code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ : Dict = {
'configuration_xlm_roberta_xl': [
'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XLMRobertaXLConfig',
'XLMRobertaXLOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Any = [
'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLMRobertaXLForCausalLM',
'XLMRobertaXLForMaskedLM',
'XLMRobertaXLForMultipleChoice',
'XLMRobertaXLForQuestionAnswering',
'XLMRobertaXLForSequenceClassification',
'XLMRobertaXLForTokenClassification',
'XLMRobertaXLModel',
'XLMRobertaXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaXLConfig,
XLMRobertaXLOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
XLMRobertaXLPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 48 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"microsoft/unispeech-large-1500h-cv": (
"https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "unispeech"
def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =hidden_size
lowerCamelCase__: List[str] =feat_extract_norm
lowerCamelCase__: Dict =feat_extract_activation
lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_)
lowerCamelCase__: Any =list(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_)
lowerCamelCase__: Dict =conv_bias
lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings
lowerCamelCase__: Dict =num_conv_pos_embedding_groups
lowerCamelCase__: int =len(self.conv_dim)
lowerCamelCase__: Union[str, Any] =num_hidden_layers
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Dict =hidden_act
lowerCamelCase__: List[Any] =num_attention_heads
lowerCamelCase__: Dict =hidden_dropout
lowerCamelCase__: Optional[Any] =attention_dropout
lowerCamelCase__: Optional[Any] =activation_dropout
lowerCamelCase__: Tuple =feat_proj_dropout
lowerCamelCase__: int =final_dropout
lowerCamelCase__: Optional[Any] =layerdrop
lowerCamelCase__: Dict =layer_norm_eps
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: int =num_ctc_classes
lowerCamelCase__: Tuple =vocab_size
lowerCamelCase__: Dict =do_stable_layer_norm
lowerCamelCase__: List[Any] =use_weighted_layer_sum
lowerCamelCase__: Dict =classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__: int =apply_spec_augment
lowerCamelCase__: List[str] =mask_time_prob
lowerCamelCase__: Union[str, Any] =mask_time_length
lowerCamelCase__: List[Any] =mask_time_min_masks
lowerCamelCase__: Any =mask_feature_prob
lowerCamelCase__: Optional[Any] =mask_feature_length
lowerCamelCase__: List[str] =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase__: Optional[Any] =num_codevectors_per_group
lowerCamelCase__: str =num_codevector_groups
lowerCamelCase__: Tuple =contrastive_logits_temperature
lowerCamelCase__: int =feat_quantizer_dropout
lowerCamelCase__: Any =num_negatives
lowerCamelCase__: List[str] =codevector_dim
lowerCamelCase__: Union[str, Any] =proj_codevector_dim
lowerCamelCase__: Any =diversity_loss_weight
# ctc loss
lowerCamelCase__: Any =ctc_loss_reduction
lowerCamelCase__: Dict =ctc_zero_infinity
# pretraining loss
lowerCamelCase__: Dict =replace_prob
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1)
| 10 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : str=3_0 , _lowerCAmelCase : List[str]=4_0_0 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=0.9 , _lowerCAmelCase : str=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , _lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , ) -> str:
"""simple docstring"""
snake_case_ = size if size is not None else {"shortest_edge": 3_0}
snake_case_ = crop_size if crop_size is not None else {"height": 3_0, "width": 3_0}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize_and_center_crop
snake_case_ = size
snake_case_ = crop_pct
snake_case_ = crop_size
snake_case_ = do_normalize
snake_case_ = image_mean
snake_case_ = image_std
def lowerCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = PoolFormerImageProcessor if is_vision_available() else None
def lowerCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ = PoolFormerImageProcessingTester(self )
@property
def lowerCAmelCase__ ( self : str ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) )
def lowerCAmelCase__ ( self : Any ) -> List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 3_0} )
self.assertEqual(image_processor.crop_size , {"height": 3_0, "width": 3_0} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2} )
self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} )
def lowerCAmelCase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
pass
def lowerCAmelCase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def lowerCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def lowerCAmelCase__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 159 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float:
"""simple docstring"""
lowerCamelCase__: str =a
while True:
lowerCamelCase__: Optional[Any] =Decimal(__a ) - (
Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__a ) ) < precision: # noqa: S307
return float(__a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}')
# Find Square Root of 5
print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}')
# Exponential Roots
print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
| 10 | 0 |
from queue import PriorityQueue
from typing import Any
import numpy as np
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> float | int:
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
_lowercase =cst_fwd.get(__a , np.inf )
_lowercase =cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
_lowercase =new_cost_f
_lowercase =v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
_lowercase =cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> int:
"""simple docstring"""
_lowercase =-1
_lowercase =set()
_lowercase =set()
_lowercase ={source: 0}
_lowercase ={destination: 0}
_lowercase ={source: None}
_lowercase ={destination: None}
_lowercase =PriorityQueue()
_lowercase =PriorityQueue()
_lowercase =np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
_lowercase =queue_forward.get()
visited_forward.add(__a )
_lowercase =queue_backward.get()
visited_backward.add(__a )
_lowercase =pass_and_relaxation(
__a , __a , __a , __a , __a , __a , __a , __a , __a , )
_lowercase =pass_and_relaxation(
__a , __a , __a , __a , __a , __a , __a , __a , __a , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
_lowercase =shortest_distance
return shortest_path_distance
UpperCAmelCase__ = {
'''B''': [['''C''', 1]],
'''C''': [['''D''', 1]],
'''D''': [['''F''', 1]],
'''E''': [['''B''', 1], ['''G''', 2]],
'''F''': [],
'''G''': [['''F''', 1]],
}
UpperCAmelCase__ = {
'''B''': [['''E''', 1]],
'''C''': [['''B''', 1]],
'''D''': [['''C''', 1]],
'''F''': [['''D''', 1], ['''G''', 1]],
'''E''': [[None, np.inf]],
'''G''': [['''E''', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
import itertools
import math
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase_ ( ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[int] =2
while True:
if is_prime(__a ):
yield num
num += 1
def lowerCAmelCase_ ( __a = 10001 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , __a ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 0 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
a : int = logging.getLogger(__name__)
@dataclass
class a :
"""simple docstring"""
a : int = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
a : Any = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
a : Optional[int] = field(
default=1_024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a : Optional[int] = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
a : Dict = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
a : str = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a : Any = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a : Union[str, Any] = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
a : Optional[int] = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A csv or a json file containing the training data.'} )
a : Optional[Any] = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A csv or a json file containing the validation data.'} )
a : Tuple = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase ( self : Any ) -> Optional[int]:
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__UpperCAmelCase : Tuple = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__UpperCAmelCase : Dict = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class a :
"""simple docstring"""
a : List[Any] = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a : Union[str, Any] = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a : str = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a : Any = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a : str = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
a : Optional[Any] = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a : Dict = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def lowerCamelCase__ ( ):
__UpperCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCAmelCase : Any = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__UpperCAmelCase : Any = training_args.get_process_log_level()
logger.setLevel(__a )
datasets.utils.logging.set_verbosity(__a )
transformers.utils.logging.set_verbosity(__a )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__UpperCAmelCase : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__UpperCAmelCase : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__UpperCAmelCase : List[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__UpperCAmelCase : str = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__UpperCAmelCase : Any = data_args.train_file.split(""".""" )[-1]
__UpperCAmelCase : Any = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__UpperCAmelCase : Tuple = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__UpperCAmelCase : int = load_dataset("""csv""" , data_files=__a , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__UpperCAmelCase : str = load_dataset("""json""" , data_files=__a , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__UpperCAmelCase : Union[str, Any] = raw_datasets["train"].features["label"].names
__UpperCAmelCase : int = len(__a )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__UpperCAmelCase : Any = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__a , )
__UpperCAmelCase : Union[str, Any] = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__UpperCAmelCase : Optional[Any] = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__UpperCAmelCase : str = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__UpperCAmelCase : List[Any] = {"Refused": 0, "Entailed": 1}
__UpperCAmelCase : int = {0: "Refused", 1: "Entailed"}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__UpperCAmelCase : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(__lowerCamelCase : Union[str, Any] ):
# Tokenize the texts
def _convert_table_text_to_pandas(__lowerCamelCase : Dict ):
__UpperCAmelCase : int = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__UpperCAmelCase : Dict = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__UpperCAmelCase : List[str] = examples["statement"]
__UpperCAmelCase : Any = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__UpperCAmelCase : int = tokenizer(__a , __a , padding=__a , max_length=__a , truncation=__a )
__UpperCAmelCase : Tuple = examples["label"]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__UpperCAmelCase : Any = raw_datasets.map(
__a , batched=__a , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__UpperCAmelCase : Optional[Any] = raw_datasets["train"]
if data_args.max_train_samples is not None:
__UpperCAmelCase : List[str] = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__UpperCAmelCase : str = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
__UpperCAmelCase : Dict = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__UpperCAmelCase : Optional[int] = raw_datasets["test"]
if data_args.max_predict_samples is not None:
__UpperCAmelCase : str = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(__a ) ) , 3 ):
logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__lowerCamelCase : Optional[int] ):
__UpperCAmelCase : List[str] = p.predictions[0] if isinstance(p.predictions , __a ) else p.predictions
__UpperCAmelCase : Tuple = np.argmax(__a , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__UpperCAmelCase : Optional[int] = default_data_collator
elif training_args.fpaa:
__UpperCAmelCase : Optional[Any] = DataCollatorWithPadding(__a , pad_to_multiple_of=8 )
else:
__UpperCAmelCase : List[Any] = None
# Initialize our Trainer
__UpperCAmelCase : Optional[int] = Trainer(
model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__a , tokenizer=__a , data_collator=__a , )
# Training
if training_args.do_train:
__UpperCAmelCase : Union[str, Any] = None
if training_args.resume_from_checkpoint is not None:
__UpperCAmelCase : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__UpperCAmelCase : Union[str, Any] = last_checkpoint
__UpperCAmelCase : Optional[int] = trainer.train(resume_from_checkpoint=__a )
__UpperCAmelCase : int = train_result.metrics
__UpperCAmelCase : Optional[int] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__a )
)
__UpperCAmelCase : List[str] = min(__a , len(__a ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __a )
trainer.save_metrics("""train""" , __a )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__UpperCAmelCase : Tuple = trainer.evaluate(eval_dataset=__a )
__UpperCAmelCase : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a )
__UpperCAmelCase : Union[str, Any] = min(__a , len(__a ) )
trainer.log_metrics("""eval""" , __a )
trainer.save_metrics("""eval""" , __a )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__UpperCAmelCase : Dict = predict_dataset.remove_columns("""label""" )
__UpperCAmelCase : int = trainer.predict(__a , metric_key_prefix="""predict""" ).predictions
__UpperCAmelCase : List[str] = np.argmax(__a , axis=1 )
__UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(__a , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__a ):
__UpperCAmelCase : Dict = label_list[item]
writer.write(f"""{index}\t{item}\n""" )
__UpperCAmelCase : List[str] = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if training_args.push_to_hub:
trainer.push_to_hub(**__a )
else:
trainer.create_model_card(**__a )
def lowerCamelCase__ ( __lowerCamelCase : Tuple ):
main()
if __name__ == "__main__":
main()
| 114 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30}
lowerCamelCase__: Any =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Tuple =min_resolution
lowerCamelCase__: Union[str, Any] =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop
lowerCamelCase__: Optional[int] =size
lowerCamelCase__: str =crop_pct
lowerCamelCase__: Any =crop_size
lowerCamelCase__: List[str] =do_normalize
lowerCamelCase__: List[str] =image_mean
lowerCamelCase__: Tuple =image_std
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = PoolFormerImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"shortest_edge": 30})
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, unittest.TestCase ):
lowerCamelCase_ : Optional[int] = StableDiffusionXLImgaImgPipeline
lowerCamelCase_ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
lowerCamelCase_ : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
lowerCamelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowerCamelCase_ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase_ : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase_ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
snake_case_ : Tuple = EulerDiscreteScheduler(
beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , )
torch.manual_seed(0 )
snake_case_ : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
snake_case_ : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , )
snake_case_ : Optional[Any] = CLIPTextModel(UpperCAmelCase_ )
snake_case_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCAmelCase_ )
snake_case_ : Union[str, Any] = CLIPTextModelWithProjection(UpperCAmelCase_ )
snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCAmelCase_ )
snake_case_ : int = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_a,
"tokenizer_2": tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def lowerCamelCase (self , __magic_name__ , __magic_name__=0 ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ : Any = image / 2 + 0.5
if str(UpperCAmelCase_ ).startswith('''mps''' ):
snake_case_ : str = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ : List[str] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ : Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "numpy",
"strength": 0.75,
}
return inputs
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
snake_case_ : List[str] = self.get_dummy_components()
snake_case_ : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase_ )
snake_case_ : Dict = sd_pipe.to(UpperCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ : Dict = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ : Union[str, Any] = sd_pipe(**UpperCAmelCase_ ).images
snake_case_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
snake_case_ : List[Any] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def lowerCamelCase (self ) -> List[Any]:
'''simple docstring'''
pass
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
snake_case_ : Optional[int] = self.get_dummy_components()
snake_case_ : Dict = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase_ )
snake_case_ : str = sd_pipe.to(UpperCAmelCase_ )
snake_case_ : List[Any] = sd_pipe.to(UpperCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
# forward without prompt embeds
snake_case_ : int = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ : List[Any] = 3 * ["this is a negative prompt"]
snake_case_ : Tuple = negative_prompt
snake_case_ : int = 3 * [inputs["prompt"]]
snake_case_ : Tuple = sd_pipe(**UpperCAmelCase_ )
snake_case_ : Tuple = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
snake_case_ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_ )
snake_case_ : Dict = 3 * ["this is a negative prompt"]
snake_case_ : Any = 3 * [inputs.pop('''prompt''' )]
(
snake_case_
) : Tuple = sd_pipe.encode_prompt(UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ )
snake_case_ : int = sd_pipe(
**UpperCAmelCase_ , prompt_embeds=UpperCAmelCase_ , negative_prompt_embeds=UpperCAmelCase_ , pooled_prompt_embeds=UpperCAmelCase_ , negative_pooled_prompt_embeds=UpperCAmelCase_ , )
snake_case_ : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase (self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase (self , __magic_name__ , __magic_name__="cpu" , __magic_name__=torch.floataa , __magic_name__=0 ) -> Tuple:
'''simple docstring'''
snake_case_ : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ : Union[str, Any] = np.random.RandomState(UpperCAmelCase_ ).standard_normal((1, 4, 64, 64) )
snake_case_ : Union[str, Any] = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ )
snake_case_ : Any = {
"prompt": "a photograph of an astronaut riding a horse",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
snake_case_ : List[str] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' )
pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ : int = self.get_inputs(UpperCAmelCase_ )
snake_case_ : str = pipe(**UpperCAmelCase_ ).images
snake_case_ : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
snake_case_ : int = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] )
assert np.abs(image_slice - expected_slice ).max() < 7e-3
| 279 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A = {
"yjernite/retribert-base-uncased": 512,
}
__A = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = RetriBertTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars
):
lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type"))
lowerCamelCase__: int =do_lower_case
lowerCamelCase__: int =strip_accents
lowerCamelCase__: List[str] =tokenize_chinese_chars
lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_)
lowerCamelCase__: Any =do_lower_case
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self.sep_token_id]
lowerCamelCase__: Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
| 10 | 0 |
'''simple docstring'''
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCAmelCase : Any = n
UpperCAmelCase : Tuple = [None] * self.n
UpperCAmelCase : str = 0 # index of the first element
UpperCAmelCase : Tuple = 0
UpperCAmelCase : Optional[Any] = 0
def __len__( self ):
'''simple docstring'''
return self.size
def A_ ( self ):
'''simple docstring'''
return self.size == 0
def A_ ( self ):
'''simple docstring'''
return False if self.is_empty() else self.array[self.front]
def A_ ( self , snake_case ):
'''simple docstring'''
if self.size >= self.n:
raise Exception("QUEUE IS FULL" )
UpperCAmelCase : List[Any] = data
UpperCAmelCase : Dict = (self.rear + 1) % self.n
self.size += 1
return self
def A_ ( self ):
'''simple docstring'''
if self.size == 0:
raise Exception("UNDERFLOW" )
UpperCAmelCase : Optional[Any] = self.array[self.front]
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : Dict = (self.front + 1) % self.n
self.size -= 1
return temp
| 311 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =parent
lowerCamelCase__: List[str] =batch_size
lowerCamelCase__: Optional[int] =seq_length
lowerCamelCase__: Optional[Any] =is_training
lowerCamelCase__: str =use_labels
lowerCamelCase__: Optional[Any] =vocab_size
lowerCamelCase__: int =hidden_size
lowerCamelCase__: Dict =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: int =hidden_act
lowerCamelCase__: Tuple =hidden_dropout_prob
lowerCamelCase__: List[str] =attention_probs_dropout_prob
lowerCamelCase__: Optional[int] =max_position_embeddings
lowerCamelCase__: int =eos_token_id
lowerCamelCase__: Union[str, Any] =pad_token_id
lowerCamelCase__: List[str] =bos_token_id
lowerCamelCase__: int =initializer_range
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: Dict =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , )
lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =20
lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: str =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: List[Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4")
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: Union[str, Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: Dict =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[str] =20
lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Optional[int] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: List[Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: str =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_)
lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 99
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowerCamelCase__: Optional[Any] =input_ids.shape[0]
lowerCamelCase__: List[str] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data()
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_)
lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(UpperCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = True
lowercase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_)
@jax.jit
def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)
with self.subTest("JIT Enabled"):
lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_)
lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"])
lowerCamelCase__: int ={
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("JIT Enabled"):
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id
lowerCamelCase__: str =model(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.")
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_)
lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
lowerCamelCase__: Any =["Sam"]
lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax")
lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic."
lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 10 | 0 |
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class __UpperCAmelCase :
def __init__( self : Optional[Any], __A : Dict, __A : Tuple=1_3, __A : int=7, __A : Dict=False, __A : Dict=True, __A : Optional[int]=False, __A : List[Any]=False, __A : Union[str, Any]=1_9, __A : Dict=3_2, __A : Optional[Any]=5, __A : Any=4, __A : int=3_7, __A : Union[str, Any]="gelu", __A : List[Any]=0.1, __A : Tuple=0.1, __A : Any=5_1_2, __A : Tuple=1_6, __A : Optional[Any]=2, __A : Optional[Any]=0.0_2, __A : str=3, __A : Optional[int]=4, __A : Tuple=None, ):
UpperCAmelCase : Tuple = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : Union[str, Any] = seq_length
UpperCAmelCase : List[str] = is_training
UpperCAmelCase : Optional[int] = use_input_mask
UpperCAmelCase : int = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : Any = vocab_size
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : int = hidden_act
UpperCAmelCase : List[str] = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : Optional[Any] = max_position_embeddings
UpperCAmelCase : str = type_vocab_size
UpperCAmelCase : List[str] = type_sequence_label_size
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Any = num_labels
UpperCAmelCase : int = num_choices
UpperCAmelCase : Tuple = scope
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase : Optional[Any] = None
if self.use_input_mask:
UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
UpperCAmelCase : List[str] = ids_tensor([self.batch_size], self.num_choices )
UpperCAmelCase : Optional[Any] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Dict = EsmConfig(
vocab_size=3_3, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=UpperCAmelCase_, esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False}, )
return config
def __magic_name__ ( self : Optional[Any], __A : int, __A : List[str], __A : str, __A : List[str], __A : List[str], __A : str ):
UpperCAmelCase : str = EsmForProteinFolding(config=UpperCAmelCase_ ).float()
model.to(UpperCAmelCase_ )
model.eval()
UpperCAmelCase : str = model(UpperCAmelCase_, attention_mask=UpperCAmelCase_ )
UpperCAmelCase : Optional[int] = model(UpperCAmelCase_ )
UpperCAmelCase : Any = model(UpperCAmelCase_ )
self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 1_4, 3) )
self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) )
def __magic_name__ ( self : List[Any] ):
UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
UpperCAmelCase
) : Optional[Any] = config_and_inputs
UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
UpperCamelCase = False
UpperCamelCase = (EsmForProteinFolding,) if is_torch_available() else ()
UpperCamelCase = ()
UpperCamelCase = {} if is_torch_available() else {}
UpperCamelCase = False
def __magic_name__ ( self : Optional[Any] ):
UpperCAmelCase : Optional[Any] = EsmFoldModelTester(self )
UpperCAmelCase : str = ConfigTester(self, config_class=UpperCAmelCase_, hidden_size=3_7 )
def __magic_name__ ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def __magic_name__ ( self : List[str] ):
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
@unittest.skip('''Does not support attention outputs''' )
def __magic_name__ ( self : List[Any] ):
pass
@unittest.skip
def __magic_name__ ( self : int ):
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def __magic_name__ ( self : str ):
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def __magic_name__ ( self : Optional[int] ):
pass
@unittest.skip('''ESMFold does not support passing input embeds!''' )
def __magic_name__ ( self : Dict ):
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def __magic_name__ ( self : Optional[Any] ):
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def __magic_name__ ( self : str ):
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def __magic_name__ ( self : Any ):
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def __magic_name__ ( self : Optional[Any] ):
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def __magic_name__ ( self : Union[str, Any] ):
pass
@unittest.skip('''ESMFold does not output hidden states in the normal way.''' )
def __magic_name__ ( self : List[str] ):
pass
@unittest.skip('''ESMfold does not output hidden states in the normal way.''' )
def __magic_name__ ( self : List[str] ):
pass
@unittest.skip('''ESMFold only has one output format.''' )
def __magic_name__ ( self : Dict ):
pass
@unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' )
def __magic_name__ ( self : List[str] ):
pass
@unittest.skip('''ESMFold does not support input chunking.''' )
def __magic_name__ ( self : Dict ):
pass
@unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' )
def __magic_name__ ( self : int ):
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def __magic_name__ ( self : str ):
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def __magic_name__ ( self : Any ):
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def __magic_name__ ( self : List[Any] ):
pass
@unittest.skip('''ESMFold doesn\'t support data parallel.''' )
def __magic_name__ ( self : Dict ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __magic_name__ ( self : Union[str, Any] ):
pass
@require_torch
class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
@slow
def __magic_name__ ( self : Any ):
UpperCAmelCase : Optional[Any] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float()
model.eval()
UpperCAmelCase : Any = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] )
UpperCAmelCase : int = model(UpperCAmelCase_ )["positions"]
UpperCAmelCase : Tuple = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4], dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], UpperCAmelCase_, atol=1E-4 ) )
| 336 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "prophetnet.tokenizer"}
__A = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =collections.OrderedDict()
with open(__a , "r" , encoding="utf-8" ) as reader:
lowerCamelCase__: int =reader.readlines()
for index, token in enumerate(__a ):
lowerCamelCase__: List[str] =token.rstrip("\n" )
lowerCamelCase__: List[Any] =index
return vocab
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None:
'''simple docstring'''
lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(UpperCAmelCase_))
lowerCamelCase__: Optional[int] =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10):
lowerCamelCase__: Optional[int] =F"""[unused{i}]"""
lowerCamelCase__: int =5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
lowerCamelCase__: int =12
lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(UpperCAmelCase_)
def __getstate__(self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.__dict__.copy()
lowerCamelCase__: Dict =None
return state
def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
lowerCamelCase__: Dict ={}
lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return ([0] * len(UpperCAmelCase_)) + [1]
return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1]
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Any =[self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
return len(self.sp_model) + self.fairseq_offset
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip()
return out_string
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: List[str] =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase_)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase_ , "wb") as fi:
lowerCamelCase__: Dict =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
lowerCamelCase__: Union[str, Any] =[self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 10 | 0 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__a , __a )
def __A ( lowerCamelCase_ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = emb.weight.shape
SCREAMING_SNAKE_CASE : Tuple = nn.Linear(__a , __a , bias=__a )
SCREAMING_SNAKE_CASE : int = emb.weight.data
return lin_layer
def __A ( lowerCamelCase_ , lowerCamelCase_=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE : List[Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE : int = key.replace("""moe_layer.experts.0""" , f'''ffn.experts.expert_{expert_idx}''' )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" )
if "gate" in key:
SCREAMING_SNAKE_CASE : int = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE : Tuple = key.replace(""".fc2.""" , """.ffn.fc2.""" )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE : Tuple = key.replace(""".fc1.""" , """.ffn.fc1.""" )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE : int = key.replace(""".encoder_attn.""" , """.cross_attention.""" )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE : Optional[int] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE : List[str] = key.replace("""final_layer_norm""" , """ff_layer_norm""" )
SCREAMING_SNAKE_CASE : List[str] = state_dict[old_key]
return new_dict
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = WEIGHTS_NAME ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Any = 0
os.makedirs(__a , exist_ok=__a )
for expert in range(__a ):
SCREAMING_SNAKE_CASE : Any = switch_checkpoint_path + f'''-rank-{expert}.pt'''
if os.path.isfile(__a ):
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(__a )["model"]
remove_ignore_keys_(__a )
SCREAMING_SNAKE_CASE : int = rename_fairseq_keys(__a , __a )
SCREAMING_SNAKE_CASE : Any = os.path.join(
__a , weights_name.replace(""".bin""" , f'''-{len(__a )+1:05d}-of-???.bin''' ) )
torch.save(__a , __a )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__a )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(__a , weights_name.replace(""".bin""" , f'''-{len(__a )+1:05d}-of-???.bin''' ) )
SCREAMING_SNAKE_CASE : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["model"]
remove_ignore_keys_(__a )
SCREAMING_SNAKE_CASE : Any = rename_fairseq_keys(__a , __a )
SCREAMING_SNAKE_CASE : Optional[Any] = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__a ) == 1:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(__a , __a )
torch.save(__a , __a )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__a , __a )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE : Dict = {}
for idx, shard in enumerate(__a ):
SCREAMING_SNAKE_CASE : str = weights_name.replace(""".bin""" , f'''-{idx+1:05d}-of-{len(__a ):05d}.bin''' )
SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(__a , weights_name.replace(""".bin""" , f'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(__a , os.path.join(__a , __a ) )
for key in shard:
SCREAMING_SNAKE_CASE : List[str] = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE : List[str] = {"total_size": total_size}
SCREAMING_SNAKE_CASE : List[Any] = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(__a , __a ) , """w""" , encoding="""utf-8""" ) as f:
SCREAMING_SNAKE_CASE : str = json.dumps(__a , indent=2 , sort_keys=__a ) + "\n"
f.write(__a )
return metadata, index
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--nllb_moe_checkpoint_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
__UpperCAmelCase = parser.parse_args()
__UpperCAmelCase , __UpperCAmelCase = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
__UpperCAmelCase = NllbMoeConfig.from_pretrained(
"""facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
__UpperCAmelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("""Done""")
model.save_pretrained(args.pytorch_dump_folder_path)
| 323 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 0 |
from random import randint, random
def lowerCAmelCase__( lowercase : Tuple , lowercase : Dict , lowercase : Union[str, Any] , lowercase : Tuple = False , lowercase : List[Any] = False , lowercase : Tuple = 5 , ) -> list:
