).eval() lowerCAmelCase_ = encoder.state_dict() lowerCAmelCase_ = upgrade_state_dict(_A ) hf_model.load_state_dict(_A ) lowerCAmelCase_ = hf_model.state_dict() lowerCAmelCase_ = count_parameters(_A ) lowerCAmelCase_ = count_parameters(_A ) assert torch.allclose(_A , _A , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_A ) else: return hf_state_dict if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _A = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
278
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {"vocab_file": "vocab.txt"} _lowerCamelCase : List[str] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase : List[Any] = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def a__ ( UpperCAmelCase : List[str] ) -> Any: with open(UpperCAmelCase , '''r''' ) as f: UpperCAmelCase : Dict = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Any, __A : Dict, __A : List[Any]="<unk>", __A : List[str]="<cls>", __A : Any="<pad>", __A : Union[str, Any]="<mask>", __A : int="<eos>", **__A : Tuple, ): super().__init__(**__A ) UpperCAmelCase : Tuple = load_vocab_file(__A ) UpperCAmelCase : List[Any] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : Union[str, Any] = unk_token UpperCAmelCase : Optional[Any] = cls_token UpperCAmelCase : Optional[int] = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : List[str] = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __magic_name__ ( self : Tuple, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : List[Any], __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : Optional[Any], **__A : Union[str, Any] ): return text.split() def __magic_name__ ( self : Optional[int], __A : Dict=False ): return len(self._id_to_token ) def __magic_name__ ( self : int ): return {token: i for i, token in enumerate(self.all_tokens )} def __magic_name__ ( self : Tuple, __A : str ): return self._token_to_id.get(__A, self._token_to_id.get(self.unk_token ) ) def __magic_name__ ( self : Any, __A : int ): return self._id_to_token.get(__A, self.unk_token ) def __magic_name__ ( self : Union[str, Any], __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __magic_name__ ( self : Any, __A : List, __A : Optional[List] = None, __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Dict = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: mask += [0] * len(__A ) + [1] return mask def __magic_name__ ( self : Optional[int], __A : List[Any], __A : Dict ): UpperCAmelCase : Union[str, Any] = os.path.join(__A, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__A, '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __magic_name__ ( self : Dict ): return self.get_vocab_size(with_added_tokens=__A ) def __magic_name__ ( self : Optional[int], __A : Union[List[str], List[AddedToken]], __A : bool = False ): return super()._add_tokens(__A, special_tokens=__A )
336
0
__snake_case = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
310
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A, '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__A, '''depth_multiplier''' ) ) class __UpperCAmelCase : def __init__( self : int, __A : List[Any], __A : str=1_3, __A : Dict=3, __A : int=3_2, __A : int=0.2_5, __A : List[str]=8, __A : int=8, __A : Dict=6, __A : str=3_2, __A : Any=True, __A : str=True, __A : int=True, __A : Union[str, Any]="relu6", __A : Any=1_2_8_0, __A : List[Any]=0.1, __A : Optional[Any]=0.0_2, __A : Tuple=True, __A : List[Any]=True, __A : str=1_0, __A : Optional[Any]=None, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = image_size UpperCAmelCase : Optional[int] = depth_multiplier UpperCAmelCase : Union[str, Any] = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[str] = expand_ratio UpperCAmelCase : Dict = tf_padding UpperCAmelCase : str = output_stride UpperCAmelCase : Union[str, Any] = first_layer_is_expansion UpperCAmelCase : List[Any] = finegrained_output UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Optional[Any] = classifier_dropout_prob UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Any = scope def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def __magic_name__ ( self : List[Any], __A : Dict, __A : Optional[Any], __A : Optional[int], __A : Union[str, Any] ): UpperCAmelCase : Any = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def __magic_name__ ( self : str, __A : Union[str, Any], __A : Dict, __A : Optional[Any], __A : str ): UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : Any = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any], __A : Optional[Any], __A : List[str], __A : Dict, __A : Dict ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCAmelCase : Optional[Any] = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = MobileNetVaModelTester(self ) UpperCAmelCase : List[Any] = MobileNetVaConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): def check_hidden_states_output(__A : Any, __A : Optional[Any], __A : str ): UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Optional[Any] = outputs.hidden_states UpperCAmelCase : List[Any] = 1_6 self.assertEqual(len(__A ), __A ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> int: UpperCAmelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : List[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__A ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**__A ) # verify the logits UpperCAmelCase : int = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = model.to(__A ) UpperCAmelCase : Tuple = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**__A ) UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape, __A ) UpperCAmelCase : Tuple = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ], device=__A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], __A, atol=1E-4 ) )
336
0
from math import factorial, radians def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :int = 18 , lowerCAmelCase_ :int = 10 )->float: '''simple docstring''' snake_case_ = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians snake_case_ = radians(lowerCAmelCase_ ) snake_case_ = angle_in_radians snake_case_ = 3 snake_case_ = -1 for _ in range(lowerCAmelCase_ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase_ ) snake_case_ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": __import__('''doctest''').testmod()
159
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """codegen""" UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any, __A : Optional[int]=5_0_4_0_0, __A : Tuple=2_0_4_8, __A : Optional[int]=2_0_4_8, __A : List[str]=4_0_9_6, __A : List[str]=2_8, __A : Union[str, Any]=1_6, __A : Tuple=6_4, __A : Union[str, Any]=None, __A : Union[str, Any]="gelu_new", __A : Any=0.0, __A : Dict=0.0, __A : str=0.0, __A : Optional[int]=1E-5, __A : Any=0.0_2, __A : Any=True, __A : Union[str, Any]=5_0_2_5_6, __A : List[str]=5_0_2_5_6, __A : int=False, **__A : List[Any], ): UpperCAmelCase : int = vocab_size UpperCAmelCase : Tuple = n_ctx UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Optional[int] = n_embd UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : List[str] = n_head UpperCAmelCase : Tuple = n_inner UpperCAmelCase : int = rotary_dim UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : List[str] = resid_pdrop UpperCAmelCase : Optional[Any] = embd_pdrop UpperCAmelCase : str = attn_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=__A, eos_token_id=__A, tie_word_embeddings=__A, **__A ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Any, __A : PretrainedConfig, __A : str = "default", __A : List[PatchingSpec] = None, __A : bool = False, ): super().__init__(__A, task=__A, patching_specs=__A, use_past=__A ) if not getattr(self._config, '''pad_token_id''', __A ): # TODO: how to do that better? UpperCAmelCase : Union[str, Any] = 0 @property def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A, direction='''inputs''' ) UpperCAmelCase : int = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__ ( self : Dict ): return self._config.n_layer @property def __magic_name__ ( self : List[str] ): return self._config.n_head def __magic_name__ ( self : str, __A : PreTrainedTokenizer, __A : int = -1, __A : int = -1, __A : bool = False, __A : Optional[TensorType] = None, ): UpperCAmelCase : Union[str, Any] = super(__A, self ).generate_dummy_inputs( __A, batch_size=__A, seq_length=__A, is_pair=__A, framework=__A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase : str = seqlen + 2 UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase : Optional[Any] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase : Dict = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A, __A, dtype=__A )], dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Tuple ): return 1_3
336
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests _a = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _a = BASE_URL + "/user" # https://github.com/settings/tokens _a = os.environ.get('USER_TOKEN', '') def _A ( UpperCamelCase_ : str) -> dict[Any, Any]: '''simple docstring''' __lowercase = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(UpperCamelCase_, headers=UpperCamelCase_).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"{key}: {value}") else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
17
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
336