__snake_case : Tuple = [[-1] * number_of_cells] # Create a highway without any car
__snake_case : Dict = 0
__snake_case : Any = max(__a , 0 )
while i < number_of_cells:
__snake_case : str = (
randint(0 , __a ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> int:
__snake_case : Optional[int] = 0
__snake_case : Optional[int] = highway_now[car_index + 1 :]
for cell in range(len(__a ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(__a , -1 )
def lowerCAmelCase__( lowercase : int , lowercase : Tuple , lowercase : Optional[Any] ) -> list:
__snake_case : Optional[int] = len(__a )
# Beforce calculations, the highway is empty
__snake_case : Dict = [-1] * number_of_cells
for car_index in range(__a ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
__snake_case : int = min(highway_now[car_index] + 1 , __a )
# Number of empty cell before the next car
__snake_case : Union[str, Any] = get_distance(__a , __a ) - 1
# We can't have the car causing an accident
__snake_case : Dict = min(next_highway[car_index] , __a )
if random() < probability:
# Randomly, a driver will slow down
__snake_case : int = max(next_highway[car_index] - 1 , 0 )
return next_highway
def lowerCAmelCase__( lowercase : Tuple , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] ) -> list:
__snake_case : Dict = len(highway[0] )
for i in range(__a ):
__snake_case : Dict = update(highway[i] , __a , __a )
__snake_case : List[str] = [-1] * number_of_cells
for car_index in range(__a ):
__snake_case : Any = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
__snake_case : Dict = (car_index + speed) % number_of_cells
# Commit the change of position
__snake_case : Optional[Any] = speed
highway.append(__a )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 0 |
'''simple docstring'''
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
__lowerCamelCase = [
{'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''},
{'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''},
{'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''},
{'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''},
{'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''},
{'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''},
{'''dataset''': '''snli''', '''config_name''': '''plain_text'''},
{'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''},
{'''dataset''': '''wiki40b''', '''config_name''': '''en'''},
{'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''},
{'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''},
{'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''},
{'''dataset''': '''natural_questions''', '''config_name''': '''default'''},
]
def UpperCAmelCase__ ( UpperCAmelCase__=True ) -> int:
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__SCREAMING_SNAKE_CASE ) )
class A__ ( __SCREAMING_SNAKE_CASE ):
lowercase = None
lowercase = None
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]:
'''simple docstring'''
with TemporaryDirectory() as tmp_dir:
A_ = dataset_module_factory(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ )
A_ = import_main_class(dataset_module.module_path , dataset=UpperCAmelCase_ )
A_ = builder_cls(
cache_dir=UpperCAmelCase_ , config_name=UpperCAmelCase_ , hash=dataset_module.hash , )
A_ = "/".join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=UpperCAmelCase_ ).replace(os.sep , """/""" ),
config.DATASET_INFO_FILENAME,
] )
A_ = cached_path(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ )
self.assertTrue(os.path.exists(UpperCAmelCase_ ) )
@pytest.mark.integration
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict:
A_ = tmp_path_factory.mktemp("""test_hf_gcp""" ) / "test_wikipedia_simple"
A_ = dataset_module_factory("""wikipedia""", cache_dir=__a )
A_ = import_main_class(dataset_module.module_path )
A_ = builder_cls(
cache_dir=__a, config_name="""20220301.frr""", hash=dataset_module.hash, )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
A_ = None
builder_instance.download_and_prepare()
A_ = builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]:
A_ = dataset_module_factory("""wikipedia""", cache_dir=__a )
A_ = import_main_class(dataset_module.module_path, dataset=__a )
A_ = builder_cls(
cache_dir=__a, config_name="""20220301.frr""", hash=dataset_module.hash, )
A_ = builder_instance.as_streaming_dataset()
assert ds
assert isinstance(__a, __a )
assert "train" in ds
assert isinstance(ds["""train"""], __a )
assert next(iter(ds["""train"""] ) )
| 162 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowercase_ = Features({"image": Image()} )
lowercase_ = Features({"labels": ClassLabel} )
lowercase_ = "image"
lowercase_ = "labels"
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""")
if not isinstance(features[self.label_column] , UpperCAmelCase_):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""")
lowerCamelCase__: List[Any] =copy.deepcopy(self)
lowerCamelCase__: Optional[int] =self.label_schema.copy()
lowerCamelCase__: int =features[self.label_column]
lowerCamelCase__: int =label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 10 | 0 |
from __future__ import annotations
lowerCamelCase : int = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[Any] , lowercase : str , lowercase : Optional[Any] , lowercase : Any , ):
'''simple docstring'''
lowerCamelCase_ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__a ) )
] # the reference grid
lowerCamelCase_ = 1
lowerCamelCase_ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__a ) )
] # the action grid
lowerCamelCase_ = init[0]
lowerCamelCase_ = init[1]
lowerCamelCase_ = 0
lowerCamelCase_ = g + heuristic[x][y] # cost from starting cell to destination cell
lowerCamelCase_ = [[f, g, x, y]]
lowerCamelCase_ = False # flag that is set when search is complete
lowerCamelCase_ = False # flag set if we can't find expand
while not found and not resign:
if len(__a ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
lowerCamelCase_ = cell.pop()
lowerCamelCase_ = next_cell[2]
lowerCamelCase_ = next_cell[3]
lowerCamelCase_ = next_cell[1]
if x == goal[0] and y == goal[1]:
lowerCamelCase_ = True
else:
for i in range(len(__a ) ): # to try out different valid actions
lowerCamelCase_ = x + DIRECTIONS[i][0]
lowerCamelCase_ = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__a ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
lowerCamelCase_ = g + cost
lowerCamelCase_ = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
lowerCamelCase_ = 1
lowerCamelCase_ = i
lowerCamelCase_ = []
lowerCamelCase_ = goal[0]
lowerCamelCase_ = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
lowerCamelCase_ = x - DIRECTIONS[action[x][y]][0]
lowerCamelCase_ = y - DIRECTIONS[action[x][y]][1]
lowerCamelCase_ = xa
lowerCamelCase_ = ya
invpath.append([x, y] )
lowerCamelCase_ = []
for i in range(len(__a ) ):
path.append(invpath[len(__a ) - 1 - i] )
return path, action
if __name__ == "__main__":
lowerCamelCase : List[str] = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
lowerCamelCase : Tuple = [0, 0]
# all coordinates are given in format [y,x]
lowerCamelCase : Optional[int] = [len(grid) - 1, len(grid[0]) - 1]
lowerCamelCase : Tuple = 1
# the cost map which pushes the path closer to the goal
lowerCamelCase : List[Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
lowerCamelCase : str = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
lowerCamelCase : Optional[int] = 99
lowerCamelCase , lowerCamelCase : str = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 204 |
import logging
from transformers.configuration_utils import PretrainedConfig
__A = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "masked_bert"
def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =vocab_size
lowerCamelCase__: Dict =hidden_size
lowerCamelCase__: Optional[int] =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: List[Any] =hidden_act
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: Dict =hidden_dropout_prob
lowerCamelCase__: str =attention_probs_dropout_prob
lowerCamelCase__: int =max_position_embeddings
lowerCamelCase__: Tuple =type_vocab_size
lowerCamelCase__: str =initializer_range
lowerCamelCase__: List[Any] =layer_norm_eps
lowerCamelCase__: str =pruning_method
lowerCamelCase__: Union[str, Any] =mask_init
lowerCamelCase__: Optional[Any] =mask_scale
| 10 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Tuple:
lowerCamelCase : str = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] )
lowerCamelCase : Dict = get_activation("gelu" )
self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase_ ) , torch_builtin(UpperCAmelCase_ ) ) )
self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase_ ) , gelu_new(UpperCAmelCase_ ) ) )
def _lowercase ( self ) -> str:
lowerCamelCase : List[str] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] )
lowerCamelCase : str = get_activation("gelu" )
lowerCamelCase : Union[str, Any] = get_activation("gelu_10" )
lowerCamelCase : Dict = torch_builtin(UpperCAmelCase_ )
lowerCamelCase : Any = geluaa(UpperCAmelCase_ )
lowerCamelCase : Union[str, Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 )
self.assertTrue(torch.max(UpperCAmelCase_ ).item() == 10.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _lowercase ( self ) -> Union[str, Any]:
get_activation("gelu" )
get_activation("gelu_10" )
get_activation("gelu_fast" )
get_activation("gelu_new" )
get_activation("gelu_python" )
get_activation("gelu_pytorch_tanh" )
get_activation("linear" )
get_activation("mish" )
get_activation("quick_gelu" )
get_activation("relu" )
get_activation("sigmoid" )
get_activation("silu" )
get_activation("swish" )
get_activation("tanh" )
with self.assertRaises(UpperCAmelCase_ ):
get_activation("bogus" )
with self.assertRaises(UpperCAmelCase_ ):
get_activation(UpperCAmelCase_ )
def _lowercase ( self ) -> Tuple:
lowerCamelCase : Dict = get_activation("gelu" )
lowerCamelCase : str = 1
lowerCamelCase : Union[str, Any] = get_activation("gelu" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(UpperCAmelCase_ ):
lowerCamelCase : Union[str, Any] = acta.a
| 48 |
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Any =n
lowerCamelCase__: Tuple =[None] * self.n
lowerCamelCase__: str =0 # index of the first element
lowerCamelCase__: Tuple =0
lowerCamelCase__: Optional[Any] =0
def __len__(self : str) ->int:
'''simple docstring'''
return self.size
def SCREAMING_SNAKE_CASE_ (self : int) ->bool:
'''simple docstring'''
return self.size == 0
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
return False if self.is_empty() else self.array[self.front]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
if self.size >= self.n:
raise Exception("QUEUE IS FULL")
lowerCamelCase__: List[Any] =data
lowerCamelCase__: Dict =(self.rear + 1) % self.n
self.size += 1
return self
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple:
'''simple docstring'''
if self.size == 0:
raise Exception("UNDERFLOW")
lowerCamelCase__: Optional[Any] =self.array[self.front]
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Dict =(self.front + 1) % self.n
self.size -= 1
return temp
| 10 | 0 |
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _lowerCAmelCase ( )->Optional[Any]:
'''simple docstring'''
snake_case_ = argparse.ArgumentParser()
parser.add_argument(
"-m" , "--pretrained_model_name_or_path" , type=__a , default=__a , required=__a , help="Path to pretrained model or model identifier from huggingface.co/models." , )
parser.add_argument(
"-c" , "--caption" , type=__a , default="robotic cat with wings" , help="Text used to generate images." , )
parser.add_argument(
"-n" , "--images_num" , type=__a , default=4 , help="How much images to generate." , )
parser.add_argument(
"-s" , "--seed" , type=__a , default=42 , help="Seed for random process." , )
parser.add_argument(
"-ci" , "--cuda_id" , type=__a , default=0 , help="cuda_id." , )
snake_case_ = parser.parse_args()
return args
def _lowerCAmelCase ( lowerCAmelCase_ :Any , lowerCAmelCase_ :Dict , lowerCAmelCase_ :Union[str, Any] )->Tuple:
'''simple docstring'''
if not len(__a ) == rows * cols:
raise ValueError("The specified number of rows and columns are not correct." )
snake_case_ = imgs[0].size
snake_case_ = Image.new("RGB" , size=(cols * w, rows * h) )
snake_case_ = grid.size
for i, img in enumerate(__a ):
grid.paste(__a , box=(i % cols * w, i // cols * h) )
return grid
def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Any="robotic cat with wings" , lowerCAmelCase_ :List[Any]=7.5 , lowerCAmelCase_ :Optional[int]=50 , lowerCAmelCase_ :str=1 , lowerCAmelCase_ :int=42 , )->str:
'''simple docstring'''
snake_case_ = torch.Generator(pipeline.device ).manual_seed(__a )
snake_case_ = pipeline(
__a , guidance_scale=__a , num_inference_steps=__a , generator=__a , num_images_per_prompt=__a , ).images
snake_case_ = int(math.sqrt(__a ) )
snake_case_ = image_grid(__a , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
SCREAMING_SNAKE_CASE :int = parse_args()
# Load models and create wrapper for stable diffusion
SCREAMING_SNAKE_CASE :Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
SCREAMING_SNAKE_CASE :Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
SCREAMING_SNAKE_CASE :int = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
SCREAMING_SNAKE_CASE :List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
SCREAMING_SNAKE_CASE :str = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
SCREAMING_SNAKE_CASE :int = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
SCREAMING_SNAKE_CASE :Dict = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
SCREAMING_SNAKE_CASE :Tuple = unet.to(torch.device('''cuda''', args.cuda_id))
SCREAMING_SNAKE_CASE :List[str] = pipeline.to(unet.device)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :int = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
SCREAMING_SNAKE_CASE :List[str] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
| 159 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a ) -> YolosConfig:
"""simple docstring"""
lowerCamelCase__: str =YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCamelCase__: int =192
lowerCamelCase__: Optional[int] =768
lowerCamelCase__: Any =12
lowerCamelCase__: str =3
lowerCamelCase__: Optional[int] =[800, 1333]
lowerCamelCase__: Union[str, Any] =False
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: int =330
lowerCamelCase__: Optional[Any] =14
lowerCamelCase__: Any =6
lowerCamelCase__: List[str] =1320
elif "yolos_s" in yolos_name:
lowerCamelCase__: List[str] =384
lowerCamelCase__: Union[str, Any] =1536
lowerCamelCase__: List[Any] =12
lowerCamelCase__: Any =6
elif "yolos_b" in yolos_name:
lowerCamelCase__: str =[800, 1344]
lowerCamelCase__: int =91
lowerCamelCase__: str ="huggingface/label-files"
lowerCamelCase__: List[str] ="coco-detection-id2label.json"
lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) )
lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()}
lowerCamelCase__: List[str] =idalabel
lowerCamelCase__: int ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :]
lowerCamelCase__: str =in_proj_bias[: config.hidden_size]
lowerCamelCase__: str =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__: str =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :]
lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
if "backbone" in name:
lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" )
if "cls_token" in name:
lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" )
if "norm1" in name:
lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" )
return name
def lowerCAmelCase_ ( __a , __a ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowerCamelCase__: Any =orig_state_dict.pop(__a )
if "qkv" in key:
lowerCamelCase__: Tuple =key.split("." )
lowerCamelCase__: List[str] =int(key_split[2] )
lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCamelCase__: int =val[:dim, :]
lowerCamelCase__: str =val[
dim : dim * 2, :
]
lowerCamelCase__: Any =val[-dim:, :]
else:
lowerCamelCase__: Tuple =val[:dim]
lowerCamelCase__: Optional[Any] =val[dim : dim * 2]
lowerCamelCase__: str =val[-dim:]
else:
lowerCamelCase__: Dict =val
return orig_state_dict
def lowerCAmelCase_ ( ) -> torch.Tensor:
"""simple docstring"""
lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: int =get_yolos_config(__a )
# load original state_dict
lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"]
# load 🤗 model
lowerCamelCase__: int =YolosForObjectDetection(__a )
model.eval()
lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a )
model.load_state_dict(__a )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512
lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a )
lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" )
lowerCamelCase__: Tuple =model(**__a )
lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes
lowerCamelCase__ , lowerCamelCase__: Any =None, None
if yolos_name == "yolos_ti":
lowerCamelCase__: Optional[Any] =torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
lowerCamelCase__: List[Any] =torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
lowerCamelCase__: Optional[int] =torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
lowerCamelCase__: Any =torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
lowerCamelCase__: str =torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
lowerCamelCase__: Optional[Any] =torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: str =torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
lowerCamelCase__: Union[str, Any] =torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
lowerCamelCase__: Tuple =torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
lowerCamelCase__: Optional[int] =torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 )
Path(__a ).mkdir(exist_ok=__a )
print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__a )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__a )
if push_to_hub:
lowerCamelCase__: Any ={
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowerCamelCase__: Optional[int] =model_mapping[yolos_name]
image_processor.push_to_hub(__a , organization="hustvl" )
model.push_to_hub(__a , organization="hustvl" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__A = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 10 | 0 |
from __future__ import annotations
def UpperCAmelCase_ ( __snake_case ) -> bool:
"""simple docstring"""
return len(set(__a ) ) == len(__a )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
from math import ceil, sqrt
def lowerCAmelCase_ ( __a = 1000000 ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[int] =0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
lowerCamelCase__: str =1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 0 |
def lowerCamelCase__ ( __lowerCamelCase : Tuple = 1000 ):
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 114 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(__a , __a )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =tmp_path / "cache"
lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read()
_check_parquet_dataset(__a , __a )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Dict:
"""simple docstring"""
if issubclass(__a , __a ):
lowerCamelCase__: str =parquet_path
elif issubclass(__a , __a ):
lowerCamelCase__: str =[parquet_path]
lowerCamelCase__: Optional[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(__a , __a )
for split in splits:
lowerCamelCase__: Optional[Any] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: List[str] =ParquetDatasetReader(
{"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: int =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]:
"""simple docstring"""
if split:
lowerCamelCase__: Union[str, Any] ={split: parquet_path}
else:
lowerCamelCase__: int ="train"
lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path}
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCAmelCase_ ( __a , __a ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" )
lowerCamelCase__: Optional[int] =pf.read()
assert dataset.data.table == output_table
def lowerCAmelCase_ ( __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" )
lowerCamelCase__: Union[str, Any] ={"image": [image_path]}
lowerCamelCase__: int =Features({"image": Image()} )
lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a )
lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) )
assert dataset.features == reloaded_dataset.features
lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"feature, expected" , [
(Features({"foo": Value("int32" )} ), None),
(Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCAmelCase_ ( __a , __a ) -> Any:
"""simple docstring"""
assert get_writer_batch_size(__a ) == expected
| 10 | 0 |
import numpy as np
from PIL import Image
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> np.ndarray:
"""simple docstring"""
snake_case_ : str = np.array(__a )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
snake_case_ : Optional[int] = 0
snake_case_ : Union[str, Any] = 0
snake_case_ : Union[str, Any] = 0
snake_case_ : List[Any] = 0
# compute the shape of the output matrix
snake_case_ : Optional[Any] = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
snake_case_ : Optional[int] = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
snake_case_ : int = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
snake_case_ : Tuple = 0
snake_case_ : List[Any] = 0
return updated_arr
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> np.ndarray:
"""simple docstring"""
snake_case_ : str = np.array(__a )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
snake_case_ : List[str] = 0
snake_case_ : List[Any] = 0
snake_case_ : List[str] = 0
snake_case_ : str = 0
# compute the shape of the output matrix
snake_case_ : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
snake_case_ : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
snake_case_ : int = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
snake_case_ : Dict = 0
snake_case_ : List[str] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='''avgpooling''', verbose=True)
# Loading the image
lowerCAmelCase_ = Image.open('''path_to_image''')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 279 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__A = "."
if __name__ == "__main__":
__A = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
__A = []
__A = []
with open(doctest_file_path) as fp:
for line in fp:
__A = line.strip()
__A = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__A = "\n".join(non_existent_paths)
raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}')
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 10 | 0 |
'''simple docstring'''
import argparse
import os
import re
import tensorflow as tf
import torch
from transformers import BertConfig, BertModel
from transformers.utils import logging
logging.set_verbosity_info()
a : Optional[int] = logging.get_logger(__name__)
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : str = os.path.abspath(__a )
logger.info(F"Converting TensorFlow checkpoint from {tf_path}" )
# Load weights from TF model
UpperCAmelCase : Any = tf.train.list_variables(__a )
UpperCAmelCase : Dict = []
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Optional[int] = []
for full_name, shape in init_vars:
# logger.info(f"Loading TF weight {name} with shape {shape}")
UpperCAmelCase : List[str] = full_name.split("/" )
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
logger.info(F"Skipping non-model layer {full_name}" )
continue
if "optimizer" in full_name:
logger.info(F"Skipping optimization layer {full_name}" )
continue
if name[0] == "model":
# ignore initial 'model'
UpperCAmelCase : int = name[1:]
# figure out how many levels deep the name is
UpperCAmelCase : Optional[int] = 0
for _name in name:
if _name.startswith("layer_with_weights" ):
depth += 1
else:
break
layer_depth.append(__a )
# read data
UpperCAmelCase : List[Any] = tf.train.load_variable(__a , __a )
names.append("/".join(__a ) )
arrays.append(__a )
logger.info(F"Read a total of {len(__a ):,} layers" )
# Sanity check
if len(set(__a ) ) != 1:
raise ValueError(F"Found layer names with different depths (layer depth {list(set(__a ) )})" )
UpperCAmelCase : Optional[Any] = list(set(__a ) )[0]
if layer_depth != 1:
raise ValueError(
"The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP"
" heads." )
# convert layers
logger.info("Converting weights..." )
for full_name, array in zip(__a , __a ):
UpperCAmelCase : Tuple = full_name.split("/" )
UpperCAmelCase : Union[str, Any] = model
UpperCAmelCase : Dict = []
for i, m_name in enumerate(__a ):
if m_name == ".ATTRIBUTES":
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
break
if m_name.startswith("layer_with_weights" ):
UpperCAmelCase : Optional[Any] = int(m_name.split("-" )[-1] )
if layer_num <= 2:
# embedding layers
# layer_num 0: word_embeddings
# layer_num 1: position_embeddings
# layer_num 2: token_type_embeddings
continue
elif layer_num == 3:
# embedding LayerNorm
trace.extend(["embeddings", "LayerNorm"] )
UpperCAmelCase : Optional[Any] = getattr(__a , "embeddings" )
UpperCAmelCase : Union[str, Any] = getattr(__a , "LayerNorm" )
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
# encoder layers
trace.extend(["encoder", "layer", str(layer_num - 4 )] )
UpperCAmelCase : Any = getattr(__a , "encoder" )
UpperCAmelCase : str = getattr(__a , "layer" )
UpperCAmelCase : Optional[Any] = pointer[layer_num - 4]
elif layer_num == config.num_hidden_layers + 4:
# pooler layer
trace.extend(["pooler", "dense"] )
UpperCAmelCase : Any = getattr(__a , "pooler" )
UpperCAmelCase : Tuple = getattr(__a , "dense" )
elif m_name == "embeddings":
trace.append("embeddings" )
UpperCAmelCase : List[Any] = getattr(__a , "embeddings" )
if layer_num == 0:
trace.append("word_embeddings" )
UpperCAmelCase : List[str] = getattr(__a , "word_embeddings" )
elif layer_num == 1:
trace.append("position_embeddings" )
UpperCAmelCase : str = getattr(__a , "position_embeddings" )
elif layer_num == 2:
trace.append("token_type_embeddings" )
UpperCAmelCase : Dict = getattr(__a , "token_type_embeddings" )
else:
raise ValueError(F"Unknown embedding layer with name {full_name}" )
trace.append("weight" )
UpperCAmelCase : Optional[int] = getattr(__a , "weight" )
elif m_name == "_attention_layer":
# self-attention layer
trace.extend(["attention", "self"] )
UpperCAmelCase : Any = getattr(__a , "attention" )
UpperCAmelCase : Tuple = getattr(__a , "self" )
elif m_name == "_attention_layer_norm":
# output attention norm
trace.extend(["attention", "output", "LayerNorm"] )
UpperCAmelCase : Optional[int] = getattr(__a , "attention" )
UpperCAmelCase : Any = getattr(__a , "output" )
UpperCAmelCase : Union[str, Any] = getattr(__a , "LayerNorm" )
elif m_name == "_attention_output_dense":
# output attention dense
trace.extend(["attention", "output", "dense"] )
UpperCAmelCase : List[str] = getattr(__a , "attention" )
UpperCAmelCase : Dict = getattr(__a , "output" )
UpperCAmelCase : str = getattr(__a , "dense" )
elif m_name == "_output_dense":
# output dense
trace.extend(["output", "dense"] )
UpperCAmelCase : Optional[Any] = getattr(__a , "output" )
UpperCAmelCase : Tuple = getattr(__a , "dense" )
elif m_name == "_output_layer_norm":
# output dense
trace.extend(["output", "LayerNorm"] )
UpperCAmelCase : List[Any] = getattr(__a , "output" )
UpperCAmelCase : Optional[Any] = getattr(__a , "LayerNorm" )
elif m_name == "_key_dense":
# attention key
trace.append("key" )
UpperCAmelCase : List[Any] = getattr(__a , "key" )
elif m_name == "_query_dense":
# attention query
trace.append("query" )
UpperCAmelCase : Tuple = getattr(__a , "query" )
elif m_name == "_value_dense":
# attention value
trace.append("value" )
UpperCAmelCase : Any = getattr(__a , "value" )
elif m_name == "_intermediate_dense":
# attention intermediate dense
trace.extend(["intermediate", "dense"] )
UpperCAmelCase : Union[str, Any] = getattr(__a , "intermediate" )
UpperCAmelCase : List[str] = getattr(__a , "dense" )
elif m_name == "_output_layer_norm":
# output layer norm
trace.append("output" )
UpperCAmelCase : List[Any] = getattr(__a , "output" )
# weights & biases
elif m_name in ["bias", "beta"]:
trace.append("bias" )
UpperCAmelCase : Any = getattr(__a , "bias" )
elif m_name in ["kernel", "gamma"]:
trace.append("weight" )
UpperCAmelCase : Any = getattr(__a , "weight" )
else:
logger.warning(F"Ignored {m_name}" )
# for certain layers reshape is necessary
UpperCAmelCase : Dict = ".".join(__a )
if re.match(R"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , __a ) or re.match(
R"(\S+)\.attention\.output\.dense\.weight" , __a ):
UpperCAmelCase : str = array.reshape(pointer.data.shape )
if "kernel" in full_name:
UpperCAmelCase : Tuple = array.transpose()
if pointer.shape == array.shape:
UpperCAmelCase : Optional[int] = torch.from_numpy(__a )
else:
raise ValueError(
F"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:"
F" {array.shape}" )
logger.info(F"Successfully set variable {full_name} to PyTorch layer {trace}" )
return model
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
logger.info(F"Loading model based on config from {config_path}..." )
UpperCAmelCase : str = BertConfig.from_json_file(__a )
UpperCAmelCase : Union[str, Any] = BertModel(__a )
# Load weights from checkpoint
logger.info(F"Loading weights from checkpoint {tf_checkpoint_path}..." )
load_tfa_weights_in_bert(__a , __a , __a )
# Save pytorch-model
logger.info(F"Saving PyTorch model to {pytorch_dump_path}..." )
torch.save(model.state_dict() , __a )
if __name__ == "__main__":
a : str = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model (must include filename).",
)
a : Union[str, Any] = parser.parse_args()
convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 311 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , "vision")
self.check_model_type(UpperCAmelCase_)
def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
lowerCamelCase__: Any =kwargs.pop("text_queries")
if isinstance(UpperCAmelCase_ , (str, Image.Image)):
lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels}
else:
lowerCamelCase__: Any =image
lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_)
return results
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] ={}
if "threshold" in kwargs:
lowerCamelCase__: List[Any] =kwargs["threshold"]
if "top_k" in kwargs:
lowerCamelCase__: Any =kwargs["top_k"]
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =load_image(inputs["image"])
lowerCamelCase__: Dict =inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =candidate_labels.split(",")
lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(UpperCAmelCase_):
lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework)
lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework)
yield {
"is_last": i == len(UpperCAmelCase_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model_inputs.pop("target_size")
lowerCamelCase__: Dict =model_inputs.pop("candidate_label")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =[]
for model_output in model_outputs:
lowerCamelCase__: Optional[Any] =model_output["candidate_label"]
lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_)
lowerCamelCase__: Dict =self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
lowerCamelCase__: Dict =outputs["scores"][index].item()
lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0])
lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_)
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)
if top_k:
lowerCamelCase__: Dict =results[:top_k]
return results
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist()
lowerCamelCase__: Optional[int] ={
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 10 | 0 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
UpperCamelCase = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
UpperCamelCase = Features({"""image""": Image()} )
UpperCamelCase = Features({"""labels""": ClassLabel} )
UpperCamelCase = """image"""
UpperCamelCase = """labels"""
def __magic_name__ ( self : Tuple, __A : Union[str, Any] ):
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column], UpperCAmelCase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
UpperCAmelCase : List[Any] = copy.deepcopy(self )
UpperCAmelCase : Optional[int] = self.label_schema.copy()
UpperCAmelCase : int = features[self.label_column]
UpperCAmelCase : int = label_schema
return task_template
@property
def __magic_name__ ( self : Dict ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 336 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = (DDPMParallelScheduler,)
def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
lowerCamelCase__: Any ={
"num_train_timesteps": 1_000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**UpperCAmelCase_)
return config
def SCREAMING_SNAKE_CASE_ (self : int) ->Dict:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCAmelCase_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: int =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =self.dummy_model()
lowerCamelCase__: int =self.dummy_sample_deter
lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1
lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1
lowerCamelCase__: Optional[Any] =samplea.shape[0]
lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0)
lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1))
lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 1153.1833) < 1E-2
assert abs(result_mean.item() - 0.5005) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self.dummy_model()
lowerCamelCase__: List[Any] =self.dummy_sample_deter
lowerCamelCase__: int =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: Any =pred_prev_sample
lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 258.9606) < 1E-2
assert abs(result_mean.item() - 0.3372) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction")
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: str =self.dummy_model()
lowerCamelCase__: str =self.dummy_sample_deter
lowerCamelCase__: Dict =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: List[str] =pred_prev_sample
lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 202.0296) < 1E-2
assert abs(result_mean.item() - 0.2631) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =self.scheduler_classes[0]
lowerCamelCase__: Union[str, Any] =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase_):
if i == len(UpperCAmelCase_) - 1:
lowerCamelCase__: Dict =-1
else:
lowerCamelCase__: Union[str, Any] =timesteps[i + 1]
lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_)
lowerCamelCase__: str =prev_t.item()
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: List[Any] =self.get_scheduler_config()
lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config()
lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0]
lowerCamelCase__: int =len(UpperCAmelCase_)
with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
| 10 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
"""simple docstring"""
if gpta_config_file == "":
SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig()
else:
SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig.from_json_file(__a )
SCREAMING_SNAKE_CASE : Any = GPTaModel(__a )
# Load weights from numpy
load_tf_weights_in_gpta(__a , __a , __a )
# Save pytorch-model
SCREAMING_SNAKE_CASE : Any = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
SCREAMING_SNAKE_CASE : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(model.state_dict() , __a )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(__a , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--gpt2_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained OpenAI model. \n"""
"""This specifies the model architecture."""
),
)
__UpperCAmelCase = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 323 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCAmelCase_ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841
lowerCamelCase__: List[Any] =[
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCamelCase__: List[str] =defaultdict(__a )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowerCamelCase__: List[str] =mst(__a )
lowerCamelCase__: Union[str, Any] =[
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowerCamelCase__: Optional[int] =tuple(answer[:2] )
lowerCamelCase__: List[Any] =tuple(edge[::-1] )
assert edge in result or reverse in result
| 10 | 0 |
from collections import defaultdict
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Optional[Any] ) -> bool:
__snake_case : Union[str, Any] = first_str.lower().strip()
__snake_case : Optional[Any] = second_str.lower().strip()
# Remove whitespace
__snake_case : int = first_str.replace(" " , "" )
__snake_case : int = second_str.replace(" " , "" )
# Strings of different lengths are not anagrams
if len(__a ) != len(__a ):
return False
# Default values for count should be 0
__snake_case : defaultdict[str, int] = defaultdict(__a )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__a ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCamelCase = input('''Enter the first string ''').strip()
_UpperCamelCase = input('''Enter the second string ''').strip()
_UpperCamelCase = check_anagrams(input_a, input_b)
print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 326 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = BartphoTokenizer
lowercase_ = False
lowercase_ = True
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
super().setUp()
lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"]
lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: List[Any] ={"unk_token": "<unk>"}
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"])
with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""")
lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] ="This is a là test"
lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
lowerCamelCase__: List[Any] ="This is a là test"
lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split()
lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token]
lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
| 10 | 0 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def UpperCAmelCase__ ( UpperCAmelCase__ = "https://www.worldometers.info/coronavirus" ) -> dict:
A_ = BeautifulSoup(requests.get(__a ).text, """html.parser""" )
A_ = soup.findAll("""h1""" )
A_ = soup.findAll("""div""", {"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""", {"""class""": """panel-title"""} )
values += soup.findAll("""div""", {"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(__a, __a )}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(f"""{key}\n{value}\n""")
| 162 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__A = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__: Optional[int] ="lm_head"
lowerCamelCase__: Dict =getattr(__a , __a )
if weight_type is not None:
lowerCamelCase__: str =getattr(__a , __a ).shape
else:
lowerCamelCase__: int =hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
lowerCamelCase__: Dict =value
elif weight_type == "weight_g":
lowerCamelCase__: Optional[Any] =value
elif weight_type == "weight_v":
lowerCamelCase__: int =value
elif weight_type == "bias":
lowerCamelCase__: List[str] =value
else:
lowerCamelCase__: Union[str, Any] =value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: List[str] =fairseq_model.state_dict()
lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__: int =False
if "conv_layers" in name:
load_conv_layer(
__a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , )
lowerCamelCase__: str =True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCamelCase__: Optional[Any] =True
if "*" in mapped_key:
lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2]
lowerCamelCase__: List[str] =mapped_key.replace("*" , __a )
if "weight_g" in name:
lowerCamelCase__: List[str] ="weight_g"
elif "weight_v" in name:
lowerCamelCase__: Union[str, Any] ="weight_v"
elif "bias" in name:
lowerCamelCase__: Dict ="bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__: Tuple ="weight"
else:
lowerCamelCase__: List[Any] =None
set_recursively(__a , __a , __a , __a , __a , __a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1]
lowerCamelCase__: List[str] =name.split("." )
lowerCamelCase__: str =int(items[0] )
lowerCamelCase__: Union[str, Any] =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
lowerCamelCase__: Dict =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
lowerCamelCase__: List[Any] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int:
"""simple docstring"""
if config_path is not None:
lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a )
else:
lowerCamelCase__: List[Any] =UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__: str =Dictionary.load_from_json(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__: Any =target_dict.pad_index
lowerCamelCase__: int =target_dict.bos_index
lowerCamelCase__: Any =target_dict.eos_index
lowerCamelCase__: Dict =len(target_dict.symbols )
lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" )
if not os.path.isdir(__a ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) )
return
os.makedirs(__a , exist_ok=__a )
lowerCamelCase__: Optional[Any] =target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__: Optional[Any] =42
lowerCamelCase__: List[Any] =43
with open(__a , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__a , __a )
lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer(
__a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , )
lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False
lowerCamelCase__: Tuple =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , )
lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a )
processor.save_pretrained(__a )
lowerCamelCase__: int =UniSpeechForCTC(__a )
else:
lowerCamelCase__: int =UniSpeechForPreTraining(__a )
if is_finetuned:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__: List[str] =model[0].eval()
recursively_load_weights(__a , __a , __a )
hf_unispeech.save_pretrained(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__A = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10 | 0 |
import requests
from bsa import BeautifulSoup
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] = "AAPL" ):
'''simple docstring'''
lowerCamelCase_ = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
lowerCamelCase_ = BeautifulSoup(requests.get(__a ).text , 'html.parser' )
lowerCamelCase_ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 204 |
from typing import Any
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list:
"""simple docstring"""
_validation(
__a , __a , __a , __a , __a , )
# Creates data structures and fill initial step
lowerCamelCase__: dict ={}
lowerCamelCase__: dict ={}
for state in states_space:
lowerCamelCase__: Optional[Any] =observations_space[0]
lowerCamelCase__: List[Any] =(
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase__: int =None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__a ) ):
lowerCamelCase__: Tuple =observations_space[o]
lowerCamelCase__: Optional[Any] =observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase__: Tuple =""
lowerCamelCase__: Optional[Any] =-1
for k_state in states_space:
lowerCamelCase__: int =(
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase__: List[str] =probability
lowerCamelCase__: int =k_state
# Update probabilities and pointers dicts
lowerCamelCase__: Any =(
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase__: int =arg_max
# The final observation
lowerCamelCase__: Any =observations_space[len(__a ) - 1]
# argmax for given final observation
lowerCamelCase__: Optional[Any] =""
lowerCamelCase__: int =-1
for k_state in states_space:
lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase__: List[Any] =probability
lowerCamelCase__: Dict =k_state
lowerCamelCase__: str =arg_max
# Process pointers backwards
lowerCamelCase__: Union[str, Any] =last_state
lowerCamelCase__: List[str] =[]
for o in range(len(__a ) - 1 , -1 , -1 ):
result.append(__a )
lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_not_empty(
__a , __a , __a , __a , __a , )
_validate_lists(__a , __a )
_validate_dicts(
__a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_list(__a , "observations_space" )
_validate_list(__a , "states_space" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Tuple =F"""{var_name} must be a list"""
raise ValueError(__a )
else:
for x in _object:
if not isinstance(__a , __a ):
lowerCamelCase__: str =F"""{var_name} must be a list of strings"""
raise ValueError(__a )
def lowerCAmelCase_ ( __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_dict(__a , "initial_probabilities" , __a )
_validate_nested_dict(__a , "transition_probabilities" )
_validate_nested_dict(__a , "emission_probabilities" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_dict(_object , __a , __a )
for x in _object.values():
_validate_dict(__a , __a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object ):
lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object.values() ):
lowerCamelCase__: Dict ="nested dictionary " if nested else ""
lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(__a )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 | 0 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ) -> Union[str, Any]:
lowerCamelCase : Optional[int] = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
lowerCamelCase : List[Any] = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
lowerCamelCase : str = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
lowerCamelCase : Any = tf_top_k_top_p_filtering(UpperCAmelCase_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
lowerCamelCase : List[str] = output[output != -float("inf" )]
lowerCamelCase : List[Any] = tf.cast(
tf.where(tf.not_equal(UpperCAmelCase_ , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-12 )
tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_ )
@require_tf
class UpperCamelCase__ (unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if is_tf_available():
lowerCamelCase_ : List[str] = {
"""AutoModelForCausalLM""": TFAutoModelForCausalLM,
"""AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq,
"""AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM,
"""AutoModelForVision2Seq""": TFAutoModelForVisionaSeq,
"""LogitsProcessorList""": TFLogitsProcessorList,
"""MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor,
"""create_tensor_fn""": tf.convert_to_tensor,
"""floats_tensor""": floats_tensor,
"""return_tensors""": """tf""",
}
@slow
def _lowercase ( self ) -> Dict:
lowerCamelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
lowerCamelCase : Any = 2
lowerCamelCase : List[Any] = 2
class UpperCamelCase__ (tf.Module ):
'''simple docstring'''
def __init__( self , UpperCamelCase__ ) -> Union[str, Any]:
super(UpperCAmelCase_ , self ).__init__()
lowerCamelCase : Union[str, Any] = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ),
) , jit_compile=UpperCAmelCase_ , )
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int:
lowerCamelCase : Any = self.model.generate(
input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_ , return_dict_in_generate=UpperCAmelCase_ , )
return {"sequences": outputs["sequences"]}
lowerCamelCase : Dict = [[2, 0], [102, 103]]
lowerCamelCase : List[Any] = [[1, 0], [1, 1]]
lowerCamelCase : Union[str, Any] = DummyModel(model=UpperCAmelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={"serving_default": dummy_model.serving} )
lowerCamelCase : Tuple = tf.saved_model.load(UpperCAmelCase_ ).signatures["serving_default"]
for batch_size in range(1 , len(UpperCAmelCase_ ) + 1 ):
lowerCamelCase : Optional[Any] = {
"input_ids": tf.constant(dummy_input_ids[:batch_size] ),
"attention_mask": tf.constant(dummy_attention_masks[:batch_size] ),
}
lowerCamelCase : int = serving_func(**UpperCAmelCase_ )["sequences"]
lowerCamelCase : int = test_model.generate(**UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_ )
tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def _lowercase ( self ) -> Dict:
lowerCamelCase : Tuple = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
lowerCamelCase : Tuple = 1
lowerCamelCase : int = 2
class UpperCamelCase__ (tf.Module ):
'''simple docstring'''
def __init__( self , UpperCamelCase__ ) -> Tuple:
super(UpperCAmelCase_ , self ).__init__()
lowerCamelCase : str = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ),
) , jit_compile=UpperCAmelCase_ , )
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple:
lowerCamelCase : Dict = self.model.generate(
input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_ , return_dict_in_generate=UpperCAmelCase_ , )
return {"sequences": outputs["sequences"]}
lowerCamelCase : Dict = [[2], [102, 103]]
lowerCamelCase : Tuple = [[1], [1, 1]]
lowerCamelCase : List[str] = DummyModel(model=UpperCAmelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={"serving_default": dummy_model.serving} )
lowerCamelCase : Dict = tf.saved_model.load(UpperCAmelCase_ ).signatures["serving_default"]
for input_row in range(len(UpperCAmelCase_ ) ):
lowerCamelCase : Optional[Any] = {
"input_ids": tf.constant([dummy_input_ids[input_row]] ),
"attention_mask": tf.constant([dummy_attention_masks[input_row]] ),
}
lowerCamelCase : List[Any] = serving_func(**UpperCAmelCase_ )["sequences"]
lowerCamelCase : Optional[Any] = test_model.generate(**UpperCAmelCase_ , max_new_tokens=UpperCAmelCase_ )
tf.debugging.assert_equal(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
@require_tensorflow_text
def _lowercase ( self ) -> Any:
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=UpperCAmelCase_ )
class UpperCamelCase__ (tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self ) -> Optional[int]:
super().__init__()
lowerCamelCase : Dict = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase_ , "spiece.model" ) , "rb" ).read() )
lowerCamelCase : Dict = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" )
def _lowercase ( self , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]:
lowerCamelCase : Any = self.tokenizer.tokenize(UpperCAmelCase_ )
lowerCamelCase : Dict = text.pad_model_inputs(
UpperCAmelCase_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
lowerCamelCase : Dict = self.model.generate(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )
return self.tokenizer.detokenize(UpperCAmelCase_ )
lowerCamelCase : int = CompleteSentenceTransformer()
lowerCamelCase : Dict = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" )
lowerCamelCase : Optional[Any] = complete_model(UpperCAmelCase_ )
lowerCamelCase : Optional[int] = tf.keras.Model(UpperCAmelCase_ , UpperCAmelCase_ )
keras_model.save(UpperCAmelCase_ )
def _lowercase ( self ) -> int:
lowerCamelCase : str = {
"do_sample": True,
"num_beams": 1,
"top_p": 0.7,
"top_k": 10,
"temperature": 0.7,
}
lowerCamelCase : Any = 14
lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
lowerCamelCase : int = "Hello, my dog is cute and"
lowerCamelCase : Optional[int] = tokenizer(UpperCAmelCase_ , return_tensors="tf" )
lowerCamelCase : Tuple = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
lowerCamelCase : Union[str, Any] = 638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
lowerCamelCase : int = model.generate(**UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
lowerCamelCase : List[str] = [638, 198]
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
lowerCamelCase : Dict = model.generate(**UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def _lowercase ( self ) -> Optional[Any]:
lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" )
lowerCamelCase : Optional[int] = "Hugging Face is a technology company based in New York and Paris."
lowerCamelCase : Any = bart_tokenizer(UpperCAmelCase_ , return_tensors="tf" ).input_ids
lowerCamelCase : Optional[int] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" )
lowerCamelCase : Optional[int] = bart_model.generate(UpperCAmelCase_ ).numpy()
class UpperCamelCase__ (__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ) -> Any:
return super().call(UpperCAmelCase_ , **UpperCAmelCase_ )
lowerCamelCase : Optional[Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" )
lowerCamelCase : Union[str, Any] = bart_model.generate(UpperCAmelCase_ , foo="bar" ).numpy()
self.assertTrue(np.array_equal(UpperCAmelCase_ , UpperCAmelCase_ ) )
class UpperCamelCase__ (bart_model.model.encoder.__class__ ):
'''simple docstring'''
def _lowercase ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]:
return super().call(UpperCAmelCase_ , **UpperCAmelCase_ )
lowerCamelCase : Union[str, Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
lowerCamelCase : int = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
lowerCamelCase : Any = bart_model.generate(UpperCAmelCase_ ).numpy()
with self.assertRaises(UpperCAmelCase_ ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(UpperCAmelCase_ , foo="bar" )
| 48 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"microsoft/unispeech-large-1500h-cv": (
"https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "unispeech"
def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =hidden_size
lowerCamelCase__: List[str] =feat_extract_norm
lowerCamelCase__: Dict =feat_extract_activation
lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_)
lowerCamelCase__: Any =list(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_)
lowerCamelCase__: Dict =conv_bias
lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings
lowerCamelCase__: Dict =num_conv_pos_embedding_groups
lowerCamelCase__: int =len(self.conv_dim)
lowerCamelCase__: Union[str, Any] =num_hidden_layers
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Dict =hidden_act
lowerCamelCase__: List[Any] =num_attention_heads
lowerCamelCase__: Dict =hidden_dropout
lowerCamelCase__: Optional[Any] =attention_dropout
lowerCamelCase__: Optional[Any] =activation_dropout
lowerCamelCase__: Tuple =feat_proj_dropout
lowerCamelCase__: int =final_dropout
lowerCamelCase__: Optional[Any] =layerdrop
lowerCamelCase__: Dict =layer_norm_eps
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: int =num_ctc_classes
lowerCamelCase__: Tuple =vocab_size
lowerCamelCase__: Dict =do_stable_layer_norm
lowerCamelCase__: List[Any] =use_weighted_layer_sum
lowerCamelCase__: Dict =classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__: int =apply_spec_augment
lowerCamelCase__: List[str] =mask_time_prob
lowerCamelCase__: Union[str, Any] =mask_time_length
lowerCamelCase__: List[Any] =mask_time_min_masks
lowerCamelCase__: Any =mask_feature_prob
lowerCamelCase__: Optional[Any] =mask_feature_length
lowerCamelCase__: List[str] =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase__: Optional[Any] =num_codevectors_per_group
lowerCamelCase__: str =num_codevector_groups
lowerCamelCase__: Tuple =contrastive_logits_temperature
lowerCamelCase__: int =feat_quantizer_dropout
lowerCamelCase__: Any =num_negatives
lowerCamelCase__: List[str] =codevector_dim
lowerCamelCase__: Union[str, Any] =proj_codevector_dim
lowerCamelCase__: Any =diversity_loss_weight
# ctc loss
lowerCamelCase__: Any =ctc_loss_reduction
lowerCamelCase__: Dict =ctc_zero_infinity
# pretraining loss
lowerCamelCase__: Dict =replace_prob
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1)
| 10 | 0 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class __lowerCAmelCase :
"""simple docstring"""
def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
raise NotImplementedError()
def lowerCAmelCase__ ( self : Tuple ) -> Any:
"""simple docstring"""
raise NotImplementedError()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self : Dict , _lowerCAmelCase : "AutoTokenizer" , _lowerCAmelCase : bool = False , **_lowerCAmelCase : int ) -> List[Any]:
"""simple docstring"""
snake_case_ = tokenizer
snake_case_ = skip_prompt
snake_case_ = decode_kwargs
# variables used in the streaming process
snake_case_ = []
snake_case_ = 0
snake_case_ = True
def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError("TextStreamer only supports batch size 1" )
elif len(value.shape ) > 1:
snake_case_ = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
snake_case_ = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
snake_case_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith("\n" ):
snake_case_ = text[self.print_len :]
snake_case_ = []
snake_case_ = 0
# If the last token is a CJK character, we print the characters.
elif len(UpperCAmelCase_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
snake_case_ = text[self.print_len :]
self.print_len += len(UpperCAmelCase_ )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
snake_case_ = text[self.print_len : text.rfind(" " ) + 1]
self.print_len += len(UpperCAmelCase_ )
self.on_finalized_text(UpperCAmelCase_ )
def lowerCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
if len(self.token_cache ) > 0:
snake_case_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
snake_case_ = text[self.print_len :]
snake_case_ = []
snake_case_ = 0
else:
snake_case_ = ""
snake_case_ = True
self.on_finalized_text(UpperCAmelCase_ , stream_end=UpperCAmelCase_ )
def lowerCAmelCase__ ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> int:
"""simple docstring"""
print(UpperCAmelCase_ , flush=UpperCAmelCase_ , end="" if not stream_end else None )
def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : Optional[int] ) -> int:
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self : Union[str, Any] , _lowerCAmelCase : "AutoTokenizer" , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[float] = None , **_lowerCAmelCase : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
snake_case_ = Queue()
snake_case_ = None
snake_case_ = timeout
def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
self.text_queue.put(UpperCAmelCase_ , timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal , timeout=self.timeout )
def __iter__( self : List[str] ) -> Dict:
"""simple docstring"""
return self
def lowerCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
snake_case_ = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 159 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float:
"""simple docstring"""
lowerCamelCase__: str =a
while True:
lowerCamelCase__: Optional[Any] =Decimal(__a ) - (
Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__a ) ) < precision: # noqa: S307
return float(__a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}')
# Find Square Root of 5
print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}')
# Exponential Roots
print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
| 10 | 0 |
import re
def UpperCAmelCase_ ( __snake_case ) -> str:
"""simple docstring"""
if len(re.findall('''[ATCG]''' , __a ) ) != len(__a ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
import itertools
import math
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase_ ( ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[int] =2
while True:
if is_prime(__a ):
yield num
num += 1
def lowerCAmelCase_ ( __a = 10001 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , __a ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 0 |
def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ):
def update_area_of_max_square(__lowerCamelCase : int , __lowerCamelCase : Any ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
__UpperCAmelCase : Union[str, Any] = update_area_of_max_square(__a , col + 1 )
__UpperCAmelCase : Dict = update_area_of_max_square(row + 1 , col + 1 )
__UpperCAmelCase : List[str] = update_area_of_max_square(row + 1 , __a )
if mat[row][col]:
__UpperCAmelCase : Tuple = 1 + min([right, diagonal, down] )
__UpperCAmelCase : str = max(largest_square_area[0] , __a )
return sub_problem_sol
else:
return 0
__UpperCAmelCase : Dict = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : str ):
def update_area_of_max_square_using_dp_array(
__lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
__UpperCAmelCase : str = update_area_of_max_square_using_dp_array(__a , col + 1 , __a )
__UpperCAmelCase : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __a )
__UpperCAmelCase : Dict = update_area_of_max_square_using_dp_array(row + 1 , __a , __a )
if mat[row][col]:
__UpperCAmelCase : List[Any] = 1 + min([right, diagonal, down] )
__UpperCAmelCase : Optional[int] = max(largest_square_area[0] , __a )
__UpperCAmelCase : Tuple = sub_problem_sol
return sub_problem_sol
else:
return 0
__UpperCAmelCase : Union[str, Any] = [0]
__UpperCAmelCase : Optional[int] = [[-1] * cols for _ in range(__a )]
update_area_of_max_square_using_dp_array(0 , 0 , __a )
return largest_square_area[0]
def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Tuple ):
__UpperCAmelCase : Optional[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )]
__UpperCAmelCase : Tuple = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__UpperCAmelCase : int = dp_array[row][col + 1]
__UpperCAmelCase : Union[str, Any] = dp_array[row + 1][col + 1]
__UpperCAmelCase : Any = dp_array[row + 1][col]
if mat[row][col] == 1:
__UpperCAmelCase : str = 1 + min(__a , __a , __a )
__UpperCAmelCase : Tuple = max(dp_array[row][col] , __a )
else:
__UpperCAmelCase : Tuple = 0
return largest_square_area
def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
__UpperCAmelCase : Union[str, Any] = [0] * (cols + 1)
__UpperCAmelCase : Dict = [0] * (cols + 1)
__UpperCAmelCase : List[Any] = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__UpperCAmelCase : Optional[int] = current_row[col + 1]
__UpperCAmelCase : int = next_row[col + 1]
__UpperCAmelCase : Optional[int] = next_row[col]
if mat[row][col] == 1:
__UpperCAmelCase : Dict = 1 + min(__a , __a , __a )
__UpperCAmelCase : Dict = max(current_row[col] , __a )
else:
__UpperCAmelCase : Tuple = 0
__UpperCAmelCase : List[Any] = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 114 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30}
lowerCamelCase__: Any =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Tuple =min_resolution
lowerCamelCase__: Union[str, Any] =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop
lowerCamelCase__: Optional[int] =size
lowerCamelCase__: str =crop_pct
lowerCamelCase__: Any =crop_size
lowerCamelCase__: List[str] =do_normalize
lowerCamelCase__: List[str] =image_mean
lowerCamelCase__: Tuple =image_std
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = PoolFormerImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"shortest_edge": 30})
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 | 0 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __lowerCAmelCase :
lowerCamelCase_ : Tuple = XGLMConfig
lowerCamelCase_ : List[str] = {}
lowerCamelCase_ : Union[str, Any] = '''gelu'''
def __init__(self , __magic_name__ , __magic_name__=14 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=2 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=0.02 , ) -> Optional[int]:
'''simple docstring'''
snake_case_ : str = parent
snake_case_ : int = batch_size
snake_case_ : List[str] = seq_length
snake_case_ : int = is_training
snake_case_ : int = use_input_mask
snake_case_ : Tuple = use_labels
snake_case_ : Any = vocab_size
snake_case_ : Dict = d_model
snake_case_ : Optional[int] = num_hidden_layers
snake_case_ : Tuple = num_attention_heads
snake_case_ : Dict = ffn_dim
snake_case_ : Optional[int] = activation_function
snake_case_ : str = activation_dropout
snake_case_ : int = attention_dropout
snake_case_ : Optional[Any] = max_position_embeddings
snake_case_ : Optional[int] = initializer_range
snake_case_ : str = None
snake_case_ : List[Any] = 0
snake_case_ : str = 2
snake_case_ : Union[str, Any] = 1
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
return XGLMConfig.from_pretrained('''facebook/xglm-564M''' )
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : Dict = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
snake_case_ : str = None
if self.use_input_mask:
snake_case_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ : Dict = self.get_config()
snake_case_ : Optional[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowerCamelCase (self ) -> int:
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase_ , )
def lowerCamelCase (self ) -> Any:
'''simple docstring'''
snake_case_ : str = self.prepare_config_and_inputs()
(
snake_case_
) : Union[str, Any] = config_and_inputs
snake_case_ : str = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, unittest.TestCase ):
lowerCamelCase_ : Optional[int] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase_ : str = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase_ : Any = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase_ : List[Any] = False
lowerCamelCase_ : int = False
lowerCamelCase_ : str = False
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
snake_case_ : Tuple = TFXGLMModelTester(self )
snake_case_ : str = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 )
def lowerCamelCase (self ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : Dict = TFXGLMModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' )
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase (self , __magic_name__=True ) -> Any:
'''simple docstring'''
snake_case_ : Union[str, Any] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
snake_case_ : Optional[int] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
snake_case_ : Union[str, Any] = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581]
# fmt: on
snake_case_ : List[str] = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase_ )
@slow
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Optional[int] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
snake_case_ : Tuple = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
tf.random.set_seed(0 )
snake_case_ : Union[str, Any] = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' )
snake_case_ : Dict = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(''':/CPU:0''' ):
snake_case_ : str = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , seed=[7, 0] )
snake_case_ : str = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase_ )
snake_case_ : Union[str, Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
@slow
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
snake_case_ : Union[str, Any] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
snake_case_ : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
snake_case_ : str = "left"
# use different length sentences to test batching
snake_case_ : List[Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
snake_case_ : Optional[Any] = tokenizer(UpperCAmelCase_ , return_tensors='''tf''' , padding=UpperCAmelCase_ )
snake_case_ : Optional[int] = inputs["input_ids"]
snake_case_ : str = model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 )
snake_case_ : Tuple = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
snake_case_ : Union[str, Any] = model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12 )
snake_case_ : Optional[Any] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
snake_case_ : Union[str, Any] = model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12 )
snake_case_ : Optional[Any] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ )
snake_case_ : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_ )
snake_case_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_ )
snake_case_ : int = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence] )
| 279 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A = {
"yjernite/retribert-base-uncased": 512,
}
__A = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = RetriBertTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars
):
lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type"))
lowerCamelCase__: int =do_lower_case
lowerCamelCase__: int =strip_accents
lowerCamelCase__: List[str] =tokenize_chinese_chars
lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_)
lowerCamelCase__: Any =do_lower_case
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self.sep_token_id]
lowerCamelCase__: Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
| 10 | 0 |
'''simple docstring'''
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Tuple = []
UpperCAmelCase : Tuple = 1
while len(__a ) < 1e6:
constant.append(str(__a ) )
i += 1
UpperCAmelCase : List[Any] = "".join(__a )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[9_9999] )
* int(constant[99_9999] )
)
if __name__ == "__main__":
print(solution())
| 311 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =parent
lowerCamelCase__: List[str] =batch_size
lowerCamelCase__: Optional[int] =seq_length
lowerCamelCase__: Optional[Any] =is_training
lowerCamelCase__: str =use_labels
lowerCamelCase__: Optional[Any] =vocab_size
lowerCamelCase__: int =hidden_size
lowerCamelCase__: Dict =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: int =hidden_act
lowerCamelCase__: Tuple =hidden_dropout_prob
lowerCamelCase__: List[str] =attention_probs_dropout_prob
lowerCamelCase__: Optional[int] =max_position_embeddings
lowerCamelCase__: int =eos_token_id
lowerCamelCase__: Union[str, Any] =pad_token_id
lowerCamelCase__: List[str] =bos_token_id
lowerCamelCase__: int =initializer_range
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: Dict =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , )
lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =20
lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: str =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: List[Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4")
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: Union[str, Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: Dict =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[str] =20
lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Optional[int] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: List[Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: str =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_)
lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 99
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowerCamelCase__: Optional[Any] =input_ids.shape[0]
lowerCamelCase__: List[str] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data()
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_)
lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(UpperCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = True
lowercase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_)
@jax.jit
def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)
with self.subTest("JIT Enabled"):
lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_)
lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"])
lowerCamelCase__: int ={
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("JIT Enabled"):
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id
lowerCamelCase__: str =model(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.")