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) A : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase__) class _lowercase : """simple docstring""" A__ = 42 A__ = 42 A__ = None A__ = None A__ = None @dataclass(frozen=lowerCamelCase__) class _lowercase : """simple docstring""" A__ = 42 A__ = None A__ = None A__ = None A__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class _lowercase ( lowerCamelCase__): """simple docstring""" A__ = 42 def __init__( self : int , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : str , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : bool = False , ): '''simple docstring''' lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : List[str] = os.path.join( __A , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__A ) , __A , ) , ) lowerCamelCase__ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ : List[Any] = label_list[2], label_list[1] lowerCamelCase__ : str = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + '''.lock''' with FileLock(__A ): if os.path.exists(__A ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowerCamelCase__ : List[Any] = torch.load(__A ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowerCamelCase__ : List[str] = ( processor.get_dev_examples(__A ) if evaluate else processor.get_train_examples(__A ) ) logger.info("Training examples: %s" , len(__A ) ) lowerCamelCase__ : int = hans_convert_examples_to_features(__A , __A , __A , __A ) logger.info("Saving features into cached file %s" , __A ) torch.save(self.features , __A ) def __len__( self : Optional[int] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' return self.features[i] def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _lowercase : """simple docstring""" A__ = 42 def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : str , __lowerCamelCase : Optional[int] = 128 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : bool = False , ): '''simple docstring''' lowerCamelCase__ : Tuple = hans_processors[task]() lowerCamelCase__ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ : Dict = label_list[2], label_list[1] lowerCamelCase__ : Tuple = label_list lowerCamelCase__ : Union[str, Any] = processor.get_dev_examples(__A ) if evaluate else processor.get_train_examples(__A ) lowerCamelCase__ : List[Any] = hans_convert_examples_to_features(__A , __A , __A , __A ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__A )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : str = tf.data.Dataset.from_generator( __A , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.dataset def __len__( self : Optional[int] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Tuple , __lowerCamelCase : Any ): '''simple docstring''' return self.features[i] def lowerCAmelCase ( self : Dict ): '''simple docstring''' return self.label_list class _lowercase ( lowerCamelCase__): """simple docstring""" def lowerCAmelCase ( self : Dict , __lowerCamelCase : str ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__A , "heuristics_train_set.txt" ) ) , "train" ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[int] ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__A , "heuristics_evaluation_set.txt" ) ) , "dev" ) def lowerCAmelCase ( self : int ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : str = [] for i, line in enumerate(__A ): if i == 0: continue lowerCamelCase__ : List[str] = '''%s-%s''' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Optional[Any] = line[6] lowerCamelCase__ : Tuple = line[7][2:] if line[7].startswith("ex" ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=__A , text_a=__A , text_b=__A , label=__A , pairID=__A ) ) return examples def lowercase_ ( _A : List[InputExample] , _A : List[str] , _A : int , _A : PreTrainedTokenizer , ): """simple docstring""" lowerCamelCase__ : str = {label: i for i, label in enumerate(_A )} lowerCamelCase__ : List[str] = [] for ex_index, example in tqdm.tqdm(enumerate(_A ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d" % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_A , max_length=_A , padding="max_length" , truncation=_A , return_overflowing_tokens=_A , ) lowerCamelCase__ : List[Any] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Dict = int(example.pairID ) features.append(InputFeatures(**_A , label=_A , pairID=_A ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"guid: {example}" ) logger.info(F"features: {features[i]}" ) return features A : List[str] = { "hans": 3, } A : int = { "hans": HansProcessor, }
184
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __SCREAMING_SNAKE_CASE : A : int A : Node | None = None A : Node | None = None def __lowercase ( ) ->Node | None: """simple docstring""" lowercase : Optional[Any] = Node(1 ) lowercase : Union[str, Any] = Node(2 ) lowercase : Tuple = Node(3 ) lowercase : Optional[Any] = Node(4 ) lowercase : Optional[int] = Node(5 ) return tree def __lowercase ( _UpperCamelCase ) ->list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __lowercase ( _UpperCamelCase ) ->list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __lowercase ( _UpperCamelCase ) ->list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def __lowercase ( _UpperCamelCase ) ->Sequence[Node | None]: """simple docstring""" lowercase : list[Any] = [] if root is None: return output lowercase : Dict = deque([root] ) while process_queue: lowercase : Dict = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Sequence[Node | None]: """simple docstring""" lowercase : list[Any] = [] def populate_output(_UpperCamelCase, _UpperCamelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(_UpperCamelCase, _UpperCamelCase ) return output def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Sequence[Node | None]: """simple docstring""" lowercase : list[Any] = [] def populate_output(_UpperCamelCase, _UpperCamelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(_UpperCamelCase, _UpperCamelCase ) return output def __lowercase ( _UpperCamelCase ) ->Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase : list[Sequence[Node | None]] = [] lowercase : List[str] = 0 lowercase : Any = height(_UpperCamelCase ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_UpperCamelCase, _UpperCamelCase ) ) lowercase : Optional[int] = 1 else: output.append(get_nodes_from_right_to_left(_UpperCamelCase, _UpperCamelCase ) ) lowercase : Optional[Any] = 0 return output def __lowercase ( ) ->None: # Main function for testing. """simple docstring""" lowercase : Optional[Any] = make_tree() print(f"""In-order Traversal: {inorder(_UpperCamelCase )}""" ) print(f"""Pre-order Traversal: {preorder(_UpperCamelCase )}""" ) print(f"""Post-order Traversal: {postorder(_UpperCamelCase )}""", '''\n''' ) print(f"""Height of Tree: {height(_UpperCamelCase )}""", '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(_UpperCamelCase ), '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1, height(_UpperCamelCase ) + 1 ): print(f"""Level {level}:""", get_nodes_from_left_to_right(_UpperCamelCase, level=_UpperCamelCase ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(_UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
337
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __SCREAMING_SNAKE_CASE ( pl.LightningModule ): def __init__( self , SCREAMING_SNAKE_CASE__ ): super().__init__() lowercase : Any = model lowercase : Optional[Any] = 2 lowercase : Optional[int] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __lowerCamelCase ( self ): pass def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : str = LongformerModel.from_pretrained(_UpperCamelCase ) lowercase : int = LightningModel(_UpperCamelCase ) lowercase : Union[str, Any] = torch.load(_UpperCamelCase, map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model lowercase : List[Any] = LongformerForQuestionAnswering.from_pretrained(_UpperCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_UpperCamelCase ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
337
1
from __future__ import annotations from typing import Any def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" if not postfix_notation: return 0 lowercase : List[str] = {'''+''', '''-''', '''*''', '''/'''} lowercase : list[Any] = [] for token in postfix_notation: if token in operations: lowercase , lowercase : Union[str, Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_UpperCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
337
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __SCREAMING_SNAKE_CASE ( A__ ): A : Any = 'yolos' def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[512, 864] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=100 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = hidden_size lowercase : int = num_hidden_layers lowercase : str = num_attention_heads lowercase : str = intermediate_size lowercase : Dict = hidden_act lowercase : int = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : List[Any] = initializer_range lowercase : Optional[int] = layer_norm_eps lowercase : str = image_size lowercase : Dict = patch_size lowercase : str = num_channels lowercase : Optional[int] = qkv_bias lowercase : List[str] = num_detection_tokens lowercase : List[str] = use_mid_position_embeddings lowercase : Dict = auxiliary_loss # Hungarian matcher lowercase : Optional[Any] = class_cost lowercase : Any = bbox_cost lowercase : int = giou_cost # Loss coefficients lowercase : Dict = bbox_loss_coefficient lowercase : Optional[Any] = giou_loss_coefficient lowercase : Tuple = eos_coefficient class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = version.parse('1.11' ) @property def __lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self ): return 1E-4 @property def __lowerCamelCase ( self ): return 12
337
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __a = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): lowercase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowercase : Optional[int] = torch.manual_seed(0 ) lowercase : int = pipe.dual_guided( prompt='''first prompt''' , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = VersatileDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = generator.manual_seed(0 ) lowercase : Tuple = pipe.dual_guided( prompt='''first prompt''' , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCamelCase ( self ): lowercase : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowercase : str = '''cyberpunk 2077''' lowercase : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowercase : Optional[int] = torch.manual_seed(0 ) lowercase : List[Any] = pipe.dual_guided( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowercase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase : Optional[int] = '''A painting of a squirrel eating a burger ''' lowercase : int = torch.manual_seed(0 ) lowercase : int = pipe.text_to_image( prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowercase : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : List[str] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase : Tuple = pipe.image_variation(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='''numpy''' ).images lowercase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