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_)
lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
lowerCamelCase__: Any =["Sam"]
lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax")
lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic."
lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 10 | 0 |
from graphs.minimum_spanning_tree_kruskal import kruskal
def a__ ( ) -> str:
UpperCAmelCase : Optional[int] = 9
UpperCAmelCase : Union[str, Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
UpperCAmelCase : Optional[Any] = kruskal(__a , __a )
UpperCAmelCase : str = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(__a ) == sorted(__a )
| 336 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "prophetnet.tokenizer"}
__A = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =collections.OrderedDict()
with open(__a , "r" , encoding="utf-8" ) as reader:
lowerCamelCase__: int =reader.readlines()
for index, token in enumerate(__a ):
lowerCamelCase__: List[str] =token.rstrip("\n" )
lowerCamelCase__: List[Any] =index
return vocab
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None:
'''simple docstring'''
lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(UpperCAmelCase_))
lowerCamelCase__: Optional[int] =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10):
lowerCamelCase__: Optional[int] =F"""[unused{i}]"""
lowerCamelCase__: int =5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
lowerCamelCase__: int =12
lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(UpperCAmelCase_)
def __getstate__(self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.__dict__.copy()
lowerCamelCase__: Dict =None
return state
def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
lowerCamelCase__: Dict ={}
lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return ([0] * len(UpperCAmelCase_)) + [1]
return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1]
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Any =[self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
return len(self.sp_model) + self.fairseq_offset
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip()
return out_string
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: List[str] =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase_)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase_ , "wb") as fi:
lowerCamelCase__: Dict =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
lowerCamelCase__: Union[str, Any] =[self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 10 | 0 |
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self : str , *lowerCamelCase_ : Any , lowerCamelCase_ : Any=None , lowerCamelCase_ : List[Any]=None , **lowerCamelCase_ : Optional[int] ):
'''simple docstring'''
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Any = eval_examples
SCREAMING_SNAKE_CASE : Dict = post_process_function
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : str = "eval" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE : Tuple = self.get_eval_dataloader(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Any = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
SCREAMING_SNAKE_CASE : List[str] = time.time()
try:
SCREAMING_SNAKE_CASE : Union[str, Any] = eval_loop(
UpperCAmelCase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , metric_key_prefix=UpperCAmelCase_ , )
finally:
SCREAMING_SNAKE_CASE : Any = compute_metrics
SCREAMING_SNAKE_CASE : int = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
UpperCAmelCase_ , UpperCAmelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
SCREAMING_SNAKE_CASE : Optional[int] = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions )
SCREAMING_SNAKE_CASE : Tuple = self.compute_metrics(UpperCAmelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
SCREAMING_SNAKE_CASE : str = metrics.pop(UpperCAmelCase_ )
metrics.update(output.metrics )
else:
SCREAMING_SNAKE_CASE : Any = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(UpperCAmelCase_ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
SCREAMING_SNAKE_CASE : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase_ )
return metrics
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict=None , lowerCamelCase_ : str = "test" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = self.get_test_dataloader(UpperCAmelCase_ )
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics
SCREAMING_SNAKE_CASE : List[Any] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
SCREAMING_SNAKE_CASE : Optional[int] = time.time()
try:
SCREAMING_SNAKE_CASE : Dict = eval_loop(
UpperCAmelCase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , metric_key_prefix=UpperCAmelCase_ , )
finally:
SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics
SCREAMING_SNAKE_CASE : str = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
UpperCAmelCase_ , UpperCAmelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE : Union[str, Any] = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions , """predict""" )
SCREAMING_SNAKE_CASE : List[str] = self.compute_metrics(UpperCAmelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
SCREAMING_SNAKE_CASE : Optional[Any] = metrics.pop(UpperCAmelCase_ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase_ )
| 323 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 0 |
def lowerCAmelCase__( lowercase : Tuple ) -> list:
if len(__a ) <= 1:
return [tuple(__a )]
__snake_case : Dict = []
def generate(lowercase : List[str] , lowercase : Optional[int] ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , __a )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__snake_case : Tuple = arr[k - 1], arr[i]
else: # k is odd
__snake_case : str = arr[k - 1], arr[0]
generate(k - 1 , __a )
generate(len(__a ) , __a )
return res
if __name__ == "__main__":
_UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
_UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(heaps(arr))
| 326 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 0 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__lowerCamelCase = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class A__ ( __SCREAMING_SNAKE_CASE ):
def __init__( self , **UpperCamelCase__ ) -> Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_ )
if self.framework == "tf":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , """vision""" )
self.check_model_type(UpperCAmelCase_ )
def __call__( self , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
A_ = kwargs.pop("""text_queries""" )
if isinstance(UpperCAmelCase_ , (str, Image.Image) ):
A_ = {"image": image, "candidate_labels": candidate_labels}
else:
A_ = image
A_ = super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ )
return results
def snake_case_ ( self , **UpperCamelCase__ ) -> Dict:
'''simple docstring'''
A_ = {}
if "threshold" in kwargs:
A_ = kwargs["threshold"]
if "top_k" in kwargs:
A_ = kwargs["top_k"]
return {}, {}, postprocess_params
def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
A_ = load_image(inputs["""image"""] )
A_ = inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
A_ = candidate_labels.split(""",""" )
A_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(UpperCAmelCase_ ):
A_ = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework )
A_ = self.image_processor(UpperCAmelCase_ , return_tensors=self.framework )
yield {
"is_last": i == len(UpperCAmelCase_ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def snake_case_ ( self , UpperCamelCase__ ) -> Optional[int]:
'''simple docstring'''
A_ = model_inputs.pop("""target_size""" )
A_ = model_inputs.pop("""candidate_label""" )
A_ = model_inputs.pop("""is_last""" )
A_ = self.model(**UpperCAmelCase_ )
A_ = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0.1 , UpperCamelCase__=None ) -> Tuple:
'''simple docstring'''
A_ = []
for model_output in model_outputs:
A_ = model_output["candidate_label"]
A_ = BaseModelOutput(UpperCAmelCase_ )
A_ = self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["""target_size"""] )[0]
for index in outputs["scores"].nonzero():
A_ = outputs["scores"][index].item()
A_ = self._get_bounding_box(outputs["""boxes"""][index][0] )
A_ = {"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_ )
A_ = sorted(UpperCAmelCase_ , key=lambda UpperCamelCase__ : x["score"] , reverse=UpperCAmelCase_ )
if top_k:
A_ = results[:top_k]
return results
def snake_case_ ( self , UpperCamelCase__ ) -> Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" )
A_ = box.int().tolist()
A_ = {
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 162 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowercase_ = Features({"image": Image()} )
lowercase_ = Features({"labels": ClassLabel} )
lowercase_ = "image"
lowercase_ = "labels"
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""")
if not isinstance(features[self.label_column] , UpperCAmelCase_):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""")
lowerCamelCase__: List[Any] =copy.deepcopy(self)
lowerCamelCase__: Optional[int] =self.label_schema.copy()
lowerCamelCase__: int =features[self.label_column]
lowerCamelCase__: int =label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 10 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class A( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = 42
class A( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@register_to_config
def __init__( self : str , A_ : int = 65536 , A_ : Optional[int] = None , A_ : int = 2 , A_ : int = 2 , A_ : int = 0 , A_ : str = "fourier" , A_ : bool = True , A_ : bool = False , A_ : float = 0.0 , A_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A_ : Tuple[str] = "UNetMidBlock1D" , A_ : str = None , A_ : Tuple[int] = (32, 32, 64) , A_ : str = None , A_ : int = 8 , A_ : int = 1 , A_ : bool = False , ) -> Tuple:
"""simple docstring"""
super().__init__()
lowerCamelCase_ = sample_size
# time
if time_embedding_type == "fourier":
lowerCamelCase_ = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ )
lowerCamelCase_ = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
lowerCamelCase_ = Timesteps(
block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ )
lowerCamelCase_ = block_out_channels[0]
if use_timestep_embedding:
lowerCamelCase_ = block_out_channels[0] * 4
lowerCamelCase_ = TimestepEmbedding(
in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , )
lowerCamelCase_ = nn.ModuleList([] )
lowerCamelCase_ = None
lowerCamelCase_ = nn.ModuleList([] )
lowerCamelCase_ = None
# down
lowerCamelCase_ = in_channels
for i, down_block_type in enumerate(UpperCAmelCase_ ):
lowerCamelCase_ = output_channel
lowerCamelCase_ = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
lowerCamelCase_ = i == len(UpperCAmelCase_ ) - 1
lowerCamelCase_ = get_down_block(
UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(UpperCAmelCase_ )
# mid
lowerCamelCase_ = get_mid_block(
UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , )
# up
lowerCamelCase_ = list(reversed(UpperCAmelCase_ ) )
lowerCamelCase_ = reversed_block_out_channels[0]
if out_block_type is None:
lowerCamelCase_ = out_channels
else:
lowerCamelCase_ = block_out_channels[0]
for i, up_block_type in enumerate(UpperCAmelCase_ ):
lowerCamelCase_ = output_channel
lowerCamelCase_ = (
reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels
)
lowerCamelCase_ = i == len(UpperCAmelCase_ ) - 1
lowerCamelCase_ = get_up_block(
UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(UpperCAmelCase_ )
lowerCamelCase_ = output_channel
# out
lowerCamelCase_ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 )
lowerCamelCase_ = get_out_block(
out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , )
def a__ ( self : Dict , A_ : torch.FloatTensor , A_ : Union[torch.Tensor, float, int] , A_ : bool = True , ) -> Union[UNetaDOutput, Tuple]:
"""simple docstring"""
lowerCamelCase_ = timestep
if not torch.is_tensor(UpperCAmelCase_ ):
lowerCamelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device )
elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0:
lowerCamelCase_ = timesteps[None].to(sample.device )
lowerCamelCase_ = self.time_proj(UpperCAmelCase_ )
if self.config.use_timestep_embedding:
lowerCamelCase_ = self.time_mlp(UpperCAmelCase_ )
else:
lowerCamelCase_ = timestep_embed[..., None]
lowerCamelCase_ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype )
lowerCamelCase_ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) )
# 2. down
lowerCamelCase_ = ()
for downsample_block in self.down_blocks:
lowerCamelCase_ = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ )
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
lowerCamelCase_ = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ )
# 4. up
for i, upsample_block in enumerate(self.up_blocks ):
lowerCamelCase_ = down_block_res_samples[-1:]
lowerCamelCase_ = down_block_res_samples[:-1]
lowerCamelCase_ = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ )
# 5. post-process
if self.out_block:
lowerCamelCase_ = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ )
if not return_dict:
return (sample,)
return UNetaDOutput(sample=UpperCAmelCase_ )
| 204 |
import logging
from transformers.configuration_utils import PretrainedConfig
__A = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "masked_bert"
def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =vocab_size
lowerCamelCase__: Dict =hidden_size
lowerCamelCase__: Optional[int] =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: List[Any] =hidden_act
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: Dict =hidden_dropout_prob
lowerCamelCase__: str =attention_probs_dropout_prob
lowerCamelCase__: int =max_position_embeddings
lowerCamelCase__: Tuple =type_vocab_size
lowerCamelCase__: str =initializer_range
lowerCamelCase__: List[Any] =layer_norm_eps
lowerCamelCase__: str =pruning_method
lowerCamelCase__: Union[str, Any] =mask_init
lowerCamelCase__: Optional[Any] =mask_scale
| 10 | 0 |
def A ( _SCREAMING_SNAKE_CASE ) -> str:
lowerCamelCase : Optional[Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
lowerCamelCase : List[str] = ""
lowerCamelCase : List[str] = ""
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(__a ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
lowerCamelCase : List[Any] = 0, 0
# length[i] shows the length of palindromic substring with center i
lowerCamelCase : Union[str, Any] = [1 for i in range(len(__a ) )]
# for each character in new_string find corresponding palindromic string
lowerCamelCase : Tuple = 0
for j in range(len(__a ) ):
lowerCamelCase : Tuple = 1 if j > r else min(length[l + r - j] // 2 ,r - j + 1 )
while (
j - k >= 0
and j + k < len(__a )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
lowerCamelCase : Union[str, Any] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
lowerCamelCase : Dict = j - k + 1 # noqa: E741
lowerCamelCase : Union[str, Any] = j + k - 1
# update max_length and start position
if max_length < length[j]:
lowerCamelCase : Optional[Any] = length[j]
lowerCamelCase : int = j
# create that string
lowerCamelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 |
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Any =n
lowerCamelCase__: Tuple =[None] * self.n
lowerCamelCase__: str =0 # index of the first element
lowerCamelCase__: Tuple =0
lowerCamelCase__: Optional[Any] =0
def __len__(self : str) ->int:
'''simple docstring'''
return self.size
def SCREAMING_SNAKE_CASE_ (self : int) ->bool:
'''simple docstring'''
return self.size == 0
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
return False if self.is_empty() else self.array[self.front]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
if self.size >= self.n:
raise Exception("QUEUE IS FULL")
lowerCamelCase__: List[Any] =data
lowerCamelCase__: Dict =(self.rear + 1) % self.n
self.size += 1
return self
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple:
'''simple docstring'''
if self.size == 0:
raise Exception("UNDERFLOW")
lowerCamelCase__: Optional[Any] =self.array[self.front]
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Dict =(self.front + 1) % self.n
self.size -= 1
return temp
| 10 | 0 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] )
@pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] )
@pytest.mark.parametrize("revision" , [None, "v2"] )
def _lowerCAmelCase ( lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :List[str] , lowerCAmelCase_ :int )->Any:
'''simple docstring'''
snake_case_ = hf_hub_url(repo_id=__a , path=__a , revision=__a )
assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(__a )}'''
| 159 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a ) -> YolosConfig:
"""simple docstring"""
lowerCamelCase__: str =YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCamelCase__: int =192
lowerCamelCase__: Optional[int] =768
lowerCamelCase__: Any =12
lowerCamelCase__: str =3
lowerCamelCase__: Optional[int] =[800, 1333]
lowerCamelCase__: Union[str, Any] =False
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: int =330
lowerCamelCase__: Optional[Any] =14
lowerCamelCase__: Any =6
lowerCamelCase__: List[str] =1320
elif "yolos_s" in yolos_name:
lowerCamelCase__: List[str] =384
lowerCamelCase__: Union[str, Any] =1536
lowerCamelCase__: List[Any] =12
lowerCamelCase__: Any =6
elif "yolos_b" in yolos_name:
lowerCamelCase__: str =[800, 1344]
lowerCamelCase__: int =91
lowerCamelCase__: str ="huggingface/label-files"
lowerCamelCase__: List[str] ="coco-detection-id2label.json"
lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) )
lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()}
lowerCamelCase__: List[str] =idalabel
lowerCamelCase__: int ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :]
lowerCamelCase__: str =in_proj_bias[: config.hidden_size]
lowerCamelCase__: str =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__: str =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :]
lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
if "backbone" in name:
lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" )
if "cls_token" in name:
lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" )
if "norm1" in name:
lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" )
return name
def lowerCAmelCase_ ( __a , __a ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowerCamelCase__: Any =orig_state_dict.pop(__a )
if "qkv" in key:
lowerCamelCase__: Tuple =key.split("." )
lowerCamelCase__: List[str] =int(key_split[2] )
lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCamelCase__: int =val[:dim, :]
lowerCamelCase__: str =val[
dim : dim * 2, :
]
lowerCamelCase__: Any =val[-dim:, :]
else:
lowerCamelCase__: Tuple =val[:dim]
lowerCamelCase__: Optional[Any] =val[dim : dim * 2]
lowerCamelCase__: str =val[-dim:]
else:
lowerCamelCase__: Dict =val
return orig_state_dict
def lowerCAmelCase_ ( ) -> torch.Tensor:
"""simple docstring"""
lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: int =get_yolos_config(__a )
# load original state_dict
lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"]
# load 🤗 model
lowerCamelCase__: int =YolosForObjectDetection(__a )
model.eval()
lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a )
model.load_state_dict(__a )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512
lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a )
lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" )
lowerCamelCase__: Tuple =model(**__a )
lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes
lowerCamelCase__ , lowerCamelCase__: Any =None, None
if yolos_name == "yolos_ti":
lowerCamelCase__: Optional[Any] =torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
lowerCamelCase__: List[Any] =torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
lowerCamelCase__: Optional[int] =torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
lowerCamelCase__: Any =torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
lowerCamelCase__: str =torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
lowerCamelCase__: Optional[Any] =torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: str =torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
lowerCamelCase__: Union[str, Any] =torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
lowerCamelCase__: Tuple =torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
lowerCamelCase__: Optional[int] =torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 )
Path(__a ).mkdir(exist_ok=__a )
print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__a )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__a )
if push_to_hub:
lowerCamelCase__: Any ={
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowerCamelCase__: Optional[int] =model_mapping[yolos_name]
image_processor.push_to_hub(__a , organization="hustvl" )
model.push_to_hub(__a , organization="hustvl" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__A = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 10 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase):
SCREAMING_SNAKE_CASE__ = ShapEImgaImgPipeline
SCREAMING_SNAKE_CASE__ = ['''image''']
SCREAMING_SNAKE_CASE__ = ['''image''']
SCREAMING_SNAKE_CASE__ = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
SCREAMING_SNAKE_CASE__ = False
@property
def __A (self ) -> Optional[Any]:
return 3_2
@property
def __A (self ) -> int:
return 3_2
@property
def __A (self ) -> Dict:
return self.time_input_dim * 4
@property
def __A (self ) -> Optional[Any]:
return 8
@property
def __A (self ) -> List[Any]:
torch.manual_seed(0 )
_lowercase =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
_lowercase =CLIPVisionModel(UpperCAmelCase_ )
return model
@property
def __A (self ) -> Tuple:
_lowercase =CLIPImageProcessor(
crop_size=2_2_4 , do_center_crop=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , do_resize=UpperCAmelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , )
return image_processor
@property
def __A (self ) -> int:
torch.manual_seed(0 )
_lowercase ={
"num_attention_heads": 2,
"attention_head_dim": 1_6,
"embedding_dim": self.time_input_dim,
"num_embeddings": 3_2,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"embedding_proj_norm_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
_lowercase =PriorTransformer(**UpperCAmelCase_ )
return model
@property
def __A (self ) -> List[Any]:
torch.manual_seed(0 )
_lowercase ={
"param_shapes": (
(self.renderer_dim, 9_3),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 1_2,
"background": (
0.1,
0.1,
0.1,
),
}
_lowercase =ShapERenderer(**UpperCAmelCase_ )
return model
def __A (self ) -> List[str]:
_lowercase =self.dummy_prior
_lowercase =self.dummy_image_encoder
_lowercase =self.dummy_image_processor
_lowercase =self.dummy_renderer
_lowercase =HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_0_2_4 , prediction_type='''sample''' , use_karras_sigmas=UpperCAmelCase_ , clip_sample=UpperCAmelCase_ , clip_sample_range=1.0 , )
_lowercase ={
"prior": prior,
"image_encoder": image_encoder,
"image_processor": image_processor,
"renderer": renderer,
"scheduler": scheduler,
}
return components
def __A (self , UpperCAmelCase , UpperCAmelCase=0 ) -> Optional[Any]:
_lowercase =floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith('''mps''' ):
_lowercase =torch.manual_seed(UpperCAmelCase_ )
else:
_lowercase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
_lowercase ={
"image": input_image,
"generator": generator,
"num_inference_steps": 1,
"frame_size": 3_2,
"output_type": "np",
}
return inputs
def __A (self ) -> Optional[Any]:
_lowercase ="cpu"
_lowercase =self.get_dummy_components()
_lowercase =self.pipeline_class(**UpperCAmelCase_ )
_lowercase =pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
_lowercase =pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
_lowercase =output.images[0]
_lowercase =image[0, -3:, -3:, -1]
assert image.shape == (2_0, 3_2, 3_2, 3)
_lowercase =np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __A (self ) -> Optional[int]:
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __A (self ) -> Dict:
_lowercase =torch_device == "cpu"
_lowercase =True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , )
def __A (self ) -> Optional[Any]:
_lowercase =self.get_dummy_components()
_lowercase =self.pipeline_class(**UpperCAmelCase_ )
_lowercase =pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
_lowercase =1
_lowercase =2
_lowercase =self.get_dummy_inputs(UpperCAmelCase_ )
for key in inputs.keys():
if key in self.batch_params:
_lowercase =batch_size * [inputs[key]]
_lowercase =pipe(**UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase):
def __A (self ) -> Dict:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A (self ) -> Union[str, Any]:
_lowercase =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
_lowercase =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
_lowercase =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
_lowercase =pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
_lowercase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 )
_lowercase =pipe(
UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='''np''' , ).images[0]
assert images.shape == (2_0, 6_4, 6_4, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 5 |
from math import ceil, sqrt
def lowerCAmelCase_ ( __a = 1000000 ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[int] =0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
lowerCamelCase__: str =1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : Optional[int] = {
"configuration_autoformer": [
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AutoformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = [
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 114 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(__a , __a )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =tmp_path / "cache"
lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read()
_check_parquet_dataset(__a , __a )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Dict:
"""simple docstring"""
if issubclass(__a , __a ):
lowerCamelCase__: str =parquet_path
elif issubclass(__a , __a ):
lowerCamelCase__: str =[parquet_path]
lowerCamelCase__: Optional[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(__a , __a )
for split in splits:
lowerCamelCase__: Optional[Any] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: List[str] =ParquetDatasetReader(
{"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: int =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]:
"""simple docstring"""
if split:
lowerCamelCase__: Union[str, Any] ={split: parquet_path}
else:
lowerCamelCase__: int ="train"
lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path}
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCAmelCase_ ( __a , __a ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" )
lowerCamelCase__: Optional[int] =pf.read()
assert dataset.data.table == output_table
def lowerCAmelCase_ ( __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" )
lowerCamelCase__: Union[str, Any] ={"image": [image_path]}
lowerCamelCase__: int =Features({"image": Image()} )
lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a )
lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) )
assert dataset.features == reloaded_dataset.features
lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"feature, expected" , [
(Features({"foo": Value("int32" )} ), None),
(Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCAmelCase_ ( __a , __a ) -> Any:
"""simple docstring"""
assert get_writer_batch_size(__a ) == expected
| 10 | 0 |
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
lowerCAmelCase_ = {
# 1536-bit
5: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''',
base=1_6,
),
'''generator''': 2,
},
# 2048-bit
1_4: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''',
base=1_6,
),
'''generator''': 2,
},
# 3072-bit
1_5: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''',
base=1_6,
),
'''generator''': 2,
},
# 4096-bit
1_6: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199'''
+ '''FFFFFFFFFFFFFFFF''',
base=1_6,
),
'''generator''': 2,
},
# 6144-bit
1_7: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08'''
+ '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B'''
+ '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9'''
+ '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6'''
+ '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8'''
+ '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C'''
+ '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718'''
+ '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D'''
+ '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D'''
+ '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226'''
+ '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC'''
+ '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26'''
+ '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB'''
+ '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2'''
+ '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127'''
+ '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406'''
+ '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918'''
+ '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151'''
+ '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03'''
+ '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F'''
+ '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B'''
+ '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632'''
+ '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E'''
+ '''6DCC4024FFFFFFFFFFFFFFFF''',
base=1_6,
),
'''generator''': 2,
},
# 8192-bit
1_8: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD'''
+ '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831'''
+ '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B'''
+ '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF'''
+ '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6'''
+ '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3'''
+ '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328'''
+ '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C'''
+ '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE'''
+ '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4'''
+ '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300'''
+ '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568'''
+ '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9'''
+ '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B'''
+ '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A'''
+ '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36'''
+ '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1'''
+ '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92'''
+ '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47'''
+ '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71'''
+ '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''',
base=1_6,
),
'''generator''': 2,
},
}
class __lowerCAmelCase :
def __init__(self , __magic_name__ = 14 ) -> None:
'''simple docstring'''
if group not in primes:
raise ValueError('''Unsupported Group''' )
snake_case_ : Union[str, Any] = primes[group]["prime"]
snake_case_ : Optional[int] = primes[group]["generator"]
snake_case_ : Dict = int(hexlify(urandom(32 ) ) , base=16 )
def lowerCamelCase (self ) -> str:
'''simple docstring'''
return hex(self.__private_key )[2:]
def lowerCamelCase (self ) -> str:
'''simple docstring'''
snake_case_ : str = pow(self.generator , self.__private_key , self.prime )
return hex(UpperCAmelCase_ )[2:]
def lowerCamelCase (self , __magic_name__ ) -> bool:
'''simple docstring'''
return (
2 <= key <= self.prime - 2
and pow(UpperCAmelCase_ , (self.prime - 1) // 2 , self.prime ) == 1
)
def lowerCamelCase (self , __magic_name__ ) -> str:
'''simple docstring'''
snake_case_ : int = int(UpperCAmelCase_ , base=16 )
if not self.is_valid_public_key(UpperCAmelCase_ ):
raise ValueError('''Invalid public key''' )
snake_case_ : Dict = pow(UpperCAmelCase_ , self.__private_key , self.prime )
return shaaaa(str(UpperCAmelCase_ ).encode() ).hexdigest()
@staticmethod
def lowerCamelCase (__magic_name__ , __magic_name__ ) -> bool:
'''simple docstring'''
return (
2 <= remote_public_key_str <= prime - 2
and pow(UpperCAmelCase_ , (prime - 1) // 2 , UpperCAmelCase_ ) == 1
)
@staticmethod
def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ = 14 ) -> str:
'''simple docstring'''
snake_case_ : Dict = int(UpperCAmelCase_ , base=16 )
snake_case_ : str = int(UpperCAmelCase_ , base=16 )
snake_case_ : Union[str, Any] = primes[group]["prime"]
if not DiffieHellman.is_valid_public_key_static(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError('''Invalid public key''' )
snake_case_ : List[Any] = pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
return shaaaa(str(UpperCAmelCase_ ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 279 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__A = "."