337
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __a = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Optional[int]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(_UpperCamelCase ), version.parse(_UpperCamelCase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def __lowercase ( _UpperCamelCase, _UpperCamelCase = None ) ->None: """simple docstring""" lowercase : List[Any] = f"""\n{hint}""" if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''', _UpperCamelCase ): lowercase , lowercase , lowercase : Optional[Any] = requirement, None, None else: lowercase : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''', _UpperCamelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f""" got {requirement}""" ) lowercase , lowercase : str = match[0] lowercase : Tuple = want_full.split(''',''' ) # there could be multiple requirements lowercase : List[Any] = {} for w in want_range: lowercase : str = re.findall(R'''^([\s!=<>]{1,2})(.+)''', _UpperCamelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f""" but got {requirement}""" ) lowercase , lowercase : Optional[int] = match[0] lowercase : Dict = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": lowercase : int = '''.'''.join([str(_UpperCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) return # check if any version is installed try: lowercase : List[str] = importlib.metadata.version(_UpperCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" lowercase : Optional[int] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(_UpperCamelCase, _UpperCamelCase )
337
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a = logging.get_logger(__name__) __a = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'deta' A : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=900 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=300 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.25 , **SCREAMING_SNAKE_CASE__ , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = backbone_config.pop('''model_type''' ) lowercase : Any = CONFIG_MAPPING[backbone_model_type] lowercase : List[Any] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = backbone_config lowercase : Union[str, Any] = num_queries lowercase : Any = max_position_embeddings lowercase : int = d_model lowercase : Any = encoder_ffn_dim lowercase : Optional[int] = encoder_layers lowercase : Tuple = encoder_attention_heads lowercase : Optional[Any] = decoder_ffn_dim lowercase : Optional[int] = decoder_layers lowercase : int = decoder_attention_heads lowercase : Any = dropout lowercase : int = attention_dropout lowercase : Dict = activation_dropout lowercase : int = activation_function lowercase : Dict = init_std lowercase : List[str] = init_xavier_std lowercase : Optional[Any] = encoder_layerdrop lowercase : Tuple = auxiliary_loss lowercase : Tuple = position_embedding_type # deformable attributes lowercase : List[str] = num_feature_levels lowercase : Tuple = encoder_n_points lowercase : Optional[int] = decoder_n_points lowercase : Tuple = two_stage lowercase : Optional[Any] = two_stage_num_proposals lowercase : Union[str, Any] = with_box_refine lowercase : Any = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase : Optional[Any] = class_cost lowercase : str = bbox_cost lowercase : List[Any] = giou_cost # Loss coefficients lowercase : Tuple = mask_loss_coefficient lowercase : Any = dice_loss_coefficient lowercase : Dict = bbox_loss_coefficient lowercase : Tuple = giou_loss_coefficient lowercase : Union[str, Any] = eos_coefficient lowercase : Tuple = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return self.encoder_attention_heads @property def __lowerCamelCase ( self ): return self.d_model def __lowerCamelCase ( self ): lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Any = self.backbone_config.to_dict() lowercase : List[str] = self.__class__.model_type return output
337
1
from functools import lru_cache def __lowercase ( _UpperCamelCase ) ->set: """simple docstring""" lowercase : Optional[int] = 2 lowercase : Optional[Any] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_UpperCamelCase ) if n > 1: factors.add(_UpperCamelCase ) return factors @lru_cache def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" return len(unique_prime_factors(_UpperCamelCase ) ) def __lowercase ( _UpperCamelCase ) ->bool: """simple docstring""" return len(set(_UpperCamelCase ) ) in (0, 1) def __lowercase ( _UpperCamelCase ) ->list: """simple docstring""" lowercase : List[Any] = 2 while True: # Increment each value of a generated range lowercase : Dict = [base + i for i in range(_UpperCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase : str = [upf_len(_UpperCamelCase ) for x in group] checker.append(_UpperCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(_UpperCamelCase ): return group # Increment our base variable by 1 base += 1 def __lowercase ( _UpperCamelCase = 4 ) ->int: """simple docstring""" lowercase : Dict = run(_UpperCamelCase ) return results[0] if len(_UpperCamelCase ) else None if __name__ == "__main__": print(solution())
337
def __lowercase ( ) ->List[Any]: """simple docstring""" lowercase : Union[str, Any] = 0 for i in range(1, 1001 ): total += i**i return str(_UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
337
1
def __lowercase ( _UpperCamelCase ) ->bool: """simple docstring""" return str(_UpperCamelCase ) == str(_UpperCamelCase )[::-1] def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" return int(_UpperCamelCase ) + int(str(_UpperCamelCase )[::-1] ) def __lowercase ( _UpperCamelCase = 10000 ) ->int: """simple docstring""" lowercase : List[str] = [] for num in range(1, _UpperCamelCase ): lowercase : Dict = 0 lowercase : Tuple = num while iterations < 50: lowercase : List[Any] = sum_reverse(_UpperCamelCase ) iterations += 1 if is_palindrome(_UpperCamelCase ): break else: lychrel_nums.append(_UpperCamelCase ) return len(_UpperCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
337
import os import re import shutil import sys import tempfile import unittest import black __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __a = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowercase : Any = self.diffusers_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __lowerCamelCase ( self ): lowercase : List[Any] = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowercase : List[Any] = black.format_str(SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , newline='''\n''' ) as f: f.write(SCREAMING_SNAKE_CASE__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: self.assertTrue(f.read() , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Tuple = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , SCREAMING_SNAKE_CASE__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with a really long name lowercase : List[Any] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , SCREAMING_SNAKE_CASE__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE__ ) , )
337
1
__a = '''Input must be a string of 8 numbers plus letter''' __a = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __lowercase ( _UpperCamelCase ) ->bool: """simple docstring""" if not isinstance(_UpperCamelCase, _UpperCamelCase ): lowercase : Optional[Any] = f"""Expected string as input, found {type(_UpperCamelCase ).__name__}""" raise TypeError(_UpperCamelCase ) lowercase : Optional[int] = spanish_id.replace('''-''', '''''' ).upper() if len(_UpperCamelCase ) != 9: raise ValueError(_UpperCamelCase ) try: lowercase : Optional[Any] = int(spanish_id_clean[0:8] ) lowercase : Tuple = spanish_id_clean[8] except ValueError as ex: raise ValueError(_UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(_UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
337
import math class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__=0 ): # a graph with Node 0,1,...,N-1 lowercase : List[Any] = n lowercase : List[Any] = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ ) ] # adjacency matrix for weight lowercase : Union[str, Any] = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = w def __lowerCamelCase ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase : Any = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.dp[u][v] if __name__ == "__main__": __a = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
1
import os def __lowercase ( _UpperCamelCase = "matrix.txt" ) ->int: """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCamelCase ), _UpperCamelCase ) ) as in_file: lowercase : List[Any] = in_file.read() lowercase : str = [[int(_UpperCamelCase ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] lowercase : Union[str, Any] = [[0 for cell in row] for row in grid] lowercase : Any = len(grid[0] ) lowercase : Dict = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] lowercase : str = grid[0][0] for i in range(1, _UpperCamelCase ): lowercase : str = grid[0][i] + dp[0][i - 1] for i in range(1, _UpperCamelCase ): lowercase : List[Any] = grid[i][0] + dp[i - 1][0] for i in range(1, _UpperCamelCase ): for j in range(1, _UpperCamelCase ): lowercase : Tuple = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
337
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(_UpperCamelCase ) / len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
337
1
from collections.abc import Iterable from typing import Generic, TypeVar __a = TypeVar('''_T''') class __SCREAMING_SNAKE_CASE ( Generic[_T] ): def __init__( self , SCREAMING_SNAKE_CASE__ = None ): lowercase : list[_T] = list(iterable or [] ) lowercase : list[_T] = [] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): self._stacka.append(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Dict = self._stacka.pop lowercase : List[Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
337
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __a = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
337
1