if __name__ == "__main__":
__A = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
__A = []
__A = []
with open(doctest_file_path) as fp:
for line in fp:
__A = line.strip()
__A = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__A = "\n".join(non_existent_paths)
raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}')
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 10 | 0 |
'''simple docstring'''
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = len(__a )
for i in range(__a ):
for j in range(i + 1 , __a ):
if numbers[j] < numbers[i]:
UpperCAmelCase : Optional[Any] = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
a : List[Any] = input("Enter numbers separated by a comma:\n").strip()
a : Union[str, Any] = [int(item) for item in user_input.split(",")]
print(exchange_sort(unsorted))
| 311 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , "vision")
self.check_model_type(UpperCAmelCase_)
def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
lowerCamelCase__: Any =kwargs.pop("text_queries")
if isinstance(UpperCAmelCase_ , (str, Image.Image)):
lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels}
else:
lowerCamelCase__: Any =image
lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_)
return results
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] ={}
if "threshold" in kwargs:
lowerCamelCase__: List[Any] =kwargs["threshold"]
if "top_k" in kwargs:
lowerCamelCase__: Any =kwargs["top_k"]
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =load_image(inputs["image"])
lowerCamelCase__: Dict =inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =candidate_labels.split(",")
lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(UpperCAmelCase_):
lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework)
lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework)
yield {
"is_last": i == len(UpperCAmelCase_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model_inputs.pop("target_size")
lowerCamelCase__: Dict =model_inputs.pop("candidate_label")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =[]
for model_output in model_outputs:
lowerCamelCase__: Optional[Any] =model_output["candidate_label"]
lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_)
lowerCamelCase__: Dict =self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
lowerCamelCase__: Dict =outputs["scores"][index].item()
lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0])
lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_)
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)
if top_k:
lowerCamelCase__: Dict =results[:top_k]
return results
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist()
lowerCamelCase__: Optional[int] ={
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 10 | 0 |
import os
from distutils.util import strtobool
def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> Tuple:
for e in env_keys:
UpperCAmelCase : List[Any] = int(os.environ.get(__a , -1 ) )
if val >= 0:
return val
return default
def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Dict=False ) -> List[Any]:
UpperCAmelCase : str = os.environ.get(__a , str(__a ) )
return strtobool(__a ) == 1 # As its name indicates `strtobool` actually returns an int...
def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[Any]="no" ) -> List[str]:
UpperCAmelCase : List[Any] = os.environ.get(__a , str(__a ) )
return value
| 336 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = (DDPMParallelScheduler,)
def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
lowerCamelCase__: Any ={
"num_train_timesteps": 1_000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**UpperCAmelCase_)
return config
def SCREAMING_SNAKE_CASE_ (self : int) ->Dict:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCAmelCase_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: int =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =self.dummy_model()
lowerCamelCase__: int =self.dummy_sample_deter
lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1
lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1
lowerCamelCase__: Optional[Any] =samplea.shape[0]
lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0)
lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1))
lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 1153.1833) < 1E-2
assert abs(result_mean.item() - 0.5005) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self.dummy_model()
lowerCamelCase__: List[Any] =self.dummy_sample_deter
lowerCamelCase__: int =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: Any =pred_prev_sample
lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 258.9606) < 1E-2
assert abs(result_mean.item() - 0.3372) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction")
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: str =self.dummy_model()
lowerCamelCase__: str =self.dummy_sample_deter
lowerCamelCase__: Dict =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: List[str] =pred_prev_sample
lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 202.0296) < 1E-2
assert abs(result_mean.item() - 0.2631) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =self.scheduler_classes[0]
lowerCamelCase__: Union[str, Any] =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase_):
if i == len(UpperCAmelCase_) - 1:
lowerCamelCase__: Dict =-1
else:
lowerCamelCase__: Union[str, Any] =timesteps[i + 1]
lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_)
lowerCamelCase__: str =prev_t.item()
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: List[Any] =self.get_scheduler_config()
lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config()
lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0]
lowerCamelCase__: int =len(UpperCAmelCase_)
with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
| 10 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase__ = {
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 |
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
lowerCAmelCase__ = float('nan')
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase) -> Optional[Any]:
_A : List[Any] = sys.stdout
_A : str = open(__lowerCamelCase , "a")
def __getattr__( self , __lowerCamelCase) -> List[str]:
return getattr(self.stdout , __lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
self.stdout.write(__lowerCamelCase)
# strip tqdm codes
self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M))
def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ):
_A : Tuple = []
# deal with critical env vars
_A : Dict = ["CUDA_VISIBLE_DEVICES"]
for key in env_keys:
_A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ )
if val is not None:
cmd.append(f"{key}={val}" )
# python executable (not always needed if the script is executable)
_A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1]
cmd.append(UpperCamelCase__ )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
_A : Tuple = []
_A : Dict = ""
while len(UpperCamelCase__ ) > 0:
current_line += f"{cmd.pop(0 )} "
if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(UpperCamelCase__ )
_A : Union[str, Any] = ""
return "\\\n".join(UpperCamelCase__ )
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ):
# unwrap multi-line input
_A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd )
# remove --output_dir if any and set our own
_A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd )
args.base_cmd += f" --output_dir {output_dir}"
# ensure we have --overwrite_output_dir
_A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ):
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , )
_A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ )
if verbose:
print("STDOUT" , result.stdout )
print("STDERR" , result.stderr )
# save the streams
_A : Tuple = variation.replace(" " , "-" )
with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f:
f.write(result.stdout )
with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print("failed" )
return {target_metric_key: nan}
with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f:
_A : List[str] = json.load(UpperCamelCase__ )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ):
_A : Union[str, Any] = []
_A : Optional[int] = []
_A : Any = f"{id}: {variation:<{longest_variation_len}}"
_A : Dict = f"{preamble}: "
_A : Union[str, Any] = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ):
_A : Optional[Any] = process_run_single(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
_A : Optional[Any] = single_run_metrics[target_metric_key]
if not math.isnan(UpperCamelCase__ ):
metrics.append(UpperCamelCase__ )
results.append(UpperCamelCase__ )
outcome += "✓"
else:
outcome += "✘"
_A : str = f"\33[2K\r{outcome}"
if len(UpperCamelCase__ ) > 0:
_A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
_A : Any = round(mean_metrics[target_metric_key] , 2 )
_A : Tuple = f"{outcome} {mean_target}"
if len(UpperCamelCase__ ) > 1:
results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}"
print(UpperCamelCase__ )
_A : Optional[int] = variation
return mean_metrics
else:
print(UpperCamelCase__ )
return {variation_key: variation, target_metric_key: nan}
def _UpperCAmelCase ():
_A : int = torch.cuda.get_device_properties(torch.device("cuda" ) )
return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n"
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ):
_A : Any = pd.DataFrame(UpperCamelCase__ )
_A : List[str] = "variation"
_A : List[Any] = "diff_%"
_A : int = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
_A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(UpperCamelCase__ ):
# as a fallback, use the minimal value as the sentinel
_A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(UpperCamelCase__ ):
_A : Optional[Any] = df.apply(
lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis="columns" , )
# re-order columns
_A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys]
_A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols
# capitalize
_A : Tuple = df.rename(str.capitalize , axis="columns" )
# make the cols as narrow as possible
_A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" )
_A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" )
_A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )]
print("\n\n".join(UpperCamelCase__ ) )
def _UpperCAmelCase ():
_A : int = argparse.ArgumentParser()
parser.add_argument(
"--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , )
parser.add_argument(
"--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , )
parser.add_argument(
"--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , )
parser.add_argument(
"--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , )
parser.add_argument(
"--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , )
parser.add_argument(
"--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , )
parser.add_argument(
"--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , )
parser.add_argument(
"--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , )
_A : int = parser.parse_args()
_A : Union[str, Any] = args.output_dir
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
_A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ )
# split each dimension into its --foo variations
_A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
_A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) )
_A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations )
# split wanted keys
_A : str = args.report_metric_keys.split()
# capture prints into a log file for convenience
_A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt"
print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" )
print(f"and this script's output is also piped into {report_fn}" )
_A : Tuple = Tee(UpperCamelCase__ )
print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" )
print(f"Base command: {' '.join(UpperCamelCase__ )}" )
_A : str = "variation"
_A : Union[str, Any] = []
for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ):
_A : Dict = base_cmd + variation.split()
results.append(
process_run(
id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) )
process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ )
if __name__ == "__main__":
main()
| 11 | 1 |
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(a)} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__SCREAMING_SNAKE_CASE = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def _lowerCamelCase ( self) -> Optional[Any]:
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path")
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "The name of the dataset to use (via the datasets library)."})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."})
__SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Overwrite the cached training and evaluation sets"})
__SCREAMING_SNAKE_CASE = field(
default=5 , metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "The number of processes to use for the preprocessing."} , )
__SCREAMING_SNAKE_CASE = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
def _lowerCamelCase ( self) -> Union[str, Any]:
if self.train_file is not None:
_A : Any = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
_A : int = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Dict ):
with open(UpperCamelCase__ , "r" , encoding="utf-8" ) as f:
_A : Union[str, Any] = [json.loads(UpperCamelCase__ ) for line in f.read().splitlines() if (len(UpperCamelCase__ ) > 0 and not line.isspace())]
assert len(UpperCamelCase__ ) == len(UpperCamelCase__ )
_A : Dict = {c: dataset[c] for c in dataset.column_names}
_A : str = refs
return Dataset.from_dict(UpperCamelCase__ )
def _UpperCAmelCase ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_A : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A : Optional[int] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
_A : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A : int = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , UpperCamelCase__ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
_A : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
_A : Dict = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"train[:{data_args.validation_split_percentage}%]" , )
_A : Optional[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"train[{data_args.validation_split_percentage}%:]" , )
else:
_A : int = {}
if data_args.train_file is not None:
_A : Any = data_args.train_file
if data_args.validation_file is not None:
_A : List[str] = data_args.validation_file
_A : int = data_args.train_file.split("." )[-1]
if extension == "txt":
_A : Tuple = "text"
_A : Dict = load_dataset(UpperCamelCase__ , data_files=UpperCamelCase__ )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A : Dict = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
_A : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , **UpperCamelCase__ )
elif model_args.model_name_or_path:
_A : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ )
else:
_A : Optional[Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch." )
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}" )
config.update_from_string(model_args.config_overrides )
logger.info(f"New config: {config}" )
_A : Optional[int] = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
_A : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCamelCase__ )
elif model_args.model_name_or_path:
_A : Any = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ )
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name." )
if model_args.model_name_or_path:
_A : Dict = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("Training new model from scratch" )
_A : Tuple = AutoModelForMaskedLM.from_config(UpperCamelCase__ )
model.resize_token_embeddings(len(UpperCamelCase__ ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
_A : str = datasets["train"].column_names
else:
_A : Tuple = datasets["validation"].column_names
_A : Union[str, Any] = "text" if "text" in column_names else column_names[0]
_A : List[Any] = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(UpperCamelCase__ : Dict ):
# Remove empty lines
_A : Union[str, Any] = [line for line in examples["text"] if len(UpperCamelCase__ ) > 0 and not line.isspace()]
return tokenizer(examples["text"] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=data_args.max_seq_length )
_A : Optional[int] = datasets.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
_A : str = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
_A : Tuple = add_chinese_references(
tokenized_datasets["validation"] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
_A : Union[str, Any] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
_A : Any = False
# Data collator
# This one will take care of randomly masking the tokens.
_A : Union[str, Any] = DataCollatorForWholeWordMask(tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
_A : Dict = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
_A : Dict = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
_A : Tuple = model_args.model_name_or_path
else:
_A : Tuple = None
_A : str = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
trainer.save_model() # Saves the tokenizer too for easy upload
_A : Optional[Any] = os.path.join(training_args.output_dir , "train_results.txt" )
if trainer.is_world_process_zero():
with open(UpperCamelCase__ , "w" ) as writer:
logger.info("***** Train results *****" )
for key, value in sorted(train_result.metrics.items() ):
logger.info(f" {key} = {value}" )
writer.write(f"{key} = {value}\n" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) )
# Evaluation
_A : str = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_A : List[Any] = trainer.evaluate()
_A : Optional[Any] = math.exp(eval_output["eval_loss"] )
_A : Dict = perplexity
_A : Dict = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" )
if trainer.is_world_process_zero():
with open(UpperCamelCase__ , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in sorted(results.items() ):
logger.info(f" {key} = {value}" )
writer.write(f"{key} = {value}\n" )
return results
def _UpperCAmelCase (UpperCamelCase__ : Tuple ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 11 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
lowerCAmelCase__ = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__SCREAMING_SNAKE_CASE = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Overwrite the cached training and evaluation sets"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "The number of processes to use for the preprocessing."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def _lowerCamelCase ( self) -> int:
if self.train_file is not None:
_A : Optional[int] = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_A : Dict = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
def __call__( self , __lowerCamelCase) -> str:
_A : List[Any] = "label" if "label" in features[0].keys() else "labels"
_A : Any = [feature.pop(__lowerCamelCase) for feature in features]
_A : Optional[int] = len(__lowerCamelCase)
_A : int = len(features[0]["input_ids"])
_A : Tuple = [
[{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features
]
_A : str = list(chain(*__lowerCamelCase))
_A : Tuple = self.tokenizer.pad(
__lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()}
# Add back labels
_A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa)
return batch
def _UpperCAmelCase ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A : int = training_args.get_process_log_level()
logger.setLevel(UpperCamelCase__ )
datasets.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
_A : List[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A : Optional[int] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_A : List[str] = {}
if data_args.train_file is not None:
_A : Optional[int] = data_args.train_file
if data_args.validation_file is not None:
_A : Tuple = data_args.validation_file
_A : Union[str, Any] = data_args.train_file.split("." )[-1]
_A : List[str] = load_dataset(
UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
_A : Union[str, Any] = load_dataset(
"swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A : Optional[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A : Optional[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_A : str = [f"ending{i}" for i in range(4 )]
_A : Union[str, Any] = "sent1"
_A : str = "sent2"
if data_args.max_seq_length is None:
_A : Any = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_A : Optional[Any] = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
_A : int = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(UpperCamelCase__ : List[Any] ):
_A : List[Any] = [[context] * 4 for context in examples[context_name]]
_A : Any = examples[question_header_name]
_A : Union[str, Any] = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ )
]
# Flatten out
_A : Dict = list(chain(*UpperCamelCase__ ) )
_A : List[Any] = list(chain(*UpperCamelCase__ ) )
# Tokenize
_A : str = tokenizer(
UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_A : Optional[int] = raw_datasets["train"]
if data_args.max_train_samples is not None:
_A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples )
_A : Any = train_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_A : Optional[int] = train_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_A : Optional[int] = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples )
_A : Dict = eval_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_A : List[str] = eval_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
_A : str = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(UpperCamelCase__ : Tuple ):
_A , _A : List[str] = eval_predictions
_A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_A : List[str] = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
_A : Any = None
if training_args.resume_from_checkpoint is not None:
_A : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A : int = last_checkpoint
_A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
trainer.save_model() # Saves the tokenizer too for easy upload
_A : Optional[int] = train_result.metrics
_A : Tuple = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ )
)
_A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("train" , UpperCamelCase__ )
trainer.save_metrics("train" , UpperCamelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_A : List[Any] = trainer.evaluate()
_A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ )
_A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("eval" , UpperCamelCase__ )
trainer.save_metrics("eval" , UpperCamelCase__ )
_A : Tuple = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCamelCase__ )
else:
trainer.create_model_card(**UpperCamelCase__ )
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 11 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/mbart-large-en-ro': (
'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'
),
'facebook/mbart-large-cc25': (
'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json',
'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json',
},
}
lowerCAmelCase__ = {
'facebook/mbart-large-en-ro': 10_24,
'facebook/mbart-large-cc25': 10_24,
}
# fmt: off
lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
__SCREAMING_SNAKE_CASE = MBartTokenizer
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it
_A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token
super().__init__(
vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , )
_A : Union[str, Any] = vocab_file
_A : int = False if not self.vocab_file else True
_A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens})
_A : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_A : Optional[int] = src_lang if src_lang is not None else "en_XX"
_A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang)
_A : int = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def _lowerCamelCase ( self) -> str:
return self._src_lang
@src_lang.setter
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
_A : List[str] = [self.sep_token_id]
_A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
_A : str = src_lang
_A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
_A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase)
_A : Dict = tgt_lang_id
return inputs
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding:
_A : Any = src_lang
_A : int = tgt_lang
return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self) -> List[str]:
return self.set_src_lang_special_tokens(self.src_lang)
def _lowerCamelCase ( self) -> List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : int = self.convert_tokens_to_ids(__lowerCamelCase)
_A : int = []
_A : List[str] = [self.eos_token_id, self.cur_lang_code]
_A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : str = self.convert_ids_to_tokens(self.suffix_tokens)
_A : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase)
_A : List[Any] = []
_A : str = [self.eos_token_id, self.cur_lang_code]
_A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : int = self.convert_ids_to_tokens(self.suffix_tokens)
_A : str = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory.")
return
_A : int = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase):
copyfile(self.vocab_file , __lowerCamelCase)
return (out_vocab_file,)
| 11 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env")
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
])
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self) -> str:
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , )
assert hasattr(self , "env")
def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple:
_A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"
# distributed data settings
_A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , )
def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]:
TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv")
@parameterized.expand([(2,)])
def _lowerCamelCase ( self , __lowerCamelCase) -> Any:
# create estimator
_A : Union[str, Any] = self.create_estimator(__lowerCamelCase)
# run training
estimator.fit()
# result dataframe
_A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
_A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
_A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_A : Optional[Any] = (
Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
assert all(t <= self.results["eval_loss"] for t in eval_loss)
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
| 11 | 1 |
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ):
if radian_mode:
return [magnitude * cos(UpperCamelCase__ ), magnitude * sin(UpperCamelCase__ )]
return [magnitude * cos(radians(UpperCamelCase__ ) ), magnitude * sin(radians(UpperCamelCase__ ) )]
def _UpperCAmelCase (UpperCamelCase__ : NDArray[floataa] , UpperCamelCase__ : NDArray[floataa] , UpperCamelCase__ : float = 10**-1 ):
_A : NDArray[floataa] = cross(UpperCamelCase__ , UpperCamelCase__ )
_A : float = sum(UpperCamelCase__ )
return abs(UpperCamelCase__ ) < eps
if __name__ == "__main__":
# Test to check if it works
lowerCAmelCase__ = array(
[
polar_force(7_18.4, 1_80 - 30),
polar_force(8_79.54, 45),
polar_force(1_00, -90),
]
)
lowerCAmelCase__ = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
lowerCAmelCase__ = array(
[
polar_force(30 * 9.81, 15),
polar_force(2_15, 1_80 - 45),
polar_force(2_64, 90 - 30),
]
)
lowerCAmelCase__ = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
lowerCAmelCase__ = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]])
lowerCAmelCase__ = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 11 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"]
__SCREAMING_SNAKE_CASE = "OwlViTImageProcessor"
__SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]:
_A : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __lowerCamelCase , )
_A : List[Any] = kwargs.pop("feature_extractor")
_A : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(__lowerCamelCase , __lowerCamelCase)
def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any:
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none.")
if text is not None:
if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)):
_A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)]
elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase):
_A : Optional[Any] = []
# Maximum number of queries across batch
_A : str = max([len(__lowerCamelCase) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(__lowerCamelCase) != max_num_queries:
_A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase))
_A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
encodings.append(__lowerCamelCase)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
_A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
_A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0)
_A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
_A : Optional[Any] = BatchEncoding()
_A : Tuple = input_ids
_A : Dict = attention_mask
if query_images is not None:
_A : Optional[Any] = BatchEncoding()
_A : List[str] = self.image_processor(
__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values
_A : Union[str, Any] = query_pixel_values
if images is not None:
_A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
if text is not None and images is not None:
_A : Tuple = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_A : int = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str:
return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]:
return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase)
@property
def _lowerCamelCase ( self) -> int:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , )
return self.image_processor_class
@property
def _lowerCamelCase ( self) -> List[str]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , )
return self.image_processor
| 11 | 1 |
from __future__ import annotations
def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
if len(UpperCamelCase__ ) < k or k < 0:
raise ValueError("Invalid Input" )
_A : int = sum(array[:k] )
for i in range(len(UpperCamelCase__ ) - k ):
_A : Optional[int] = current_sum - array[i] + array[i + k]
_A : str = max(UpperCamelCase__ , UpperCamelCase__ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
lowerCAmelCase__ = [randint(-10_00, 10_00) for i in range(1_00)]
lowerCAmelCase__ = randint(0, 1_10)
print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
| 11 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]):
_A : Optional[int] = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(__lowerCamelCase)
def _lowerCamelCase ( self) -> int:
_A : Optional[int] = "sshleifer/tiny-gpt2"
_A : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : List[str] = PyTorchBenchmark(__lowerCamelCase)
_A : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Dict:
_A : int = "sgugger/tiny-distilbert-classification"
_A : str = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , )
_A : Dict = PyTorchBenchmark(__lowerCamelCase)
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Tuple = "sshleifer/tiny-gpt2"
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase)
_A : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision")
def _lowerCamelCase ( self) -> int:
_A : Any = "sshleifer/tiny-gpt2"
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Any = PyTorchBenchmark(__lowerCamelCase)
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Any:
_A : Union[str, Any] = "sshleifer/tiny-gpt2"
_A : Any = AutoConfig.from_pretrained(__lowerCamelCase)
# set architectures equal to `None`
_A : Dict = None
_A : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> int:
_A : List[Any] = "sshleifer/tiny-gpt2"
_A : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase)
_A : int = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == "cpu" , "Can't do half precision")
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Any = "sshleifer/tiny-gpt2"
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , )
_A : List[Any] = PyTorchBenchmark(__lowerCamelCase)
_A : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> str:
_A : List[str] = "sshleifer/tiny-gpt2"
_A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> int:
_A : Tuple = "sshleifer/tinier_bart"
_A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> str:
_A : List[Any] = "sshleifer/tiny-gpt2"
_A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> int:
_A : int = "sshleifer/tinier_bart"
_A : str = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> Dict:
_A : List[str] = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(__lowerCamelCase)
benchmark.run()
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists())
def _lowerCamelCase ( self) -> int:
_A : Dict = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(__lowerCamelCase):
self.assertTrue(hasattr(__lowerCamelCase , "sequential"))
self.assertTrue(hasattr(__lowerCamelCase , "cumulative"))
self.assertTrue(hasattr(__lowerCamelCase , "current"))
self.assertTrue(hasattr(__lowerCamelCase , "total"))
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , )
_A : Optional[int] = PyTorchBenchmark(__lowerCamelCase)
_A : Dict = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
| 11 | 1 |
def _UpperCAmelCase (UpperCamelCase__ : int ):
if num < 0:
return False
_A : int = num
_A : int = 0
while num > 0:
_A : Optional[Any] = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 11 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'
),
},
}
lowerCAmelCase__ = {
'facebook/nllb-large-en-ro': 10_24,
'facebook/nllb-200-distilled-600M': 10_24,
}
# fmt: off
lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
__SCREAMING_SNAKE_CASE = NllbTokenizer
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple:
# Mask token behave like a normal word, i.e. include the space before it
_A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token
_A : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , )
_A : int = vocab_file
_A : Optional[Any] = False if not self.vocab_file else True
_A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens})
_A : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_A : Optional[int] = src_lang if src_lang is not None else "eng_Latn"
_A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang)
_A : List[str] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def _lowerCamelCase ( self) -> str:
return self._src_lang
@src_lang.setter
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
_A : Tuple = [self.sep_token_id]
_A : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
_A : List[Any] = src_lang
_A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
_A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase)
_A : Tuple = tgt_lang_id
return inputs
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding:
_A : Tuple = src_lang
_A : int = tgt_lang
return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self) -> str:
return self.set_src_lang_special_tokens(self.src_lang)
def _lowerCamelCase ( self) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Dict = self.convert_tokens_to_ids(__lowerCamelCase)
if self.legacy_behaviour:
_A : List[str] = []
_A : Dict = [self.eos_token_id, self.cur_lang_code]
else:
_A : Tuple = [self.cur_lang_code]
_A : Optional[Any] = [self.eos_token_id]
_A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : int = self.convert_ids_to_tokens(self.suffix_tokens)
_A : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase)
if self.legacy_behaviour:
_A : Tuple = []
_A : Any = [self.eos_token_id, self.cur_lang_code]
else:
_A : Union[str, Any] = [self.cur_lang_code]
_A : str = [self.eos_token_id]
_A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : Dict = self.convert_ids_to_tokens(self.suffix_tokens)
_A : Union[str, Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory.")
return
_A : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase):
copyfile(self.vocab_file , __lowerCamelCase)
return (out_vocab_file,)
| 11 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
},
'tokenizer_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json',
},
}
lowerCAmelCase__ = {
'albert-base-v1': 5_12,
'albert-large-v1': 5_12,
'albert-xlarge-v1': 5_12,
'albert-xxlarge-v1': 5_12,
'albert-base-v2': 5_12,
'albert-large-v2': 5_12,
'albert-xlarge-v2': 5_12,
'albert-xxlarge-v2': 5_12,
}
lowerCAmelCase__ = '▁'
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = AlbertTokenizer
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , **__lowerCamelCase , ) -> Tuple:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_A : Tuple = (
AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase)
if isinstance(__lowerCamelCase , __lowerCamelCase)
else mask_token
)
super().__init__(
__lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , )
_A : List[str] = do_lower_case
_A : Any = remove_space
_A : Tuple = keep_accents
_A : List[Any] = vocab_file
_A : Any = False if not self.vocab_file else True
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
_A : Optional[Any] = [self.sep_token_id]
_A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
_A : str = [self.sep_token_id]
_A : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory")
return
_A : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase):
copyfile(self.vocab_file , __lowerCamelCase)
return (out_vocab_file,)
| 11 |
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ):
_A : Union[str, Any] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" )
_A : Dict = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" )
_A : Dict = format_type
def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ):
_A : Union[str, Any] = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
_A : Union[str, Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['python'])
_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])
_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])
_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])
_register_formatter(CustomFormatter, 'custom')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])
else:
lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')
_register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])
else:
lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')
_register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, 'jax', aliases=[])
else:
lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.')