import sys from collections import defaultdict class __SCREAMING_SNAKE_CASE : def __init__( self ): lowercase : Optional[int] = [] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.node_position[vertex] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = pos def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowercase : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowercase : str = 2 * start + 1 else: lowercase : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: lowercase , lowercase : List[str] = heap[smallest_child], positions[smallest_child] lowercase , lowercase : Optional[Any] = ( heap[start], positions[start], ) lowercase , lowercase : List[Any] = temp, tempa lowercase : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE__ ) self.top_to_bottom(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = position[index] while index != 0: lowercase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowercase : Tuple = heap[parent] lowercase : Tuple = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE__ ) else: lowercase : int = val lowercase : Any = temp self.set_position(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) break lowercase : Optional[int] = parent else: lowercase : str = val lowercase : Union[str, Any] = temp self.set_position(SCREAMING_SNAKE_CASE__ , 0 ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE__ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = positions[0] lowercase : Optional[Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE__ , 0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) return temp def __lowercase ( _UpperCamelCase ) ->List[Any]: """simple docstring""" lowercase : Optional[Any] = Heap() lowercase : List[str] = [0] * len(_UpperCamelCase ) lowercase : Dict = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowercase : str = [] # Heap of Distance of vertices from their neighboring vertex lowercase : List[Any] = [] for vertex in range(len(_UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCamelCase ) heap.node_position.append(_UpperCamelCase ) lowercase : Dict = [] lowercase : Any = 1 lowercase : int = sys.maxsize for neighbor, distance in adjacency_list[0]: lowercase : Dict = 0 lowercase : Union[str, Any] = distance heap.heapify(_UpperCamelCase, _UpperCamelCase ) for _ in range(1, len(_UpperCamelCase ) ): lowercase : List[Any] = heap.delete_minimum(_UpperCamelCase, _UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowercase : int = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCamelCase )] ): lowercase : Dict = distance heap.bottom_to_top( _UpperCamelCase, heap.get_position(_UpperCamelCase ), _UpperCamelCase, _UpperCamelCase ) lowercase : Union[str, Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __a = int(input('''Enter number of edges: ''').strip()) __a = defaultdict(list) for _ in range(edges_number): __a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
337
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __a = logging.get_logger(__name__) def __lowercase ( _UpperCamelCase ) ->List[int]: """simple docstring""" if isinstance(_UpperCamelCase, np.ndarray ): return list(tensor.shape ) lowercase : Optional[Any] = tf.shape(_UpperCamelCase ) if tensor.shape == tf.TensorShape(_UpperCamelCase ): return dynamic lowercase : Tuple = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_UpperCamelCase )] def __lowercase ( _UpperCamelCase, _UpperCamelCase = None, _UpperCamelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9, axis=_UpperCamelCase, name=_UpperCamelCase ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase=1e-5, _UpperCamelCase=-1 ) ->int: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_UpperCamelCase, _UpperCamelCase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized lowercase , lowercase : Union[str, Any] = tf.nn.moments(_UpperCamelCase, axes=[axis], keepdims=_UpperCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase : int = [1] * inputs.shape.rank lowercase : Union[str, Any] = shape_list(_UpperCamelCase )[axis] lowercase : List[str] = tf.reshape(_UpperCamelCase, _UpperCamelCase ) lowercase : Dict = tf.reshape(_UpperCamelCase, _UpperCamelCase ) # Compute layer normalization using the batch_normalization # function. lowercase : List[str] = tf.nn.batch_normalization( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, offset=_UpperCamelCase, scale=_UpperCamelCase, variance_epsilon=_UpperCamelCase, ) return outputs def __lowercase ( _UpperCamelCase, _UpperCamelCase=0, _UpperCamelCase=-1 ) ->List[Any]: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase : Dict = tf.shape(_UpperCamelCase ) lowercase : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0 ) return tf.reshape(_UpperCamelCase, _UpperCamelCase ) def __lowercase ( _UpperCamelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(_UpperCamelCase, tf.Tensor ): lowercase : Optional[Any] = tf.convert_to_tensor(_UpperCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase : Tuple = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase : str = ( tf.cast(1, encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( _UpperCamelCase, tf.cast(_UpperCamelCase, dtype=tensor.dtype ), message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(_UpperCamelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ), ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : List[Any] = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase : Optional[int] = [x for x in data if len(_UpperCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) lowercase : Any = np.asarray(_UpperCamelCase ) lowercase : List[Any] = 1 lowercase : Tuple = np.array_split(_UpperCamelCase, _UpperCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase : Dict = np.array_split(_UpperCamelCase, _UpperCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_UpperCamelCase ): lowercase : Optional[int] = chunk_data else: lowercase : int = data def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[str]: """simple docstring""" if name in group.attrs: lowercase : str = [n.decode('''utf8''' ) if hasattr(_UpperCamelCase, '''decode''' ) else n for n in group.attrs[name]] else: lowercase : Optional[Any] = [] lowercase : List[str] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(_UpperCamelCase, '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" def _expand_single_ad_tensor(_UpperCamelCase ): if isinstance(_UpperCamelCase, tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_UpperCamelCase, axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor, _UpperCamelCase )
337
1
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Optional[int]: """simple docstring""" lowercase : Tuple = (boundary[1] - boundary[0]) / steps lowercase : List[str] = boundary[0] lowercase : Any = boundary[1] lowercase : Union[str, Any] = make_points(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) lowercase : Optional[int] = 0.0 y += (h / 2.0) * f(_UpperCamelCase ) for i in x_i: # print(i) y += h * f(_UpperCamelCase ) y += (h / 2.0) * f(_UpperCamelCase ) return y def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Optional[int]: """simple docstring""" lowercase : Any = a + h while x < (b - h): yield x lowercase : Any = x + h def __lowercase ( _UpperCamelCase ) ->Optional[Any]: # enter your function here """simple docstring""" lowercase : Optional[int] = (x - 0) * (x - 0) return y def __lowercase ( ) ->int: """simple docstring""" lowercase : List[str] = 0.0 # Lower bound of integration lowercase : List[Any] = 1.0 # Upper bound of integration lowercase : int = 1_0.0 # define number of steps or resolution lowercase : Optional[int] = [a, b] # define boundary of integration lowercase : Optional[Any] = method_a(_UpperCamelCase, _UpperCamelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
337
def __lowercase ( _UpperCamelCase = 4000000 ) ->int: """simple docstring""" lowercase : int = [] lowercase , lowercase : str = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCamelCase ) lowercase , lowercase : Dict = b, a + b return sum(_UpperCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
337
1
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" for param in module.parameters(): lowercase : Optional[int] = False def __lowercase ( ) ->Tuple: """simple docstring""" lowercase : Any = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase : str = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __lowercase ( _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : List[str] = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def __lowercase ( ) ->Optional[int]: """simple docstring""" lowercase : Tuple = datetime.now() lowercase : str = current_time.strftime('''%H:%M:%S''' ) return timestamp
337
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __a = logging.get_logger(__name__) __a = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'perceiver' def __init__( self , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=1280 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=26 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="kv" , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=262 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=56 , SCREAMING_SNAKE_CASE__=[368, 496] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=1920 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[1, 16, 224, 224] , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Any = num_latents lowercase : Union[str, Any] = d_latents lowercase : str = d_model lowercase : int = num_blocks lowercase : str = num_self_attends_per_block lowercase : List[str] = num_self_attention_heads lowercase : List[str] = num_cross_attention_heads lowercase : int = qk_channels lowercase : List[Any] = v_channels lowercase : int = cross_attention_shape_for_attention lowercase : Tuple = self_attention_widening_factor lowercase : Dict = cross_attention_widening_factor lowercase : Any = hidden_act lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : Any = layer_norm_eps lowercase : Any = use_query_residual # masked language modeling attributes lowercase : List[str] = vocab_size lowercase : Dict = max_position_embeddings # image classification attributes lowercase : int = image_size # flow attributes lowercase : List[Any] = train_size # multimodal autoencoding attributes lowercase : List[Any] = num_frames lowercase : Union[str, Any] = audio_samples_per_frame lowercase : int = samples_per_patch lowercase : Optional[int] = output_shape class __SCREAMING_SNAKE_CASE ( A__ ): @property def __lowerCamelCase ( self ): if self.task == "multiple-choice": lowercase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __lowerCamelCase ( self ): return 1E-4 def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 40 , SCREAMING_SNAKE_CASE__ = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : str = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase : Union[str, Any] = preprocessor.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence lowercase : Optional[Any] = [''' '''.join(['''a'''] ) * seq_length] * batch_size lowercase : Any = dict(preprocessor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = inputs.pop('''input_ids''' ) return inputs elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : List[str] = compute_effective_axis_dimension(SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase : List[str] = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = dict(preprocessor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