_register_unavailable_formatter(_jax_error, 'jax', aliases=[])
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ):
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ):
_A : List[str] = get_format_type_from_alias(UpperCamelCase__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**UpperCamelCase__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
| 11 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "dandelin/vilt-b32-finetuned-vqa"
__SCREAMING_SNAKE_CASE = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__SCREAMING_SNAKE_CASE = "image_qa"
__SCREAMING_SNAKE_CASE = AutoProcessor
__SCREAMING_SNAKE_CASE = AutoModelForVisualQuestionAnswering
__SCREAMING_SNAKE_CASE = ["image", "text"]
__SCREAMING_SNAKE_CASE = ["text"]
def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> int:
requires_backends(self , ["vision"])
super().__init__(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple:
return self.pre_processor(__lowerCamelCase , __lowerCamelCase , return_tensors="pt")
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
with torch.no_grad():
return self.model(**__lowerCamelCase).logits
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
_A : str = outputs.argmax(-1).item()
return self.model.config.idalabel[idx]
| 11 |
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
_A : int = (boundary[1] - boundary[0]) / steps
_A : Any = boundary[0]
_A : List[Any] = boundary[1]
_A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
_A : str = 0.0
y += (h / 2.0) * f(UpperCamelCase__ )
for i in x_i:
# print(i)
y += h * f(UpperCamelCase__ )
y += (h / 2.0) * f(UpperCamelCase__ )
return y
def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ):
_A : Optional[int] = a + h
while x < (b - h):
yield x
_A : Dict = x + h
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here
_A : Any = (x - 0) * (x - 0)
return y
def _UpperCAmelCase ():
_A : Optional[Any] = 0.0 # Lower bound of integration
_A : Optional[int] = 1.0 # Upper bound of integration
_A : List[Any] = 10.0 # define number of steps or resolution
_A : Any = [a, b] # define boundary of integration
_A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ )
print(f"y = {y}" )
if __name__ == "__main__":
main()
| 11 | 1 |
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
lowerCAmelCase__ = 'base_with_context'
def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ):
_A : Tuple = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) )
_A : int = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=UpperCamelCase__ )
for lyr_num, lyr in enumerate(model.encoders ):
_A : Tuple = weights[f"layers_{lyr_num}"]
_A : Any = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
_A : Optional[int] = ly_weight["attention"]
_A : str = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
_A : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
_A : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
_A : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
_A : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
_A : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
_A : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
_A : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
_A : str = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ):
_A : Any = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) )
_A : List[Any] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=UpperCamelCase__ )
for lyr_num, lyr in enumerate(model.encoders ):
_A : List[str] = weights[f"layers_{lyr_num}"]
_A : Any = ly_weight["attention"]
_A : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
_A : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
_A : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
_A : Dict = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
_A : Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
_A : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
_A : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
_A : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
_A : Dict = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
_A : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ):
_A : Optional[int] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) )
_A : Any = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) )
_A : List[str] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=UpperCamelCase__ )
_A : Optional[Any] = nn.Parameter(
torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
_A : str = weights[f"layers_{lyr_num}"]
_A : List[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) )
_A : Dict = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) )
_A : List[Any] = ly_weight["self_attention"]
_A : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
_A : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
_A : str = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
_A : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
_A : Union[str, Any] = ly_weight["MultiHeadDotProductAttention_0"]
_A : Any = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
_A : Any = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
_A : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
_A : Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
_A : List[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) )
_A : int = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
_A : Any = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) )
_A : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
_A : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
_A : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
_A : Tuple = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) )
_A : Tuple = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) )
return model
def _UpperCAmelCase (UpperCamelCase__ : List[str] ):
_A : Dict = checkpoints.load_tax_checkpoint(args.checkpoint_path )
_A : Dict = jnp.tree_util.tree_map(onp.array , UpperCamelCase__ )
_A : List[str] = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
_A : str = os.path.join(args.checkpoint_path , ".." , "config.gin" )
_A : Tuple = inference.parse_training_gin_file(UpperCamelCase__ , UpperCamelCase__ )
_A : int = inference.InferenceModel(args.checkpoint_path , UpperCamelCase__ )
_A : List[str] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" )
_A : List[str] = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
_A : Any = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
_A : Dict = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
_A : List[Any] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , UpperCamelCase__ )
_A : List[Any] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , UpperCamelCase__ )
_A : int = load_decoder(ta_checkpoint["target"]["decoder"] , UpperCamelCase__ )
_A : Tuple = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" )
_A : List[Any] = SpectrogramDiffusionPipeline(
notes_encoder=UpperCamelCase__ , continuous_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ , scheduler=UpperCamelCase__ , melgan=UpperCamelCase__ , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.')
parser.add_argument(
'--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.'
)
parser.add_argument(
'--checkpoint_path',
default=f"{MODEL}/checkpoint_500000",
type=str,
required=False,
help='Path to the original jax model checkpoint.',
)
lowerCAmelCase__ = parser.parse_args()
main(args)
| 11 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
@parameterized.expand([(None,), ("foo.json",)])
def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]:
_A : str = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase)
_A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , __lowerCamelCase)
self.assertEqual(loaded_config.temperature , 0.7)
self.assertEqual(loaded_config.length_penalty , 1.0)
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0)
self.assertEqual(loaded_config.max_length , 2_0)
self.assertEqual(loaded_config.max_time , __lowerCamelCase)
def _lowerCamelCase ( self) -> Optional[int]:
_A : Optional[int] = AutoConfig.from_pretrained("gpt2")
_A : int = GenerationConfig.from_model_config(__lowerCamelCase)
_A : List[Any] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(__lowerCamelCase , __lowerCamelCase)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id)
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Optional[Any] = GenerationConfig()
_A : List[Any] = {
"max_new_tokens": 1_0_2_4,
"foo": "bar",
}
_A : List[str] = copy.deepcopy(__lowerCamelCase)
_A : int = generation_config.update(**__lowerCamelCase)
# update_kwargs was not modified (no side effects)
self.assertEqual(__lowerCamelCase , __lowerCamelCase)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(__lowerCamelCase , {"foo": "bar"})
def _lowerCamelCase ( self) -> Any:
_A : int = GenerationConfig()
_A : int = "bar"
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(__lowerCamelCase)
_A : Any = GenerationConfig.from_pretrained(__lowerCamelCase)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , "bar")
_A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase)
assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config
def _lowerCamelCase ( self) -> List[str]:
_A : Union[str, Any] = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0)
self.assertEqual(default_config.do_sample , __lowerCamelCase)
self.assertEqual(default_config.num_beams , 1)
_A : Optional[int] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7)
self.assertEqual(config.do_sample , __lowerCamelCase)
self.assertEqual(config.num_beams , 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCamelCase)
_A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0)
self.assertEqual(loaded_config.temperature , 1.0)
self.assertEqual(loaded_config.do_sample , __lowerCamelCase)
self.assertEqual(loaded_config.num_beams , 1) # default value
@is_staging_test
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
@classmethod
def _lowerCamelCase ( cls) -> Optional[int]:
_A : Dict = TOKEN
HfFolder.save_token(__lowerCamelCase)
@classmethod
def _lowerCamelCase ( cls) -> List[Any]:
try:
delete_repo(token=cls._token , repo_id="test-generation-config")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org")
except HTTPError:
pass
def _lowerCamelCase ( self) -> Any:
_A : Optional[int] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("test-generation-config" , use_auth_token=self._token)
_A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
# Reset repo
delete_repo(token=self._token , repo_id="test-generation-config")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token)
_A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Union[str, Any] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token)
_A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token)
_A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
| 11 | 1 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self) -> List[Any]:
_A : str = 1_0
def _lowerCamelCase ( self) -> Any:
_A : Optional[int] = [1, 2, 3, 4]
_A : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(__lowerCamelCase , self.block_size , 0) , __lowerCamelCase)
def _lowerCamelCase ( self) -> Dict:
_A : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
_A : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
self.assertEqual(truncate_or_pad(__lowerCamelCase , self.block_size , 0) , __lowerCamelCase)
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3]
_A : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
self.assertEqual(truncate_or_pad(__lowerCamelCase , self.block_size , 0) , __lowerCamelCase)
def _lowerCamelCase ( self) -> Tuple:
_A : List[Any] = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this."
_A , _A : int = process_story(__lowerCamelCase)
self.assertEqual(__lowerCamelCase , [])
def _lowerCamelCase ( self) -> Optional[int]:
_A : List[Any] = ""
_A , _A : Optional[int] = process_story(__lowerCamelCase)
self.assertEqual(__lowerCamelCase , [])
self.assertEqual(__lowerCamelCase , [])
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[Any] = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
_A , _A : str = process_story(__lowerCamelCase)
_A : Any = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(__lowerCamelCase , __lowerCamelCase)
_A : List[Any] = ["It was the best of times."]
self.assertEqual(__lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> int:
_A : Dict = torch.tensor([1, 2, 3, 4])
_A : int = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(__lowerCamelCase , 0).numpy() , expected.numpy())
def _lowerCamelCase ( self) -> int:
_A : Optional[int] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3])
_A : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(__lowerCamelCase , 2_3).numpy() , expected.numpy())
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Optional[int] = torch.tensor([8, 2, 3, 4, 1, 1, 1])
_A : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(__lowerCamelCase , 1).numpy() , expected.numpy())
def _lowerCamelCase ( self) -> str:
_A : Dict = 1_0_1
_A : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]])
_A : Any = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
_A : str = compute_token_type_ids(__lowerCamelCase , __lowerCamelCase)
np.testing.assert_array_equal(__lowerCamelCase , __lowerCamelCase)
| 11 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str:
_A : Optional[int] = bp_numa
_A : Dict = bp_numa
_A : Tuple = bp_numa
_A : List[str] = conva_get[:2]
_A : Tuple = conva_get[2]
_A : Optional[int] = size_pa
_A : Optional[Any] = rate_w
_A : Optional[Any] = rate_t
_A : Union[str, Any] = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5)
for i in range(self.conva[1])
]
_A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
_A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
_A : Any = -2 * np.random.rand(self.conva[1]) + 1
_A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1
_A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
# save model dict with pickle
_A : Dict = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(__lowerCamelCase , "wb") as f:
pickle.dump(__lowerCamelCase , __lowerCamelCase)
print(F"Model saved: {save_path}")
@classmethod
def _lowerCamelCase ( cls , __lowerCamelCase) -> Any:
# read saved model
with open(__lowerCamelCase , "rb") as f:
_A : Any = pickle.load(__lowerCamelCase) # noqa: S301
_A : Optional[int] = model_dic.get("conv1")
conv_get.append(model_dic.get("step_conv1"))
_A : str = model_dic.get("size_pooling1")
_A : List[str] = model_dic.get("num_bp1")
_A : Union[str, Any] = model_dic.get("num_bp2")
_A : List[Any] = model_dic.get("num_bp3")
_A : Dict = model_dic.get("rate_weight")
_A : List[Any] = model_dic.get("rate_thre")
# create model instance
_A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
# modify model parameter
_A : List[Any] = model_dic.get("w_conv1")
_A : Union[str, Any] = model_dic.get("wkj")
_A : str = model_dic.get("vji")
_A : List[str] = model_dic.get("thre_conv1")
_A : Optional[Any] = model_dic.get("thre_bp2")
_A : Dict = model_dic.get("thre_bp3")
return conv_ins
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
return 1 / (1 + np.exp(-1 * x))
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
return round(__lowerCamelCase , 3)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]:
# convolution process
_A : Tuple = convs[0]
_A : Union[str, Any] = convs[1]
_A : List[Any] = np.shape(__lowerCamelCase)[0]
# get the data slice of original image data, data_focus
_A : Tuple = []
for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase):
for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase):
_A : Optional[int] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__lowerCamelCase)
# calculate the feature map of every single kernel, and saved as list of matrix
_A : Optional[Any] = []
_A : Optional[int] = int((size_data - size_conv) / conv_step + 1)
for i_map in range(__lowerCamelCase):
_A : Optional[int] = []
for i_focus in range(len(__lowerCamelCase)):
_A : Any = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map]))
- thre_convs[i_map]
)
featuremap.append(self.sig(__lowerCamelCase))
_A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape(
__lowerCamelCase , __lowerCamelCase)
data_featuremap.append(__lowerCamelCase)
# expanding the data slice to One dimenssion
_A : Optional[Any] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__lowerCamelCase))
_A : Dict = np.asarray(__lowerCamelCase)
return focus_list, data_featuremap
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict:
# pooling process
_A : Optional[Any] = len(featuremaps[0])
_A : str = int(size_map / size_pooling)
_A : Optional[int] = []
for i_map in range(len(__lowerCamelCase)):
_A : int = featuremaps[i_map]
_A : Optional[int] = []
for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase):
for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase):
_A : str = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__lowerCamelCase))
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__lowerCamelCase))
_A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase)
featuremap_pooled.append(__lowerCamelCase)
return featuremap_pooled
def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple:
# expanding three dimension data to one dimension list
_A : Tuple = []
for i in range(len(__lowerCamelCase)):
_A : Union[str, Any] = np.shape(data[i])
_A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1])
_A : Optional[Any] = data_listed.getA().tolist()[0]
data_expanded.extend(__lowerCamelCase)
_A : Optional[Any] = np.asarray(__lowerCamelCase)
return data_expanded
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
# expanding matrix to one dimension list
_A : List[Any] = np.asarray(__lowerCamelCase)
_A : Union[str, Any] = np.shape(__lowerCamelCase)
_A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1])
return data_expanded
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]:
_A : Dict = []
_A : Any = 0
for i_map in range(__lowerCamelCase):
_A : Union[str, Any] = np.ones((size_map, size_map))
for i in range(0 , __lowerCamelCase , __lowerCamelCase):
for j in range(0 , __lowerCamelCase , __lowerCamelCase):
_A : List[Any] = pd_pool[
i_pool
]
_A : Tuple = i_pool + 1
_A : Optional[Any] = np.multiply(
__lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map])))
pd_all.append(__lowerCamelCase)
return pd_all
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]:
# model traning
print("----------------------Start Training-------------------------")
print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase)))
print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase)))
_A : Tuple = 0
_A : Dict = []
_A : Optional[Any] = 1_0_0_0_0
while rp < n_repeat and mse >= error_accuracy:
_A : Union[str, Any] = 0
print(F"-------------Learning Time {rp}--------------")
for p in range(len(__lowerCamelCase)):
# print('------------Learning Image: %d--------------'%p)
_A : str = np.asmatrix(datas_train[p])
_A : Union[str, Any] = np.asarray(datas_teach[p])
_A , _A : Any = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga)
_A : Optional[int] = np.shape(__lowerCamelCase)
_A : List[str] = self._expand(__lowerCamelCase)
_A : Tuple = data_bp_input
_A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa
_A : List[Any] = self.sig(__lowerCamelCase)
_A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa
_A : List[str] = self.sig(__lowerCamelCase)
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
_A : int = np.multiply(
(data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa)))
_A : Optional[Any] = np.multiply(
np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa)))
_A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji)
_A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga)
_A : Dict = pd_conva_pooled.T.getA().tolist()
_A : Optional[Any] = self._calculate_gradient_from_pool(
__lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1]):
_A : int = self._expand_mat(pd_conva_all[k_conv])
_A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase)
_A : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]))
_A : Any = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv]) * self.rate_thre
)
# all connected layer
_A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
_A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight
_A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre
_A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
_A : Optional[int] = np.sum(abs(data_teach - bp_outa))
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
_A : Any = rp + 1
_A : Dict = error_count / patterns
all_mse.append(__lowerCamelCase)
def draw_error():
_A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(__lowerCamelCase , "+-")
plt.plot(__lowerCamelCase , "r--")
plt.xlabel("Learning Times")
plt.ylabel("All_mse")
plt.grid(__lowerCamelCase , alpha=0.5)
plt.show()
print("------------------Training Complished---------------------")
print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}"))
if draw_e:
draw_error()
return mse
def _lowerCamelCase ( self , __lowerCamelCase) -> int:
# model predict
_A : Union[str, Any] = []
print("-------------------Start Testing-------------------------")
print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase)))
for p in range(len(__lowerCamelCase)):
_A : int = np.asmatrix(datas_test[p])
_A , _A : List[Any] = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : str = self.pooling(__lowerCamelCase , self.size_poolinga)
_A : Optional[int] = self._expand(__lowerCamelCase)
_A : List[Any] = data_bp_input
_A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa
_A : int = self.sig(__lowerCamelCase)
_A : int = bp_outa * self.wkj.T - self.thre_bpa
_A : Optional[int] = self.sig(__lowerCamelCase)
produce_out.extend(bp_outa.getA().tolist())
_A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out]
return np.asarray(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
# return the data of image after convoluting process so we can check it out
_A : Optional[int] = np.asmatrix(__lowerCamelCase)
_A , _A : Tuple = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga)
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 11 | 1 |
lowerCAmelCase__ = 2_56
# Modulus to hash a string
lowerCAmelCase__ = 1_00_00_03
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : str ):
_A : Optional[Any] = len(UpperCamelCase__ )
_A : str = len(UpperCamelCase__ )
if p_len > t_len:
return False
_A : Tuple = 0
_A : Dict = 0
_A : List[Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(UpperCamelCase__ ):
_A : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
_A : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
_A : Union[str, Any] = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
_A : Optional[int] = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def _UpperCAmelCase ():
_A : Tuple = "abc1abc12"
_A : Union[str, Any] = "alskfjaldsabc1abc1abc12k23adsfabcabc"
_A : List[str] = "alskfjaldsk23adsfabcabc"
assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ ) and not rabin_karp(UpperCamelCase__ , UpperCamelCase__ )
# Test 2)
_A : List[str] = "ABABX"
_A : Dict = "ABABZABABYABABX"
assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ )
# Test 3)
_A : int = "AAAB"
_A : Optional[int] = "ABAAAAAB"
assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ )
# Test 4)
_A : Dict = "abcdabcy"
_A : List[Any] = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ )
# Test 5)
_A : List[str] = "Lü"
_A : List[Any] = "Lüsai"
assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ )
_A : Optional[int] = "Lue"
assert not rabin_karp(UpperCamelCase__ , UpperCamelCase__ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 11 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
lowerCAmelCase__ = object()
# For specifying empty leaf dict `{}`
lowerCAmelCase__ = object()
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ):
_A : str = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ):
_A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )]
if matches and all(UpperCamelCase__ ):
return True
return False
def _UpperCAmelCase (UpperCamelCase__ : str ):
def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ):
for rule, replacement in rules:
if _match(UpperCamelCase__ , UpperCamelCase__ ):
return replacement
return val
return replace
def _UpperCAmelCase ():
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )),
(("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _UpperCAmelCase (UpperCamelCase__ : List[str] ):
_A : int = _get_partition_rules()
_A : Optional[int] = _replacement_rules(UpperCamelCase__ )
_A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )}
_A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCamelCase__ ) )
| 11 | 1 |
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ):
_A : Union[str, Any] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" )
_A : Dict = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" )
_A : Dict = format_type
def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ):
_A : Union[str, Any] = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
_A : Union[str, Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['python'])
_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])
_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])
_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])
_register_formatter(CustomFormatter, 'custom')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])
else:
lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')
_register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])
else:
lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')
_register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, 'jax', aliases=[])
else:
lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.')
_register_unavailable_formatter(_jax_error, 'jax', aliases=[])
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ):
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ):
_A : List[str] = get_format_type_from_alias(UpperCamelCase__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**UpperCamelCase__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
| 11 |
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ):
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}"
raise ValueError(UpperCamelCase__ )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}"
raise ValueError(UpperCamelCase__ )
_A : int = input_str.split("_" )
_A : str = 0 if use_pascal else 1
_A : str = words[start_index:]
_A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize]
_A : Any = "" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 11 | 1 |
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'}
lowerCAmelCase__ = {
'vocab_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt',
},
'emoji_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json',
},
}
lowerCAmelCase__ = {
'abeja/gpt-neox-japanese-2.7b': 20_48,
}
def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ):
with open(UpperCamelCase__ , "r" , encoding="utf-8" ) as f:
_A : Tuple = json.loads(f.read() )
_A : str = collections.OrderedDict()
_A : Union[str, Any] = collections.OrderedDict()
_A : Union[str, Any] = collections.OrderedDict()
with open(UpperCamelCase__ , "r" , encoding="utf-8" ) as f:
_A : Any = f.readlines()
_A : List[Any] = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(UpperCamelCase__ ):
_A : Optional[Any] = b
_A : List[str] = idx
for wd in b:
_A : Union[str, Any] = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase="<|startoftext|>" , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase=False , **__lowerCamelCase , ) -> str:
super().__init__(
unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , do_clean_text=__lowerCamelCase , **__lowerCamelCase , )
if not os.path.isfile(__lowerCamelCase):
raise ValueError(
F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`")
if not os.path.isfile(__lowerCamelCase):
raise ValueError(
F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`")
_A : Optional[int] = do_clean_text
_A , _A , _A , _A : Any = load_vocab_and_emoji(__lowerCamelCase , __lowerCamelCase)
_A : Union[str, Any] = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji)
@property
def _lowerCamelCase ( self) -> Union[str, Any]:
# self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
return len(self.raw_vocab)
def _lowerCamelCase ( self) -> Union[str, Any]:
return dict(self.raw_vocab , **self.added_tokens_encoder)
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
return self.subword_tokenizer.tokenize(__lowerCamelCase , clean=self.do_clean_text)
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token))
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
return self.subword_tokenizer.convert_id_to_token(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
_A : List[str] = "".join(__lowerCamelCase).strip()
return out_string
def _lowerCamelCase ( self , __lowerCamelCase) -> List[int]:
_A : Optional[Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase) + [self.eos_token_id])
if len(__lowerCamelCase) > self.model_max_length:
_A : List[Any] = input_ids[-self.model_max_length :]
return input_ids
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
_A : Optional[Any] = 0
if os.path.isdir(__lowerCamelCase):
_A : Optional[int] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
_A : List[str] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"])
else:
_A : Union[str, Any] = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
_A : Dict = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(__lowerCamelCase , "w" , encoding="utf-8") as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!")