337
1
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->list[int]: """simple docstring""" if len(_UpperCamelCase ) == 0: return array lowercase , lowercase : Union[str, Any] = min(_UpperCamelCase ), max(_UpperCamelCase ) # Compute the variables lowercase : Any = _max - _min + 1 lowercase , lowercase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase : Dict = i - _min lowercase : List[Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase : Any = 0 for i in range(_UpperCamelCase ): while holes_repeat[i] > 0: lowercase : Any = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __a = input('''Enter numbers separated by comma:\n''') __a = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
337
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowercase ( _UpperCamelCase = 8 ) ->str: """simple docstring""" lowercase : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" i -= len(_UpperCamelCase ) lowercase : Dict = i // 3 lowercase : List[str] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase : Union[str, Any] = ( chars_incl + random(_UpperCamelCase, quotient + remainder ) + random(_UpperCamelCase, _UpperCamelCase ) + random(_UpperCamelCase, _UpperCamelCase ) ) lowercase : Union[str, Any] = list(_UpperCamelCase ) shuffle(_UpperCamelCase ) return "".join(_UpperCamelCase ) # random is a generalised function for letters, characters and numbers def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Dict: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[Any]: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase = 8 ) ->bool: """simple docstring""" if len(_UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowercase : str = any(char in ascii_uppercase for char in password ) lowercase : List[str] = any(char in ascii_lowercase for char in password ) lowercase : Dict = any(char in digits for char in password ) lowercase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowercase ( ) ->Dict: """simple docstring""" lowercase : Union[str, Any] = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowercase : Optional[Any] = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''', password_generator(_UpperCamelCase ) ) print( '''Alternative Password generated:''', alternative_password_generator(_UpperCamelCase, _UpperCamelCase ), ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
337
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( A__ , A__ , A__ , unittest.TestCase ): A : Tuple = StableUnCLIPPipeline A : Dict = TEXT_TO_IMAGE_PARAMS A : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS A : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS A : int = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false A : Union[str, Any] = False def __lowerCamelCase ( self ): lowercase : Dict = 32 lowercase : List[str] = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowercase : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE__ , projection_dim=SCREAMING_SNAKE_CASE__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase : Optional[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=SCREAMING_SNAKE_CASE__ , num_layers=1 , ) torch.manual_seed(0 ) lowercase : Union[str, Any] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) lowercase : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowercase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowercase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase : int = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=SCREAMING_SNAKE_CASE__ , layers_per_block=1 , upcast_attention=SCREAMING_SNAKE_CASE__ , use_linear_projection=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowercase : Union[str, Any] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase : Dict = AutoencoderKL() lowercase : int = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): lowercase : str = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowercase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self ): lowercase : Optional[int] = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=SCREAMING_SNAKE_CASE__ ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): lowercase : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) lowercase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase : List[Any] = pipe('''anime turle''' , generator=SCREAMING_SNAKE_CASE__ , output_type='''np''' ) lowercase : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : Tuple = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) lowercase : int = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : Optional[int] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) lowercase : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
337
from __future__ import annotations __a = [] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" for i in range(len(_UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(_UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, -1, -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, len(_UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" if row >= len(_UpperCamelCase ): solution.append(_UpperCamelCase ) printboard(_UpperCamelCase ) print() return True for i in range(len(_UpperCamelCase ) ): if is_safe(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ): lowercase : int = 1 solve(_UpperCamelCase, row + 1 ) lowercase : Tuple = 0 return False def __lowercase ( _UpperCamelCase ) ->None: """simple docstring""" for i in range(len(_UpperCamelCase ) ): for j in range(len(_UpperCamelCase ) ): if board[i][j] == 1: print('''Q''', end=''' ''' ) else: print('''.''', end=''' ''' ) print() # n=int(input("The no. of queens")) __a = 8 __a = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
337
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __a = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[Any]: """simple docstring""" for attribute in key.split('''.''' ): lowercase : Optional[int] = getattr(_UpperCamelCase, _UpperCamelCase ) if weight_type is not None: lowercase : str = getattr(_UpperCamelCase, _UpperCamelCase ).shape else: lowercase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase : Any = value elif weight_type == "weight_g": lowercase : int = value elif weight_type == "weight_v": lowercase : Tuple = value elif weight_type == "bias": lowercase : List[str] = value else: lowercase : Union[str, Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" lowercase : Dict = [] lowercase : Any = fairseq_model.state_dict() lowercase : Union[str, Any] = hf_model.feature_extractor lowercase : str = hf_model.adapter for name, value in fairseq_dict.items(): lowercase : List[Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, hf_model.config.feat_extract_norm == '''group''', ) lowercase : int = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) lowercase : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase : Union[str, Any] = True if "*" in mapped_key: lowercase : Optional[Any] = name.split(_UpperCamelCase )[0].split('''.''' )[-2] lowercase : Any = mapped_key.replace('''*''', _UpperCamelCase ) if "weight_g" in name: lowercase : Optional[int] = '''weight_g''' elif "weight_v" in name: lowercase : List[str] = '''weight_v''' elif "bias" in name: lowercase : int = '''bias''' elif "weight" in name: lowercase : List[Any] = '''weight''' else: lowercase : Union[str, Any] = None set_recursively(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" lowercase : Optional[Any] = full_name.split('''conv_layers.''' )[-1] lowercase : Dict = name.split('''.''' ) lowercase : str = int(items[0] ) lowercase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Dict: """simple docstring""" lowercase : List[Any] = full_name.split('''adaptor.''' )[-1] lowercase : str = name.split('''.''' ) if items[1].isdigit(): lowercase : List[Any] = int(items[1] ) else: lowercase : int = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowercase : Optional[int] = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowercase : Dict = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowercase : Any = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowercase : Optional[int] = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowercase : List[str] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowercase : List[str] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" lowercase , lowercase : Any = emb.weight.shape lowercase : int = nn.Linear(_UpperCamelCase, _UpperCamelCase, bias=_UpperCamelCase ) lowercase : Optional[Any] = emb.weight.data return lin_layer @torch.no_grad() def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, ) ->Optional[Any]: """simple docstring""" lowercase : Optional[Any] = WavaVecaConfig.from_pretrained( _UpperCamelCase, add_adapter=_UpperCamelCase, adapter_stride=_UpperCamelCase, adapter_kernel_size=_UpperCamelCase, use_auth_token=_UpperCamelCase, output_hidden_size=_UpperCamelCase, ) lowercase : int = MBartConfig.from_pretrained(_UpperCamelCase ) # load model lowercase , lowercase , lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) lowercase : List[Any] = model[0].eval() # load feature extractor lowercase : int = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase, use_auth_token=_UpperCamelCase ) # set weights for wav2vec2 encoder lowercase : Dict = WavaVecaModel(_UpperCamelCase ) recursively_load_weights_wavaveca(model.encoder, _UpperCamelCase ) # load decoder weights lowercase : Optional[Any] = MBartForCausalLM(_UpperCamelCase ) lowercase , lowercase : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=_UpperCamelCase ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowercase : Any = SpeechEncoderDecoderModel(encoder=_UpperCamelCase, decoder=_UpperCamelCase ) lowercase : List[Any] = False lowercase : str = MBartaaTokenizer(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) lowercase : str = hf_wavavec.config.to_dict() lowercase : str = tokenizer.pad_token_id lowercase : str = tokenizer.bos_token_id lowercase : Any = tokenizer.eos_token_id lowercase : Optional[Any] = '''mbart50''' lowercase : Optional[int] = '''wav2vec2''' lowercase : Optional[Any] = tokenizer.eos_token_id lowercase : str = 250004 lowercase : str = tokenizer.eos_token_id lowercase : str = SpeechEncoderDecoderConfig.from_dict(_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) feature_extractor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=10_24, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=25_00_04, type=int, help='''`decoder_start_token_id` of model config''') __a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
337
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : List[str] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f"""{test_file} instead.""" ) lowercase : Optional[int] = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) lowercase : List[Any] = components[:-1] + [test_fn.replace('''.py''', '''''' )] lowercase : Union[str, Any] = '''.'''.join(_UpperCamelCase ) return test_module_path def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" lowercase : Any = get_module_path(_UpperCamelCase ) lowercase : Any = importlib.import_module(_UpperCamelCase ) return test_module def __lowercase ( _UpperCamelCase ) ->List[Any]: """simple docstring""" lowercase : Optional[int] = [] lowercase : List[Any] = get_test_module(_UpperCamelCase ) for attr in dir(_UpperCamelCase ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(_UpperCamelCase, _UpperCamelCase ) ) # sort with class names return sorted(_UpperCamelCase, key=lambda _UpperCamelCase : x.__name__ ) def __lowercase ( _UpperCamelCase ) ->Optional[int]: """simple docstring""" lowercase : Optional[int] = [] lowercase : Optional[Any] = get_test_module(_UpperCamelCase ) for attr in dir(_UpperCamelCase ): lowercase : Optional[int] = getattr(_UpperCamelCase, _UpperCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowercase : List[str] = getattr(_UpperCamelCase, '''all_model_classes''', [] ) if len(_UpperCamelCase ) > 0: test_classes.append(_UpperCamelCase ) # sort with class names return sorted(_UpperCamelCase, key=lambda _UpperCamelCase : x.__name__ ) def __lowercase ( _UpperCamelCase ) ->Tuple: """simple docstring""" lowercase : int = get_test_classes(_UpperCamelCase ) lowercase : str = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_UpperCamelCase, key=lambda _UpperCamelCase : x.__name__ ) def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : Optional[int] = test_class() if hasattr(_UpperCamelCase, '''setUp''' ): test.setUp() lowercase : str = None if hasattr(_UpperCamelCase, '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowercase : str = test.model_tester.__class__ return model_tester def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" lowercase : Any = get_test_classes(_UpperCamelCase ) lowercase : Optional[Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_UpperCamelCase ) # sort with class names return sorted(_UpperCamelCase, key=lambda _UpperCamelCase : x.__name__ ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Optional[int]: """simple docstring""" lowercase : List[str] = get_test_classes_for_model(_UpperCamelCase, _UpperCamelCase ) lowercase : List[str] = [] for test_class in test_classes: lowercase : str = get_model_tester_from_test_class(_UpperCamelCase ) if tester_class is not None: tester_classes.append(_UpperCamelCase ) # sort with class names return sorted(_UpperCamelCase, key=lambda _UpperCamelCase : x.__name__ ) def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : int = get_test_classes(_UpperCamelCase ) lowercase : List[str] = {test_class: get_model_tester_from_test_class(_UpperCamelCase ) for test_class in test_classes} return test_tester_mapping def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : Any = get_model_classes(_UpperCamelCase ) lowercase : Dict = { model_class: get_test_classes_for_model(_UpperCamelCase, _UpperCamelCase ) for model_class in model_classes } return model_test_mapping def __lowercase ( _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : str = get_model_classes(_UpperCamelCase ) lowercase : List[str] = { model_class: get_tester_classes_for_model(_UpperCamelCase, _UpperCamelCase ) for model_class in model_classes } return model_to_tester_mapping def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" if isinstance(_UpperCamelCase, _UpperCamelCase ): return o elif isinstance(_UpperCamelCase, _UpperCamelCase ): return o.__name__ elif isinstance(_UpperCamelCase, (list, tuple) ): return [to_json(_UpperCamelCase ) for x in o] elif isinstance(_UpperCamelCase, _UpperCamelCase ): return {to_json(_UpperCamelCase ): to_json(_UpperCamelCase ) for k, v in o.items()} else: return o
337
from collections.abc import Callable class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ = None ): # Stores actual heap items. lowercase : list = [] # Stores indexes of each item for supporting updates and deletion. lowercase : dict = {} # Stores current size of heap. lowercase : str = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase : Tuple = key or (lambda SCREAMING_SNAKE_CASE__ : x) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase , lowercase : Dict = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase , lowercase : int = self.arr[j], self.arr[i] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : int = self._left(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self._right(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = i if left is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = left if right is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = right return valid_parent def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = self._parent(SCREAMING_SNAKE_CASE__ ) while parent is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Optional[int] = parent, self._parent(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) while valid_parent != index: self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : str = valid_parent, self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if item not in self.pos_map: return lowercase : str = self.pos_map[item] lowercase : Optional[int] = [item, self.key(SCREAMING_SNAKE_CASE__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if item not in self.pos_map: return lowercase : List[str] = self.pos_map[item] del self.pos_map[item] lowercase : Optional[int] = self.arr[self.size - 1] lowercase : int = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(SCREAMING_SNAKE_CASE__ )] ) else: lowercase : int = [item, self.key(SCREAMING_SNAKE_CASE__ )] lowercase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): return self.arr[0] if self.size else None def __lowerCamelCase ( self ): lowercase : str = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __lowercase ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = (UnCLIPScheduler,) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , prev_timestep=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Dict = self.scheduler_classes[0] lowercase : List[str] = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowercase : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1E-5 def __lowerCamelCase ( self ): lowercase : Any = self.scheduler_classes[0] lowercase : Any = self.get_scheduler_config(variance_type='''learned_range''' ) lowercase : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -0.0010011 < 1E-5 def __lowerCamelCase ( self ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : int = self.get_scheduler_config() lowercase : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowercase : Any = scheduler.timesteps lowercase : List[Any] = self.dummy_model() lowercase : Dict = self.dummy_sample_deter lowercase : str = torch.manual_seed(0 ) for i, t in enumerate(SCREAMING_SNAKE_CASE__ ): # 1. predict noise residual lowercase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 lowercase : Tuple = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample lowercase : Optional[Any] = pred_prev_sample lowercase : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 252.2682495 ) < 1E-2 assert abs(result_mean.item() - 0.3284743 ) < 1E-3 def __lowerCamelCase ( self ): lowercase : str = self.scheduler_classes[0] lowercase : Dict = self.get_scheduler_config() lowercase : int = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(25 ) lowercase : Union[str, Any] = scheduler.timesteps lowercase : int = self.dummy_model() lowercase : str = self.dummy_sample_deter lowercase : str = torch.manual_seed(0 ) for i, t in enumerate(SCREAMING_SNAKE_CASE__ ): # 1. predict noise residual lowercase : List[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if i + 1 == timesteps.shape[0]: lowercase : int = None else: lowercase : Any = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase : int = scheduler.step( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , prev_timestep=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample lowercase : int = pred_prev_sample lowercase : List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 258.2044983 ) < 1E-2 assert abs(result_mean.item() - 0.3362038 ) < 1E-3 def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass
337
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
337