_A : List[Any] = token_index
writer.write(",".join(__lowerCamelCase) + "\n")
index += 1
with open(__lowerCamelCase , "w" , encoding="utf-8") as writer:
json.dump(self.emoji , __lowerCamelCase)
return vocab_file, emoji_file
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]:
_A : Optional[int] = vocab # same as swe
_A : Optional[Any] = ids_to_tokens # same as bpe
_A : Tuple = emoji
_A : Dict = np.max([len(__lowerCamelCase) for w in self.vocab.keys()])
_A : int = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)")
_A : int = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*")
_A : str = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}")
_A : Any = re.compile(
r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*")
_A : List[Any] = re.compile(
r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*")
_A : Optional[Any] = re.compile(
r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*")
_A : Tuple = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
_A : Dict = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
_A : str = str.maketrans({k: "<BLOCK>" for k in keisen + blocks})
def __len__( self) -> str:
return len(self.ids_to_tokens)
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
_A : Optional[Any] = self.content_repattera.sub("<URL>" , __lowerCamelCase)
_A : Dict = self.content_repattera.sub("<EMAIL>" , __lowerCamelCase)
_A : Optional[Any] = self.content_repattera.sub("<TEL>" , __lowerCamelCase)
_A : Optional[int] = self.content_repattera.sub("<DATE>" , __lowerCamelCase)
_A : List[str] = self.content_repattera.sub("<DATE>" , __lowerCamelCase)
_A : List[str] = self.content_repattera.sub("<PRICE>" , __lowerCamelCase)
_A : int = content.translate(self.content_transa)
while "<BLOCK><BLOCK>" in content:
_A : List[Any] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>")
return content
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=False) -> List[str]:
_A : Tuple = text.replace(" " , "<SP>")
_A : Tuple = text.replace(" " , "<SP>")
_A : List[Any] = text.replace("\r\n" , "<BR>")
_A : Any = text.replace("\n" , "<BR>")
_A : Optional[Any] = text.replace("\r" , "<BR>")
_A : str = text.replace("\t" , "<TAB>")
_A : List[Any] = text.replace("—" , "ー")
_A : List[Any] = text.replace("−" , "ー")
for k, v in self.emoji["emoji"].items():
if k in text:
_A : Tuple = text.replace(__lowerCamelCase , __lowerCamelCase)
if clean:
_A : Union[str, Any] = self.clean_text(__lowerCamelCase)
def check_simbol(__lowerCamelCase):
_A : Optional[int] = x.encode()
if len(__lowerCamelCase) == 1 and len(__lowerCamelCase) == 2:
_A : int = (int(e[0]) << 8) + int(e[1])
if (
(c >= 0xc_2a1 and c <= 0xc_2bf)
or (c >= 0xc_780 and c <= 0xc_783)
or (c >= 0xc_ab9 and c <= 0xc_bbf)
or (c >= 0xc_c80 and c <= 0xc_da2)
):
return True
return False
def checkuae(__lowerCamelCase):
_A : Optional[Any] = x.encode()
if len(__lowerCamelCase) == 1 and len(__lowerCamelCase) == 3:
_A : Any = (int(e[0]) << 1_6) + (int(e[1]) << 8) + int(e[2])
if c >= 0xe28_080 and c <= 0xe2b_07f:
return True
return False
_A : Tuple = 0
_A : str = []
while pos < len(__lowerCamelCase):
_A : List[str] = min(len(__lowerCamelCase) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3
_A : Tuple = [] # (token_id, token, pos)
for e in range(__lowerCamelCase , __lowerCamelCase , -1):
_A : Tuple = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__lowerCamelCase) > 2:
_A : str = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e))
if len(__lowerCamelCase) > 0:
# the smallest token_id is adopted
_A , _A , _A : Tuple = sorted(__lowerCamelCase , key=lambda __lowerCamelCase: x[0])[0]
result.append(__lowerCamelCase)
_A : Any = e
else:
_A : Union[str, Any] = pos + 1
_A : Any = text[pos:end]
if check_simbol(__lowerCamelCase):
result.append("<KIGOU>")
elif checkuae(__lowerCamelCase):
result.append("<U2000U2BFF>")
else:
for i in wd.encode("utf-8"):
result.append("<|byte%d|>" % i)
_A : Tuple = end
return result
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase="\n") -> List[str]:
_A : Union[str, Any] = []
_A : int = []
_A : List[str] = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2]))
else:
if len(__lowerCamelCase) > 0:
words.append(bytearray(__lowerCamelCase).decode("utf-8" , errors="replace"))
_A : str = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word])
elif word == "<SP>":
words.append(" ")
elif word == "<BR>":
words.append(__lowerCamelCase)
elif word == "<TAB>":
words.append("\t")
elif word == "<BLOCK>":
words.append("▀")
elif word == "<KIGOU>":
words.append("ǀ")
elif word == "<U2000U2BFF>":
words.append("‖")
else:
words.append(__lowerCamelCase)
if len(__lowerCamelCase) > 0:
words.append(bytearray(__lowerCamelCase).decode("utf-8" , errors="replace"))
_A : Optional[Any] = "".join(__lowerCamelCase)
return text
| 11 |
from __future__ import annotations
def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
_A : Dict = list(range(len(UpperCamelCase__ ) ) )
_A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )]
index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ )
_A : float = 0
_A : list[float] = [0] * len(UpperCamelCase__ )
for i in index:
if weight[i] <= capacity:
_A : Union[str, Any] = 1
max_value += value[i]
capacity -= weight[i]
else:
_A : Optional[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 11 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self) -> List[Any]:
_A : str = 1
_A : Tuple = 3
_A : List[Any] = (3_2, 3_2)
_A : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__lowerCamelCase)
return image
@property
def _lowerCamelCase ( self) -> Tuple:
torch.manual_seed(0)
_A : List[str] = UNetaDConditionModel(
block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=__lowerCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , )
return model
@property
def _lowerCamelCase ( self) -> Dict:
torch.manual_seed(0)
_A : Optional[int] = AutoencoderKL(
block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def _lowerCamelCase ( self) -> List[Any]:
torch.manual_seed(0)
_A : str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , )
return CLIPTextModel(__lowerCamelCase)
def _lowerCamelCase ( self) -> Any:
_A : Any = "cpu" # ensure determinism for the device-dependent torch.Generator
_A : Tuple = self.dummy_cond_unet_upscale
_A : Optional[Any] = DDPMScheduler()
_A : List[str] = DDIMScheduler(prediction_type="v_prediction")
_A : str = self.dummy_vae
_A : Tuple = self.dummy_text_encoder
_A : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
_A : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0]
_A : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase)).convert("RGB").resize((6_4, 6_4))
# make sure here that pndm scheduler skips prk
_A : Dict = StableDiffusionUpscalePipeline(
unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=3_5_0 , )
_A : Optional[int] = sd_pipe.to(__lowerCamelCase)
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase)
_A : List[str] = "A painting of a squirrel eating a burger"
_A : Any = torch.Generator(device=__lowerCamelCase).manual_seed(0)
_A : Optional[int] = sd_pipe(
[prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , )
_A : List[str] = output.images
_A : str = torch.Generator(device=__lowerCamelCase).manual_seed(0)
_A : Dict = sd_pipe(
[prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0]
_A : int = image[0, -3:, -3:, -1]
_A : int = image_from_tuple[0, -3:, -3:, -1]
_A : List[Any] = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_A : Union[str, Any] = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
_A : Any = self.dummy_cond_unet_upscale
_A : Dict = DDPMScheduler()
_A : str = DDIMScheduler(prediction_type="v_prediction")
_A : List[Any] = self.dummy_vae
_A : Union[str, Any] = self.dummy_text_encoder
_A : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
_A : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0]
_A : List[str] = Image.fromarray(np.uinta(__lowerCamelCase)).convert("RGB").resize((6_4, 6_4))
# make sure here that pndm scheduler skips prk
_A : Any = StableDiffusionUpscalePipeline(
unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=3_5_0 , )
_A : int = sd_pipe.to(__lowerCamelCase)
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase)
_A : Dict = "A painting of a squirrel eating a burger"
_A : str = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , )
_A : Tuple = output.images
assert image.shape[0] == 2
_A : Optional[Any] = torch.Generator(device=__lowerCamelCase).manual_seed(0)
_A : str = sd_pipe(
[prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , )
_A : List[Any] = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU")
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : int = self.dummy_cond_unet_upscale
_A : Tuple = DDPMScheduler()
_A : int = DDIMScheduler(prediction_type="v_prediction")
_A : List[Any] = self.dummy_vae
_A : Any = self.dummy_text_encoder
_A : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
_A : int = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0]
_A : List[Any] = Image.fromarray(np.uinta(__lowerCamelCase)).convert("RGB").resize((6_4, 6_4))
# put models in fp16, except vae as it overflows in fp16
_A : List[str] = unet.half()
_A : List[Any] = text_encoder.half()
# make sure here that pndm scheduler skips prk
_A : List[str] = StableDiffusionUpscalePipeline(
unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=3_5_0 , )
_A : Optional[int] = sd_pipe.to(__lowerCamelCase)
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase)
_A : Union[str, Any] = "A painting of a squirrel eating a burger"
_A : int = torch.manual_seed(0)
_A : List[Any] = sd_pipe(
[prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , ).images
_A : int = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Any = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png")
_A : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat.npy")
_A : Any = "stabilityai/stable-diffusion-x4-upscaler"
_A : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(__lowerCamelCase)
pipe.to(__lowerCamelCase)
pipe.set_progress_bar_config(disable=__lowerCamelCase)
pipe.enable_attention_slicing()
_A : Any = "a cat sitting on a park bench"
_A : Any = torch.manual_seed(0)
_A : int = pipe(
prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type="np" , )
_A : int = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image).max() < 1e-3
def _lowerCamelCase ( self) -> int:
_A : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png")
_A : Union[str, Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat_fp16.npy")
_A : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler"
_A : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(
__lowerCamelCase , torch_dtype=torch.floataa , )
pipe.to(__lowerCamelCase)
pipe.set_progress_bar_config(disable=__lowerCamelCase)
pipe.enable_attention_slicing()
_A : str = "a cat sitting on a park bench"
_A : Dict = torch.manual_seed(0)
_A : Optional[int] = pipe(
prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type="np" , )
_A : Optional[int] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image).max() < 5e-1
def _lowerCamelCase ( self) -> Tuple:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_A : List[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png")
_A : int = "stabilityai/stable-diffusion-x4-upscaler"
_A : Dict = StableDiffusionUpscalePipeline.from_pretrained(
__lowerCamelCase , torch_dtype=torch.floataa , )
pipe.to(__lowerCamelCase)
pipe.set_progress_bar_config(disable=__lowerCamelCase)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
_A : str = "a cat sitting on a park bench"
_A : Union[str, Any] = torch.manual_seed(0)
_A : int = pipe(
prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , output_type="np" , )
_A : List[str] = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 1_0**9
| 11 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None:
warnings.warn(
"The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use BeitImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase)
| 11 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
lowerCAmelCase__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['GPTSw3Tokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]:
_A : int = parent
_A : Optional[Any] = batch_size
_A : str = image_size
_A : Tuple = patch_size
_A : Tuple = num_channels
_A : Optional[int] = embed_dim
_A : Dict = depths
_A : Any = num_heads
_A : Any = window_size
_A : int = mlp_ratio
_A : Any = qkv_bias
_A : Union[str, Any] = hidden_dropout_prob
_A : Optional[Any] = attention_probs_dropout_prob
_A : Dict = drop_path_rate
_A : List[Any] = hidden_act
_A : Any = use_absolute_embeddings
_A : Optional[int] = patch_norm
_A : Tuple = layer_norm_eps
_A : List[str] = initializer_range
_A : Optional[int] = is_training
_A : Optional[Any] = scope
_A : Optional[int] = use_labels
_A : Dict = type_sequence_label_size
_A : str = encoder_stride
_A : Optional[int] = out_features
_A : Optional[int] = out_indices
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
_A : Optional[Any] = None
if self.use_labels:
_A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_A : Optional[int] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self) -> Union[str, Any]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]:
_A : Dict = MaskFormerSwinModel(config=__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : int = model(__lowerCamelCase)
_A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
_A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim))
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict:
_A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : Dict = model(__lowerCamelCase)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4])
# verify ValueError
with self.parent.assertRaises(__lowerCamelCase):
_A : Union[str, Any] = ["stem"]
_A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase)
def _lowerCamelCase ( self) -> Dict:
_A : Any = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Optional[int] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( a , a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def _lowerCamelCase ( self) -> str:
_A : Union[str, Any] = MaskFormerSwinModelTester(self)
_A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7)
@require_torch_multi_gpu
@unittest.skip(
reason=(
"`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"
" `nn.DataParallel`"
))
def _lowerCamelCase ( self) -> Union[str, Any]:
pass
def _lowerCamelCase ( self) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self) -> str:
return
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase)
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCamelCase)
@unittest.skip("Swin does not use inputs_embeds")
def _lowerCamelCase ( self) -> str:
pass
@unittest.skip("Swin does not support feedforward chunking")
def _lowerCamelCase ( self) -> List[Any]:
pass
def _lowerCamelCase ( self) -> Optional[int]:
_A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Union[str, Any] = model_class(__lowerCamelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
_A : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear))
def _lowerCamelCase ( self) -> Any:
_A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(__lowerCamelCase)
_A : Optional[int] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : int = [*signature.parameters.keys()]
_A : Optional[int] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase)
@unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions")
def _lowerCamelCase ( self) -> Tuple:
pass
@unittest.skip(reason="MaskFormerSwin is only used as an internal backbone")
def _lowerCamelCase ( self) -> str:
pass
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]:
_A : Any = model_class(__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
with torch.no_grad():
_A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase))
_A : Tuple = outputs.hidden_states
_A : Any = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1)
self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase)
# Swin has a different seq_length
_A : Optional[int] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
_A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
def _lowerCamelCase ( self) -> Dict:
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_A : List[Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Optional[int] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> Tuple:
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Optional[int] = 3
_A : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
_A : Optional[int] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
_A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_A : List[Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width))
@unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints")
def _lowerCamelCase ( self) -> List[str]:
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin")
def _lowerCamelCase ( self) -> List[str]:
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin")
def _lowerCamelCase ( self) -> str:
pass
def _lowerCamelCase ( self) -> Optional[Any]:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(__lowerCamelCase):
_A : Optional[int] = 0
return t
def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}):
with torch.no_grad():
_A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase)
_A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple()
def recursive_check(__lowerCamelCase , __lowerCamelCase):
if isinstance(__lowerCamelCase , (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase):
recursive_check(__lowerCamelCase , __lowerCamelCase)
elif isinstance(__lowerCamelCase , __lowerCamelCase):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values()):
recursive_check(__lowerCamelCase , __lowerCamelCase)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=(
"Tuple and dict output are not equal. Difference:"
F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has"
F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}."
) , )
recursive_check(__lowerCamelCase , __lowerCamelCase)
for model_class in self.all_model_classes:
_A : List[Any] = model_class(__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
_A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
_A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
_A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
_A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
_A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True})
_A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
_A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True})
@require_torch
class lowerCAmelCase__ ( unittest.TestCase , a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE = MaskFormerSwinConfig
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Tuple = MaskFormerSwinModelTester(self)
def _lowerCamelCase ( self) -> Optional[Any]:
_A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Union[str, Any] = inputs_dict["pixel_values"].shape[0]
for backbone_class in self.all_model_classes:
_A : Optional[Any] = backbone_class(__lowerCamelCase)
backbone.to(__lowerCamelCase)
backbone.eval()
_A : List[Any] = backbone(**__lowerCamelCase)
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , __lowerCamelCase)
self.assertTrue(len(outputs.feature_maps) == len(backbone.channels))
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels))
self.assertIsNone(outputs.hidden_states)
self.assertIsNone(outputs.attentions)
# Test output_hidden_states=True
_A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase)
self.assertIsNotNone(outputs.hidden_states)
self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names))
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_A , _A , _A : List[str] = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels))
# Test output_attentions=True
if self.has_attentions:
_A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase)
self.assertIsNotNone(outputs.attentions)
| 11 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['ConvNextFeatureExtractor']
lowerCAmelCase__ = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 11 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase__ = {
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 | 1 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ):
_A : List[Any] = UniSpeechSatForSequenceClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ )
_A : Optional[Any] = downstream_dict["projector.weight"]
_A : List[Any] = downstream_dict["projector.bias"]
_A : int = downstream_dict["model.post_net.linear.weight"]
_A : Optional[int] = downstream_dict["model.post_net.linear.bias"]
return model
def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ):
_A : Tuple = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ )
_A : Optional[Any] = downstream_dict["model.linear.weight"]
_A : Optional[int] = downstream_dict["model.linear.bias"]
return model
def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ):
_A : List[Any] = UniSpeechSatForXVector.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ )
_A : str = downstream_dict["connector.weight"]
_A : Optional[int] = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
_A : Union[str, Any] = downstream_dict[
f"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
_A : Tuple = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
_A : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
_A : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
_A : str = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
_A : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
_A : int = downstream_dict["objective.W"]
return model
@torch.no_grad()
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ):
_A : List[Any] = torch.load(UpperCamelCase__ , map_location="cpu" )
_A : List[str] = checkpoint["Downstream"]
_A : Union[str, Any] = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ )
_A : int = WavaVecaFeatureExtractor.from_pretrained(
UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , do_normalize=UpperCamelCase__ )
_A : List[Any] = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification" ):
_A : Union[str, Any] = convert_classification(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
elif arch.endswith("ForAudioFrameClassification" ):
_A : List[Any] = convert_diarization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
elif arch.endswith("ForXVector" ):
_A : int = convert_xvector(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" )
if hf_config.use_weighted_layer_sum:
_A : Optional[int] = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(UpperCamelCase__ )
hf_model.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
lowerCAmelCase__ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 11 |
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ):
_A , _A : Any = image.size
_A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
_A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] )
_A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0
_A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 )
_A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ )
return 2.0 * image - 1.0
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]:
super().__init__()
self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase)
@torch.no_grad()
def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]:
if isinstance(__lowerCamelCase , PIL.Image.Image):
_A : Tuple = 1
elif isinstance(__lowerCamelCase , torch.Tensor):
_A : Union[str, Any] = image.shape[0]
else:
raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}")
if isinstance(__lowerCamelCase , PIL.Image.Image):
_A : Union[str, Any] = preprocess(__lowerCamelCase)
_A , _A : Union[str, Any] = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
_A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width)
_A : str = next(self.unet.parameters()).dtype
_A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase)
_A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase)
# set timesteps and move to the correct device
self.scheduler.set_timesteps(__lowerCamelCase , device=self.device)
_A : Any = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
_A : List[str] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
_A : Optional[int] = {}
if accepts_eta:
_A : List[Any] = eta
for t in self.progress_bar(__lowerCamelCase):
# concat latents and low resolution image in the channel dimension.
_A : List[Any] = torch.cat([latents, image] , dim=1)
_A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase)
# predict the noise residual
_A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample
# compute the previous noisy sample x_t -> x_t-1
_A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample
# decode the image latents with the VQVAE
_A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample
_A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0)
_A : Tuple = image / 2 + 0.5
_A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
_A : Optional[int] = self.numpy_to_pil(__lowerCamelCase)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCamelCase)
| 11 | 1 |
from __future__ import annotations
def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[list[str]] , UpperCamelCase__ : int , ):
_A : Optional[int] = len(UpperCamelCase__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(UpperCamelCase__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase__ , UpperCamelCase__ , )
def _UpperCAmelCase (UpperCamelCase__ : int ):
_A : list[list[str]] = []
depth_first_search([] , [] , [] , UpperCamelCase__ , UpperCamelCase__ )
# Print all the boards
for board in boards:
for column in board:
print(UpperCamelCase__ )
print("" )
print(len(UpperCamelCase__ ) , "solutions were found." )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 11 |
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( a , a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VQModel
__SCREAMING_SNAKE_CASE = "sample"
@property
def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]:
_A : Optional[int] = 4
_A : Tuple = 3
_A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase)
return {"sample": image}
@property
def _lowerCamelCase ( self) -> int:
return (3, 3_2, 3_2)
@property
def _lowerCamelCase ( self) -> List[Any]:
return (3, 3_2, 3_2)
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : List[Any] = {
"block_out_channels": [3_2, 6_4],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 3,
}
_A : int = self.dummy_input
return init_dict, inputs_dict
def _lowerCamelCase ( self) -> Union[str, Any]:
pass
def _lowerCamelCase ( self) -> Any:
pass
def _lowerCamelCase ( self) -> Any:
_A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase)
self.assertIsNotNone(__lowerCamelCase)
self.assertEqual(len(loading_info["missing_keys"]) , 0)
model.to(__lowerCamelCase)
_A : str = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy")
model.to(__lowerCamelCase).eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
_A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size)
_A : Optional[int] = image.to(__lowerCamelCase)
with torch.no_grad():
_A : List[str] = model(__lowerCamelCase).sample
_A : int = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
_A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3])
# fmt: on
self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
| 11 | 1 |
def _UpperCAmelCase (UpperCamelCase__ : int ):
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise TypeError("Input value must be a 'int' type" )
return bin(UpperCamelCase__ ).count("1" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 11 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/mbart-large-en-ro': (
'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'
),
'facebook/mbart-large-cc25': (
'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json',
'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json',
},
}
lowerCAmelCase__ = {
'facebook/mbart-large-en-ro': 10_24,
'facebook/mbart-large-cc25': 10_24,
}
# fmt: off
lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
__SCREAMING_SNAKE_CASE = MBartTokenizer
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it
_A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token
super().__init__(
vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , )
_A : Union[str, Any] = vocab_file
_A : int = False if not self.vocab_file else True
_A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens})
_A : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_A : Optional[int] = src_lang if src_lang is not None else "en_XX"
_A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang)
_A : int = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def _lowerCamelCase ( self) -> str:
return self._src_lang
@src_lang.setter
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
_A : List[str] = [self.sep_token_id]
_A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
_A : str = src_lang
_A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
_A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase)
_A : Dict = tgt_lang_id
return inputs
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding:
_A : Any = src_lang
_A : int = tgt_lang
return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self) -> List[str]:
return self.set_src_lang_special_tokens(self.src_lang)
def _lowerCamelCase ( self) -> List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : int = self.convert_tokens_to_ids(__lowerCamelCase)
_A : int = []
_A : List[str] = [self.eos_token_id, self.cur_lang_code]
_A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : str = self.convert_ids_to_tokens(self.suffix_tokens)
_A : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase)
_A : List[Any] = []
_A : str = [self.eos_token_id, self.cur_lang_code]
_A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : int = self.convert_ids_to_tokens(self.suffix_tokens)
_A : str = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory.")
return
_A : int = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase):
copyfile(self.vocab_file , __lowerCamelCase)
return (out_vocab_file,)
| 11 | 1 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ):
_A : List[Any] = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase__ , UpperCamelCase__ )
def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ):
_A , _A : List[str] = emb.weight.shape
_A : Union[str, Any] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ )
_A : Dict = emb.weight.data
return lin_layer
def _UpperCAmelCase (UpperCamelCase__ : int ):
_A : Tuple = torch.load(UpperCamelCase__ , map_location="cpu" )
_A : int = mam_aaa["args"] or mam_aaa["cfg"]["model"]
_A : int = mam_aaa["model"]
remove_ignore_keys_(UpperCamelCase__ )
_A : Union[str, Any] = state_dict["encoder.embed_tokens.weight"].shape[0]
_A : List[str] = MaMaaaConfig(
vocab_size=UpperCamelCase__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , )
_A : Optional[Any] = state_dict["decoder.embed_tokens.weight"]
_A : int = MaMaaaForConditionalGeneration(UpperCamelCase__ )
model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
_A : Any = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 11 |
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'vocab_file': 'vocab.json',
'tokenizer_config_file': 'tokenizer_config.json',
'merges_file': 'merges.txt',
}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json'
),
},
'tokenizer_config_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json'
),
},
'merges_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt'
),
},
}
lowerCAmelCase__ = '</w>'
lowerCAmelCase__ = '@@ '
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ):
_A : Optional[int] = set()
_A : Optional[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A : List[Any] = char
return pairs
# Speech2Text2 has no max input length
lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]:
super().__init__(
unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , )
_A : Dict = do_lower_case
with open(__lowerCamelCase , encoding="utf-8") as vocab_handle:
_A : Optional[int] = json.load(__lowerCamelCase)
_A : Optional[Any] = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.")
_A : Optional[Any] = None
_A : Tuple = None
else:
with open(__lowerCamelCase , encoding="utf-8") as merges_handle:
_A : Optional[int] = merges_handle.read().split("\n")[:-1]
_A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges]
_A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase))))
_A : List[Any] = {}
@property
def _lowerCamelCase ( self) -> int:
return len(self.decoder)
def _lowerCamelCase ( self) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder)
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
_A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
_A : int = get_pairs(__lowerCamelCase)
if not pairs:
return token
while True:
_A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf")))
if bigram not in self.bpe_ranks:
break
_A , _A : Optional[int] = bigram
_A : int = []
_A : str = 0
while i < len(__lowerCamelCase):
try:
_A : str = word.index(__lowerCamelCase , __lowerCamelCase)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
_A : str = j
if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
_A : List[str] = tuple(__lowerCamelCase)
_A : List[str] = new_word
if len(__lowerCamelCase) == 1:
break
else:
_A : List[Any] = get_pairs(__lowerCamelCase)
_A : Tuple = " ".join(__lowerCamelCase)
if word == "\n " + BPE_TOKEN_MERGES:
_A : List[str] = "\n" + BPE_TOKEN_MERGES
if word.endswith(__lowerCamelCase):
_A : int = word.replace(__lowerCamelCase , "")
_A : int = word.replace(" " , __lowerCamelCase)
_A : Union[str, Any] = word
return word
def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]:
if self.bpe_ranks is None:
raise ValueError(
"This tokenizer was instantiated without a `merges.txt` file, so"
" that it can only be used for decoding, not for encoding."
"Make sure to provide `merges.txt` file at instantiation to enable "
"encoding.")
if self.do_lower_case:
_A : List[Any] = text.lower()
_A : Optional[int] = text.split()
_A : List[str] = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" ")))
return split_tokens
def _lowerCamelCase ( self , __lowerCamelCase) -> int:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token))
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
_A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token)
return result
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
_A : str = " ".join(__lowerCamelCase)
# make sure @@ tokens are concatenated
_A : int = "".join(string.split(__lowerCamelCase))
return string
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory")
return
_A : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
_A : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"])
with open(__lowerCamelCase , "w" , encoding="utf-8") as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n")
_A : Union[str, Any] = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(__lowerCamelCase , "w" , encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]):
if index != token_index:
logger.warning(
F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!")