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __a = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __a = { '''ctrl''': 2_56, } __a = { '''Pregnancy''': 16_86_29, '''Christianity''': 76_75, '''Explain''': 10_64_23, '''Fitness''': 6_34_40, '''Saving''': 6_31_63, '''Ask''': 2_71_71, '''Ass''': 9_59_85, '''Joke''': 16_35_09, '''Questions''': 4_56_22, '''Thoughts''': 4_96_05, '''Retail''': 5_23_42, '''Feminism''': 16_43_38, '''Writing''': 1_19_92, '''Atheism''': 19_22_63, '''Netflix''': 4_86_16, '''Computing''': 3_96_39, '''Opinion''': 4_32_13, '''Alone''': 4_49_67, '''Funny''': 5_89_17, '''Gaming''': 4_03_58, '''Human''': 40_88, '''India''': 13_31, '''Joker''': 7_71_38, '''Diet''': 3_62_06, '''Legal''': 1_18_59, '''Norman''': 49_39, '''Tip''': 7_26_89, '''Weight''': 5_23_43, '''Movies''': 4_62_73, '''Running''': 2_34_25, '''Science''': 20_90, '''Horror''': 3_77_93, '''Confession''': 6_05_72, '''Finance''': 1_22_50, '''Politics''': 1_63_60, '''Scary''': 19_19_85, '''Support''': 1_26_54, '''Technologies''': 3_25_16, '''Teenage''': 6_61_60, '''Event''': 3_27_69, '''Learned''': 6_74_60, '''Notion''': 18_27_70, '''Wikipedia''': 3_75_83, '''Books''': 66_65, '''Extract''': 7_60_50, '''Confessions''': 10_27_01, '''Conspiracy''': 7_59_32, '''Links''': 6_36_74, '''Narcissus''': 15_04_25, '''Relationship''': 5_47_66, '''Relationships''': 13_47_96, '''Reviews''': 4_16_71, '''News''': 42_56, '''Translation''': 2_68_20, '''multilingual''': 12_84_06, } def __lowercase ( _UpperCamelCase ) ->Tuple: """simple docstring""" lowercase : int = set() lowercase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[Any] = char lowercase : int = set(_UpperCamelCase ) return pairs class __SCREAMING_SNAKE_CASE ( A__ ): A : Optional[int] = VOCAB_FILES_NAMES A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Dict = CONTROL_CODES def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<unk>" , **SCREAMING_SNAKE_CASE__ ): super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: lowercase : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[int] = [tuple(merge.split() ) for merge in merges] lowercase : int = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowercase : Tuple = {} @property def __lowerCamelCase ( self ): return len(self.encoder ) def __lowerCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if token in self.cache: return self.cache[token] lowercase : str = tuple(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase : Tuple = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: lowercase : int = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Tuple = bigram lowercase : List[Any] = [] lowercase : Optional[int] = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: lowercase : List[str] = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : List[Any] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] = tuple(SCREAMING_SNAKE_CASE__ ) lowercase : str = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: lowercase : Tuple = get_pairs(SCREAMING_SNAKE_CASE__ ) lowercase : str = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = word[:-4] lowercase : List[Any] = word return word def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = [] lowercase : List[str] = re.findall(r'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Any = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Dict = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) lowercase : str = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Union[str, Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
337
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a = logging.get_logger(__name__) __a = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __a = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __a = {'''facebook/blenderbot-3B''': 1_28} class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[int] = ['input_ids', 'attention_mask'] A : str = BlenderbotTokenizer def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="replace" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ): super().__init__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowercase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , pre_tok_state.pop('''type''' ) ) lowercase : str = add_prefix_space lowercase : List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = add_prefix_space lowercase : str = '''post_processor''' lowercase : str = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if tokenizer_component_instance: lowercase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase : Tuple = tuple(state['''sep'''] ) if "cls" in state: lowercase : Union[str, Any] = tuple(state['''cls'''] ) lowercase : Optional[int] = False if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: lowercase : Any = add_prefix_space lowercase : Tuple = True if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE__ ) != trim_offsets: lowercase : List[str] = trim_offsets lowercase : Optional[int] = True if changes_to_apply: lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , state.pop('''type''' ) ) lowercase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE__ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCamelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else value lowercase : Any = value def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): lowercase : Dict = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): lowercase : Any = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : int = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Tuple = [self.sep_token_id] lowercase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): return token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = ''' '''.join(SCREAMING_SNAKE_CASE__ ) lowercase : Any = self.encode(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > self.model_max_length: lowercase : Tuple = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
337
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowercase ( ) ->int: """simple docstring""" lowercase : Tuple = HfArgumentParser(_UpperCamelCase ) lowercase : List[str] = parser.parse_args_into_dataclasses()[0] lowercase : Optional[int] = TensorFlowBenchmark(args=_UpperCamelCase ) try: lowercase : Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase : Optional[int] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' lowercase : Any = ''' '''.join(str(_UpperCamelCase ).split(''' ''' )[:-1] ) lowercase : Any = '''''' lowercase : str = eval(str(_UpperCamelCase ).split(''' ''' )[-1] ) lowercase : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: lowercase : Union[str, Any] = full_error_msg + begin_error_msg + str(_UpperCamelCase ) raise ValueError(_UpperCamelCase ) benchmark.run() if __name__ == "__main__": main()
337
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __a = logging.getLogger(__name__) __a = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __SCREAMING_SNAKE_CASE : A : Optional[str] = field( default=A__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) A : Optional[str] = field( default=A__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(A__ )} , ) A : Optional[str] = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A : Optional[str] = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A : Optional[str] = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __SCREAMING_SNAKE_CASE : A : Optional[str] = field( default=A__ , metadata={'help': 'The input training data file (a text file).'} ) A : Optional[str] = field( default=A__ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) A : Optional[str] = field( default=A__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) A : Optional[str] = field( default=A__ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) A : Optional[str] = field( default=A__ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) A : bool = field( default=A__ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) A : bool = field( default=A__ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) A : bool = field(default=A__ , metadata={'help': 'Whether ot not to use whole word mask.'} ) A : float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) A : float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) A : int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) A : int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) A : bool = field( default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = False, _UpperCamelCase = None, ) ->Optional[int]: """simple docstring""" def _dataset(_UpperCamelCase, _UpperCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=_UpperCamelCase, file_path=_UpperCamelCase, block_size=args.block_size, ref_path=_UpperCamelCase, ) return LineByLineTextDataset(tokenizer=_UpperCamelCase, file_path=_UpperCamelCase, block_size=args.block_size ) else: return TextDataset( tokenizer=_UpperCamelCase, file_path=_UpperCamelCase, block_size=args.block_size, overwrite_cache=args.overwrite_cache, cache_dir=_UpperCamelCase, ) if evaluate: return _dataset(args.eval_data_file, args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file, args.train_ref_file ) def __lowercase ( ) ->Any: """simple docstring""" lowercase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase , lowercase , lowercase : Tuple = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', _UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowercase : Dict = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase : Any = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir ) else: lowercase : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: lowercase : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: lowercase : Optional[int] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, ) else: logger.info('''Training new model from scratch''' ) lowercase : List[str] = AutoModelWithLMHead.from_config(_UpperCamelCase ) model.resize_token_embeddings(len(_UpperCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: lowercase : Union[str, Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowercase : str = min(data_args.block_size, tokenizer.max_len ) # Get datasets lowercase : Optional[Any] = ( get_dataset(_UpperCamelCase, tokenizer=_UpperCamelCase, cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowercase : int = ( get_dataset(_UpperCamelCase, tokenizer=_UpperCamelCase, evaluate=_UpperCamelCase, cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowercase : str = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCamelCase, plm_probability=data_args.plm_probability, max_span_length=data_args.max_span_length, ) else: if data_args.mlm and data_args.whole_word_mask: lowercase : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=_UpperCamelCase, mlm_probability=data_args.mlm_probability ) else: lowercase : Optional[int] = DataCollatorForLanguageModeling( tokenizer=_UpperCamelCase, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase : Tuple = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, data_collator=_UpperCamelCase, train_dataset=_UpperCamelCase, eval_dataset=_UpperCamelCase, prediction_loss_only=_UpperCamelCase, ) # Training if training_args.do_train: lowercase : List[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_UpperCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase : Optional[Any] = trainer.evaluate() lowercase : Optional[int] = math.exp(eval_output['''eval_loss'''] ) lowercase : Tuple = {'''perplexity''': perplexity} lowercase : Optional[int] = os.path.join(training_args.output_dir, '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(_UpperCamelCase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''', _UpperCamelCase, str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(_UpperCamelCase ) return results def __lowercase ( _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
337
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = [False] * len(_UpperCamelCase ) lowercase : Optional[int] = [] queue.append(_UpperCamelCase ) lowercase : Union[str, Any] = True while queue: lowercase : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) lowercase : Tuple = True lowercase : Optional[Any] = u return visited[t] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : List[str] = [-1] * (len(_UpperCamelCase )) lowercase : int = 0 while bfs(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ): lowercase : List[str] = float('''Inf''' ) lowercase : int = sink while s != source: # Find the minimum value in select path lowercase : List[Any] = min(_UpperCamelCase, graph[parent[s]][s] ) lowercase : Union[str, Any] = parent[s] max_flow += path_flow lowercase : Optional[int] = sink while v != source: lowercase : Any = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Union[str, Any] = parent[v] return max_flow __a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __a , __a = 0, 5 print(ford_fulkerson(graph, source, sink))
337
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __SCREAMING_SNAKE_CASE ( A__ ): A : torch.FloatTensor class __SCREAMING_SNAKE_CASE ( A__ , A__ ): @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ = 32 , SCREAMING_SNAKE_CASE__ = 64 , SCREAMING_SNAKE_CASE__ = 20 , SCREAMING_SNAKE_CASE__ = 768 , SCREAMING_SNAKE_CASE__=77 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "silu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "linear" , SCREAMING_SNAKE_CASE__ = "prd" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): super().__init__() lowercase : Dict = num_attention_heads lowercase : int = attention_head_dim lowercase : Union[str, Any] = num_attention_heads * attention_head_dim lowercase : str = additional_embeddings lowercase : Optional[int] = time_embed_dim or inner_dim lowercase : Union[str, Any] = embedding_proj_dim or embedding_dim lowercase : Dict = clip_embed_dim or embedding_dim lowercase : List[Any] = Timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 ) lowercase : Optional[Any] = TimestepEmbedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , out_dim=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if embedding_proj_norm_type is None: lowercase : List[Any] = None elif embedding_proj_norm_type == "layer": lowercase : Any = nn.LayerNorm(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowercase : str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if encoder_hid_proj_type is None: lowercase : str = None elif encoder_hid_proj_type == "linear": lowercase : Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowercase : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , SCREAMING_SNAKE_CASE__ ) ) if added_emb_type == "prd": lowercase : Optional[Any] = nn.Parameter(torch.zeros(1 , 1 , SCREAMING_SNAKE_CASE__ ) ) elif added_emb_type is None: lowercase : List[str] = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowercase : int = nn.ModuleList( [ BasicTransformerBlock( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn='''gelu''' , attention_bias=SCREAMING_SNAKE_CASE__ , ) for d in range(SCREAMING_SNAKE_CASE__ ) ] ) if norm_in_type == "layer": lowercase : Dict = nn.LayerNorm(SCREAMING_SNAKE_CASE__ ) elif norm_in_type is None: lowercase : List[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) lowercase : List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ ) lowercase : str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) lowercase : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , SCREAMING_SNAKE_CASE__ , persistent=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE__ ) ) lowercase : Optional[int] = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): lowercase : int = {} def fn_recursive_add_processors(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if hasattr(SCREAMING_SNAKE_CASE__ , '''set_processor''' ): lowercase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return processors def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = len(self.attn_processors.keys() ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(SCREAMING_SNAKE_CASE__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if hasattr(SCREAMING_SNAKE_CASE__ , '''set_processor''' ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): module.set_processor(SCREAMING_SNAKE_CASE__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for name, module in self.named_children(): fn_recursive_attn_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , ): lowercase : Optional[int] = hidden_states.shape[0] lowercase : Tuple = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE__ ) and len(timesteps.shape ) == 0: lowercase : int = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase : Any = timesteps * torch.ones(SCREAMING_SNAKE_CASE__ , dtype=timesteps.dtype , device=timesteps.device ) lowercase : Union[str, Any] = self.time_proj(SCREAMING_SNAKE_CASE__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase : Any = timesteps_projected.to(dtype=self.dtype ) lowercase : List[str] = self.time_embedding(SCREAMING_SNAKE_CASE__ ) if self.embedding_proj_norm is not None: lowercase : List[Any] = self.embedding_proj_norm(SCREAMING_SNAKE_CASE__ ) lowercase : int = self.embedding_proj(SCREAMING_SNAKE_CASE__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase : List[Any] = self.encoder_hidden_states_proj(SCREAMING_SNAKE_CASE__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) lowercase : Any = self.proj_in(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = self.positional_embedding.to(hidden_states.dtype ) lowercase : Dict = [] lowercase : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(SCREAMING_SNAKE_CASE__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase : Dict = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase : List[Any] = hidden_states[:, None, :] lowercase : Optional[Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase : Tuple = self.prd_embedding.to(hidden_states.dtype ).expand(SCREAMING_SNAKE_CASE__ , -1 , -1 ) additional_embeds.append(SCREAMING_SNAKE_CASE__ ) lowercase : int = torch.cat( SCREAMING_SNAKE_CASE__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase : str = F.pad( SCREAMING_SNAKE_CASE__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowercase : Tuple = hidden_states + positional_embeddings if attention_mask is not None: lowercase : List[str] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 lowercase : List[str] = F.pad(SCREAMING_SNAKE_CASE__ , (0, self.additional_embeddings) , value=0.0 ) lowercase : Dict = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase : Tuple = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowercase : Union[str, Any] = self.norm_in(SCREAMING_SNAKE_CASE__ ) for block in self.transformer_blocks: lowercase : Optional[int] = block(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self.norm_out(SCREAMING_SNAKE_CASE__ ) if self.prd_embedding is not None: lowercase : List[str] = hidden_states[:, -1] else: lowercase : int = hidden_states[:, additional_embeddings_len:] lowercase : Optional[Any] = self.proj_to_clip_embeddings(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
337
from typing import List from .keymap import KEYMAP, get_character def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" def decorator(_UpperCamelCase ): lowercase : str = getattr(_UpperCamelCase, '''handle_key''', [] ) handle += [key] setattr(_UpperCamelCase, '''handle_key''', _UpperCamelCase ) return func return decorator def __lowercase ( *_UpperCamelCase ) ->Any: """simple docstring""" def decorator(_UpperCamelCase ): lowercase : List[Any] = getattr(_UpperCamelCase, '''handle_key''', [] ) handle += keys setattr(_UpperCamelCase, '''handle_key''', _UpperCamelCase ) return func return decorator class __SCREAMING_SNAKE_CASE ( A__ ): def __new__( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not hasattr(SCREAMING_SNAKE_CASE__ , '''key_handler''' ): setattr(SCREAMING_SNAKE_CASE__ , '''key_handler''' , {} ) setattr(SCREAMING_SNAKE_CASE__ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , [] ) for key in handled_keys: lowercase : List[Any] = value return new_cls @staticmethod def __lowerCamelCase ( cls ): lowercase : Dict = get_character() if char != KEYMAP["undefined"]: lowercase : Optional[int] = ord(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = cls.key_handler.get(SCREAMING_SNAKE_CASE__ ) if handler: lowercase : Tuple = char return handler(cls ) else: return None def __lowercase ( cls ) ->Any: """simple docstring""" return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
337
1