_A : Optional[int] = token_index
writer.write(" ".join(__lowerCamelCase) + "\n")
index += 1
return (vocab_file, merges_file)
| 11 | 1 |
def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : int ):
while a != 0:
_A , _A : Optional[Any] = b % a, a
return b
def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : int ):
if gcd(UpperCamelCase__ , UpperCamelCase__ ) != 1:
_A : int = f"mod inverse of {a!r} and {m!r} does not exist"
raise ValueError(UpperCamelCase__ )
_A , _A , _A : Dict = 1, 0, a
_A , _A , _A : Any = 0, 1, m
while va != 0:
_A : List[Any] = ua // va
_A , _A , _A , _A , _A , _A : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 11 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "vit_mae"
def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int:
super().__init__(**__lowerCamelCase)
_A : int = hidden_size
_A : List[str] = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : Optional[Any] = intermediate_size
_A : Optional[int] = hidden_act
_A : List[Any] = hidden_dropout_prob
_A : List[Any] = attention_probs_dropout_prob
_A : Union[str, Any] = initializer_range
_A : str = layer_norm_eps
_A : Any = image_size
_A : int = patch_size
_A : int = num_channels
_A : Dict = qkv_bias
_A : Tuple = decoder_num_attention_heads
_A : Tuple = decoder_hidden_size
_A : List[str] = decoder_num_hidden_layers
_A : Optional[Any] = decoder_intermediate_size
_A : List[str] = mask_ratio
_A : Union[str, Any] = norm_pix_loss
| 11 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
@slow
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : List[str] = XLMRobertaModel.from_pretrained("xlm-roberta-base")
_A : str = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]])
# The dog is cute and lives in the garden house
_A : List[Any] = torch.Size((1, 1_2, 7_6_8)) # batch_size, sequence_length, embedding_vector_dim
_A : List[Any] = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_A : List[Any] = model(__lowerCamelCase)["last_hidden_state"].detach()
self.assertEqual(output.shape , __lowerCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , __lowerCamelCase , atol=1e-3))
@slow
def _lowerCamelCase ( self) -> List[Any]:
_A : Dict = XLMRobertaModel.from_pretrained("xlm-roberta-large")
_A : int = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]])
# The dog is cute and lives in the garden house
_A : List[Any] = torch.Size((1, 1_2, 1_0_2_4)) # batch_size, sequence_length, embedding_vector_dim
_A : str = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_A : int = model(__lowerCamelCase)["last_hidden_state"].detach()
self.assertEqual(output.shape , __lowerCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , __lowerCamelCase , atol=1e-3))
| 11 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 | 1 |
from __future__ import annotations
def _UpperCAmelCase (UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ):
_A , _A : Union[str, Any] = position
_A : str = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
_A : Dict = []
for position in positions:
_A , _A : List[str] = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(UpperCamelCase__ )
return permissible_positions
def _UpperCAmelCase (UpperCamelCase__ : list[list[int]] ):
return not any(elem == 0 for row in board for elem in row )
def _UpperCAmelCase (UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ):
if is_complete(UpperCamelCase__ ):
return True
for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ):
_A , _A : Union[str, Any] = position
if board[y][x] == 0:
_A : Optional[Any] = curr + 1
if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ):
return True
_A : Union[str, Any] = 0
return False
def _UpperCAmelCase (UpperCamelCase__ : int ):
_A : Tuple = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )]
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
_A : Union[str, Any] = 1
if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ):
return board
_A : Any = 0
_A : Union[str, Any] = f"Open Kight Tour cannot be performed on a board of size {n}"
raise ValueError(UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 11 |
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
lowerCAmelCase__ = float('nan')
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase) -> Optional[Any]:
_A : List[Any] = sys.stdout
_A : str = open(__lowerCamelCase , "a")
def __getattr__( self , __lowerCamelCase) -> List[str]:
return getattr(self.stdout , __lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
self.stdout.write(__lowerCamelCase)
# strip tqdm codes
self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M))
def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ):
_A : Tuple = []
# deal with critical env vars
_A : Dict = ["CUDA_VISIBLE_DEVICES"]
for key in env_keys:
_A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ )
if val is not None:
cmd.append(f"{key}={val}" )
# python executable (not always needed if the script is executable)
_A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1]
cmd.append(UpperCamelCase__ )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
_A : Tuple = []
_A : Dict = ""
while len(UpperCamelCase__ ) > 0:
current_line += f"{cmd.pop(0 )} "
if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(UpperCamelCase__ )
_A : Union[str, Any] = ""
return "\\\n".join(UpperCamelCase__ )
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ):
# unwrap multi-line input
_A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd )
# remove --output_dir if any and set our own
_A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd )
args.base_cmd += f" --output_dir {output_dir}"
# ensure we have --overwrite_output_dir
_A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ):
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , )
_A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ )
if verbose:
print("STDOUT" , result.stdout )
print("STDERR" , result.stderr )
# save the streams
_A : Tuple = variation.replace(" " , "-" )
with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f:
f.write(result.stdout )
with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print("failed" )
return {target_metric_key: nan}
with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f:
_A : List[str] = json.load(UpperCamelCase__ )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ):
_A : Union[str, Any] = []
_A : Optional[int] = []
_A : Any = f"{id}: {variation:<{longest_variation_len}}"
_A : Dict = f"{preamble}: "
_A : Union[str, Any] = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ):
_A : Optional[Any] = process_run_single(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
_A : Optional[Any] = single_run_metrics[target_metric_key]
if not math.isnan(UpperCamelCase__ ):
metrics.append(UpperCamelCase__ )
results.append(UpperCamelCase__ )
outcome += "✓"
else:
outcome += "✘"
_A : str = f"\33[2K\r{outcome}"
if len(UpperCamelCase__ ) > 0:
_A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
_A : Any = round(mean_metrics[target_metric_key] , 2 )
_A : Tuple = f"{outcome} {mean_target}"
if len(UpperCamelCase__ ) > 1:
results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}"
print(UpperCamelCase__ )
_A : Optional[int] = variation
return mean_metrics
else:
print(UpperCamelCase__ )
return {variation_key: variation, target_metric_key: nan}
def _UpperCAmelCase ():
_A : int = torch.cuda.get_device_properties(torch.device("cuda" ) )
return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n"
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ):
_A : Any = pd.DataFrame(UpperCamelCase__ )
_A : List[str] = "variation"
_A : List[Any] = "diff_%"
_A : int = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
_A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(UpperCamelCase__ ):
# as a fallback, use the minimal value as the sentinel
_A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(UpperCamelCase__ ):
_A : Optional[Any] = df.apply(
lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis="columns" , )
# re-order columns
_A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys]
_A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols
# capitalize
_A : Tuple = df.rename(str.capitalize , axis="columns" )
# make the cols as narrow as possible
_A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" )
_A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" )
_A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )]
print("\n\n".join(UpperCamelCase__ ) )
def _UpperCAmelCase ():
_A : int = argparse.ArgumentParser()
parser.add_argument(
"--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , )
parser.add_argument(
"--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , )
parser.add_argument(
"--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , )
parser.add_argument(
"--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , )
parser.add_argument(
"--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , )
parser.add_argument(
"--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , )
parser.add_argument(
"--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , )
parser.add_argument(
"--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , )
_A : int = parser.parse_args()
_A : Union[str, Any] = args.output_dir
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
_A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ )
# split each dimension into its --foo variations
_A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
_A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) )
_A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations )
# split wanted keys
_A : str = args.report_metric_keys.split()
# capture prints into a log file for convenience
_A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt"
print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" )
print(f"and this script's output is also piped into {report_fn}" )
_A : Tuple = Tee(UpperCamelCase__ )
print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" )
print(f"Base command: {' '.join(UpperCamelCase__ )}" )
_A : str = "variation"
_A : Union[str, Any] = []
for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ):
_A : Dict = base_cmd + variation.split()
results.append(
process_run(
id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) )
process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ )
if __name__ == "__main__":
main()
| 11 | 1 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'vocab.json'}
lowerCAmelCase__ = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
lowerCAmelCase__ = {'mgp-str': 27}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __lowerCamelCase , __lowerCamelCase="[GO]" , __lowerCamelCase="[GO]" , __lowerCamelCase="[s]" , __lowerCamelCase="[GO]" , **__lowerCamelCase) -> Optional[Any]:
super().__init__(
unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8") as vocab_handle:
_A : Optional[Any] = json.load(__lowerCamelCase)
_A : Tuple = {v: k for k, v in self.vocab.items()}
@property
def _lowerCamelCase ( self) -> Union[str, Any]:
return len(self.vocab)
def _lowerCamelCase ( self) -> int:
return dict(self.vocab , **self.added_tokens_encoder)
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
_A : int = []
for s in text:
char_tokens.extend(__lowerCamelCase)
return char_tokens
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token))
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
return self.decoder.get(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase):
logger.error("Vocabulary path ({}) should be a directory".format(__lowerCamelCase))
return
_A : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
with open(__lowerCamelCase , "w" , encoding="utf-8") as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n")
return (vocab_file,)
| 11 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
lowerCAmelCase__ = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__SCREAMING_SNAKE_CASE = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Overwrite the cached training and evaluation sets"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "The number of processes to use for the preprocessing."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def _lowerCamelCase ( self) -> int:
if self.train_file is not None:
_A : Optional[int] = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_A : Dict = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
def __call__( self , __lowerCamelCase) -> str:
_A : List[Any] = "label" if "label" in features[0].keys() else "labels"
_A : Any = [feature.pop(__lowerCamelCase) for feature in features]
_A : Optional[int] = len(__lowerCamelCase)
_A : int = len(features[0]["input_ids"])
_A : Tuple = [
[{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features
]
_A : str = list(chain(*__lowerCamelCase))
_A : Tuple = self.tokenizer.pad(
__lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()}
# Add back labels
_A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa)
return batch
def _UpperCAmelCase ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A : int = training_args.get_process_log_level()
logger.setLevel(UpperCamelCase__ )
datasets.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
_A : List[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A : Optional[int] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_A : List[str] = {}
if data_args.train_file is not None:
_A : Optional[int] = data_args.train_file
if data_args.validation_file is not None:
_A : Tuple = data_args.validation_file
_A : Union[str, Any] = data_args.train_file.split("." )[-1]
_A : List[str] = load_dataset(
UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
_A : Union[str, Any] = load_dataset(
"swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A : Optional[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A : Optional[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_A : str = [f"ending{i}" for i in range(4 )]
_A : Union[str, Any] = "sent1"
_A : str = "sent2"
if data_args.max_seq_length is None:
_A : Any = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_A : Optional[Any] = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
_A : int = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(UpperCamelCase__ : List[Any] ):
_A : List[Any] = [[context] * 4 for context in examples[context_name]]
_A : Any = examples[question_header_name]
_A : Union[str, Any] = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ )
]
# Flatten out
_A : Dict = list(chain(*UpperCamelCase__ ) )
_A : List[Any] = list(chain(*UpperCamelCase__ ) )
# Tokenize
_A : str = tokenizer(
UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_A : Optional[int] = raw_datasets["train"]
if data_args.max_train_samples is not None:
_A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples )
_A : Any = train_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_A : Optional[int] = train_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_A : Optional[int] = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples )
_A : Dict = eval_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_A : List[str] = eval_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
_A : str = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(UpperCamelCase__ : Tuple ):
_A , _A : List[str] = eval_predictions
_A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_A : List[str] = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
_A : Any = None
if training_args.resume_from_checkpoint is not None:
_A : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A : int = last_checkpoint
_A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
trainer.save_model() # Saves the tokenizer too for easy upload
_A : Optional[int] = train_result.metrics
_A : Tuple = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ )
)
_A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("train" , UpperCamelCase__ )
trainer.save_metrics("train" , UpperCamelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_A : List[Any] = trainer.evaluate()
_A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ )
_A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("eval" , UpperCamelCase__ )
trainer.save_metrics("eval" , UpperCamelCase__ )
_A : Tuple = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCamelCase__ )
else:
trainer.create_model_card(**UpperCamelCase__ )
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 11 | 1 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None:
warnings.warn(
"The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use MobileViTImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase)
| 11 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env")
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
])
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self) -> str:
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , )
assert hasattr(self , "env")
def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple:
_A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"
# distributed data settings
_A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , )
def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]:
TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv")
@parameterized.expand([(2,)])
def _lowerCamelCase ( self , __lowerCamelCase) -> Any:
# create estimator
_A : Union[str, Any] = self.create_estimator(__lowerCamelCase)
# run training
estimator.fit()
# result dataframe
_A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
_A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
_A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_A : Optional[Any] = (
Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
assert all(t <= self.results["eval_loss"] for t in eval_loss)
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
| 11 | 1 |
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
lowerCAmelCase__ = logging.getLogger(__name__)
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : str ):
_A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 )
return np.sum(outputs == labels )
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ):
with open(UpperCamelCase__ , encoding="utf_8" ) as f:
_A : str = csv.reader(UpperCamelCase__ )
_A : List[Any] = []
next(UpperCamelCase__ ) # skip the first line
for line in tqdm(UpperCamelCase__ ):
output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ):
_A : int = []
for dataset in encoded_datasets:
_A : Tuple = len(UpperCamelCase__ )
_A : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
_A : Optional[int] = np.zeros((n_batch, 2) , dtype=np.intaa )
_A : Any = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa )
_A : List[Any] = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(UpperCamelCase__ ):
_A : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
_A : List[str] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
_A : int = with_conta
_A : str = with_conta
_A : int = len(UpperCamelCase__ ) - 1
_A : str = len(UpperCamelCase__ ) - 1
_A : List[Any] = with_conta
_A : str = with_conta
_A : Union[str, Any] = mc_label
_A : int = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(UpperCamelCase__ ) for t in all_inputs ) )
return tensor_datasets
def _UpperCAmelCase ():
_A : Optional[int] = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=UpperCamelCase__ , default="openai-gpt" , help="pretrained model name" )
parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." )
parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." )
parser.add_argument(
"--output_dir" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="The output directory where the model predictions and checkpoints will be written." , )
parser.add_argument("--train_dataset" , type=UpperCamelCase__ , default="" )
parser.add_argument("--eval_dataset" , type=UpperCamelCase__ , default="" )
parser.add_argument("--seed" , type=UpperCamelCase__ , default=42 )
parser.add_argument("--num_train_epochs" , type=UpperCamelCase__ , default=3 )
parser.add_argument("--train_batch_size" , type=UpperCamelCase__ , default=8 )
parser.add_argument("--eval_batch_size" , type=UpperCamelCase__ , default=16 )
parser.add_argument("--adam_epsilon" , default=1E-8 , type=UpperCamelCase__ , help="Epsilon for Adam optimizer." )
parser.add_argument("--max_grad_norm" , type=UpperCamelCase__ , default=1 )
parser.add_argument(
"--max_steps" , default=-1 , type=UpperCamelCase__ , help=(
"If > 0: set total number of training steps to perform. Override num_train_epochs."
) , )
parser.add_argument(
"--gradient_accumulation_steps" , type=UpperCamelCase__ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , )
parser.add_argument("--learning_rate" , type=UpperCamelCase__ , default=6.25E-5 )
parser.add_argument("--warmup_steps" , default=0 , type=UpperCamelCase__ , help="Linear warmup over warmup_steps." )
parser.add_argument("--lr_schedule" , type=UpperCamelCase__ , default="warmup_linear" )
parser.add_argument("--weight_decay" , type=UpperCamelCase__ , default=0.01 )
parser.add_argument("--lm_coef" , type=UpperCamelCase__ , default=0.9 )
parser.add_argument("--n_valid" , type=UpperCamelCase__ , default=374 )
parser.add_argument("--server_ip" , type=UpperCamelCase__ , default="" , help="Can be used for distant debugging." )
parser.add_argument("--server_port" , type=UpperCamelCase__ , default="" , help="Can be used for distant debugging." )
_A : Optional[int] = parser.parse_args()
print(UpperCamelCase__ )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase__ )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
_A : List[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
_A : Optional[int] = torch.cuda.device_count()
logger.info("device: {}, n_gpu {}".format(UpperCamelCase__ , UpperCamelCase__ ) )
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True." )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
_A : Tuple = ["_start_", "_delimiter_", "_classify_"]
_A : Tuple = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(UpperCamelCase__ )
_A : Any = tokenizer.convert_tokens_to_ids(UpperCamelCase__ )
_A : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(UpperCamelCase__ ) )
model.to(UpperCamelCase__ )
# Load and encode the datasets
def tokenize_and_encode(UpperCamelCase__ : int ):
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCamelCase__ ) )
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return obj
return [tokenize_and_encode(UpperCamelCase__ ) for o in obj]
logger.info("Encoding dataset..." )
_A : Any = load_rocstories_dataset(args.train_dataset )
_A : Union[str, Any] = load_rocstories_dataset(args.eval_dataset )
_A : List[str] = (train_dataset, eval_dataset)
_A : int = tokenize_and_encode(UpperCamelCase__ )
# Compute the max input length for the Transformer
_A : str = model.config.n_positions // 2 - 2
_A : Any = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
_A : Dict = min(UpperCamelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
_A : Dict = pre_process_datasets(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ )
_A , _A : List[Any] = tensor_datasets[0], tensor_datasets[1]
_A : Dict = TensorDataset(*UpperCamelCase__ )
_A : Optional[int] = RandomSampler(UpperCamelCase__ )
_A : int = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.train_batch_size )
_A : int = TensorDataset(*UpperCamelCase__ )
_A : List[Any] = SequentialSampler(UpperCamelCase__ )
_A : Optional[Any] = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
_A : Tuple = args.max_steps
_A : Tuple = args.max_steps // (len(UpperCamelCase__ ) // args.gradient_accumulation_steps) + 1
else:
_A : Any = len(UpperCamelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs
_A : List[str] = list(model.named_parameters() )
_A : List[Any] = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
_A : Dict = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0},
]
_A : Union[str, Any] = AdamW(UpperCamelCase__ , lr=args.learning_rate , eps=args.adam_epsilon )
_A : List[Any] = get_linear_schedule_with_warmup(
UpperCamelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=UpperCamelCase__ )
if args.do_train:
_A , _A , _A : Union[str, Any] = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ):
_A : Tuple = 0
_A : str = 0
_A : Dict = tqdm(UpperCamelCase__ , desc="Training" )
for step, batch in enumerate(UpperCamelCase__ ):
_A : List[Any] = tuple(t.to(UpperCamelCase__ ) for t in batch )
_A , _A , _A , _A : List[str] = batch
_A : int = model(UpperCamelCase__ , mc_token_ids=UpperCamelCase__ , lm_labels=UpperCamelCase__ , mc_labels=UpperCamelCase__ )
_A : str = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
_A : Any = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
_A : Optional[Any] = "Training loss: {:.2e} lr: {:.2e}".format(UpperCamelCase__ , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
_A : List[Any] = model.module if hasattr(UpperCamelCase__ , "module" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
_A : List[str] = os.path.join(args.output_dir , UpperCamelCase__ )
_A : Dict = os.path.join(args.output_dir , UpperCamelCase__ )
torch.save(model_to_save.state_dict() , UpperCamelCase__ )
model_to_save.config.to_json_file(UpperCamelCase__ )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
_A : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
_A : int = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(UpperCamelCase__ )
if args.do_eval:
model.eval()
_A , _A : str = 0, 0
_A , _A : Any = 0, 0
for batch in tqdm(UpperCamelCase__ , desc="Evaluating" ):
_A : Union[str, Any] = tuple(t.to(UpperCamelCase__ ) for t in batch )
_A , _A , _A , _A : Any = batch
with torch.no_grad():
_A , _A , _A , _A : Tuple = model(
UpperCamelCase__ , mc_token_ids=UpperCamelCase__ , lm_labels=UpperCamelCase__ , mc_labels=UpperCamelCase__ )
_A : List[Any] = mc_logits.detach().cpu().numpy()
_A : Optional[Any] = mc_labels.to("cpu" ).numpy()
_A : Union[str, Any] = accuracy(UpperCamelCase__ , UpperCamelCase__ )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
_A : Any = eval_loss / nb_eval_steps
_A : int = eval_accuracy / nb_eval_examples
_A : Dict = tr_loss / nb_tr_steps if args.do_train else None
_A : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss}
_A : Union[str, Any] = os.path.join(args.output_dir , "eval_results.txt" )
with open(UpperCamelCase__ , "w" ) as writer:
logger.info("***** Eval results *****" )
for key in sorted(result.keys() ):
logger.info(" %s = %s" , UpperCamelCase__ , str(result[key] ) )
writer.write("%s = %s\n" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 11 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"]
__SCREAMING_SNAKE_CASE = "OwlViTImageProcessor"
__SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]:
_A : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __lowerCamelCase , )
_A : List[Any] = kwargs.pop("feature_extractor")
_A : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(__lowerCamelCase , __lowerCamelCase)
def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any:
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none.")
if text is not None:
if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)):
_A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)]
elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase):
_A : Optional[Any] = []
# Maximum number of queries across batch
_A : str = max([len(__lowerCamelCase) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(__lowerCamelCase) != max_num_queries:
_A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase))
_A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
encodings.append(__lowerCamelCase)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
_A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
_A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0)
_A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
_A : Optional[Any] = BatchEncoding()
_A : Tuple = input_ids
_A : Dict = attention_mask
if query_images is not None:
_A : Optional[Any] = BatchEncoding()
_A : List[str] = self.image_processor(
__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values
_A : Union[str, Any] = query_pixel_values
if images is not None:
_A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
if text is not None and images is not None:
_A : Tuple = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_A : int = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str:
return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]:
return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase)
@property
def _lowerCamelCase ( self) -> int:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , )
return self.image_processor_class
@property
def _lowerCamelCase ( self) -> List[str]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , )
return self.image_processor
| 11 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "yolos"
def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=[5_1_2, 8_6_4] , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_0_0 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=1 , __lowerCamelCase=5 , __lowerCamelCase=2 , __lowerCamelCase=5 , __lowerCamelCase=2 , __lowerCamelCase=0.1 , **__lowerCamelCase , ) -> Optional[Any]:
super().__init__(**__lowerCamelCase)
_A : Optional[Any] = hidden_size
_A : Union[str, Any] = num_hidden_layers
_A : str = num_attention_heads
_A : int = intermediate_size
_A : Optional[int] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Union[str, Any] = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Dict = layer_norm_eps
_A : Any = image_size
_A : str = patch_size
_A : Optional[Any] = num_channels
_A : str = qkv_bias
_A : str = num_detection_tokens
_A : Tuple = use_mid_position_embeddings
_A : List[str] = auxiliary_loss
# Hungarian matcher
_A : Dict = class_cost
_A : int = bbox_cost
_A : Any = giou_cost
# Loss coefficients
_A : Optional[Any] = bbox_loss_coefficient
_A : Dict = giou_loss_coefficient
_A : Optional[Any] = eos_coefficient
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = version.parse("1.11")
@property
def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
])
@property
def _lowerCamelCase ( self) -> float:
return 1e-4
@property
def _lowerCamelCase ( self) -> int:
return 1_2
| 11 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]):
_A : Optional[int] = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(__lowerCamelCase)
def _lowerCamelCase ( self) -> int:
_A : Optional[int] = "sshleifer/tiny-gpt2"
_A : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : List[str] = PyTorchBenchmark(__lowerCamelCase)
_A : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Dict:
_A : int = "sgugger/tiny-distilbert-classification"
_A : str = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , )
_A : Dict = PyTorchBenchmark(__lowerCamelCase)
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Tuple = "sshleifer/tiny-gpt2"
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase)
_A : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision")
def _lowerCamelCase ( self) -> int:
_A : Any = "sshleifer/tiny-gpt2"
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Any = PyTorchBenchmark(__lowerCamelCase)
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Any:
_A : Union[str, Any] = "sshleifer/tiny-gpt2"
_A : Any = AutoConfig.from_pretrained(__lowerCamelCase)
# set architectures equal to `None`
_A : Dict = None
_A : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> int:
_A : List[Any] = "sshleifer/tiny-gpt2"
_A : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase)
_A : int = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == "cpu" , "Can't do half precision")
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Any = "sshleifer/tiny-gpt2"
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , )
_A : List[Any] = PyTorchBenchmark(__lowerCamelCase)
_A : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> str:
_A : List[str] = "sshleifer/tiny-gpt2"
_A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> int:
_A : Tuple = "sshleifer/tinier_bart"
_A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> str:
_A : List[Any] = "sshleifer/tiny-gpt2"
_A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> int:
_A : int = "sshleifer/tinier_bart"
_A : str = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> Dict:
_A : List[str] = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(__lowerCamelCase)
benchmark.run()
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists())
def _lowerCamelCase ( self) -> int:
_A : Dict = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(__lowerCamelCase):
self.assertTrue(hasattr(__lowerCamelCase , "sequential"))
self.assertTrue(hasattr(__lowerCamelCase , "cumulative"))
self.assertTrue(hasattr(__lowerCamelCase , "current"))
self.assertTrue(hasattr(__lowerCamelCase , "total"))
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , )
_A : Optional[int] = PyTorchBenchmark(__lowerCamelCase)
_A : Dict = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
| 11 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "upernet"
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=5_1_2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=[1, 2, 3, 6] , __lowerCamelCase=True , __lowerCamelCase=0.4 , __lowerCamelCase=3_8_4 , __lowerCamelCase=2_5_6 , __lowerCamelCase=1 , __lowerCamelCase=False , __lowerCamelCase=2_5_5 , **__lowerCamelCase , ) -> Optional[Any]:
super().__init__(**__lowerCamelCase)
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
_A : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"])
elif isinstance(__lowerCamelCase , __lowerCamelCase):
_A : Union[str, Any] = backbone_config.get("model_type")
_A : Dict = CONFIG_MAPPING[backbone_model_type]
_A : Union[str, Any] = config_class.from_dict(__lowerCamelCase)
_A : Optional[int] = backbone_config
_A : str = hidden_size
_A : int = initializer_range
_A : Optional[int] = pool_scales
_A : Union[str, Any] = use_auxiliary_head
_A : Any = auxiliary_loss_weight
_A : Union[str, Any] = auxiliary_in_channels
_A : int = auxiliary_channels
_A : List[str] = auxiliary_num_convs
_A : Dict = auxiliary_concat_input
_A : List[Any] = loss_ignore_index
def _lowerCamelCase ( self) -> List[str]:
_A : int = copy.deepcopy(self.__dict__)
_A : List[Any] = self.backbone_config.to_dict()
_A : List[Any] = self.__class__.model_type
return output
| 11 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'
),
},
}
lowerCAmelCase__ = {
'facebook/nllb-large-en-ro': 10_24,
'facebook/nllb-200-distilled-600M': 10_24,
}
# fmt: off
lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
__SCREAMING_SNAKE_CASE = NllbTokenizer
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple:
# Mask token behave like a normal word, i.e. include the space before it
_A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token
_A : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , )
_A : int = vocab_file
_A : Optional[Any] = False if not self.vocab_file else True
_A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens})
_A : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_A : Optional[int] = src_lang if src_lang is not None else "eng_Latn"
_A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang)
_A : List[str] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def _lowerCamelCase ( self) -> str:
return self._src_lang
@src_lang.setter
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
_A : Tuple = [self.sep_token_id]
_A : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
_A : List[Any] = src_lang
_A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
_A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase)
_A : Tuple = tgt_lang_id
return inputs
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding:
_A : Tuple = src_lang
_A : int = tgt_lang
return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self) -> str:
return self.set_src_lang_special_tokens(self.src_lang)
def _lowerCamelCase ( self) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Dict = self.convert_tokens_to_ids(__lowerCamelCase)
if self.legacy_behaviour:
_A : List[str] = []
_A : Dict = [self.eos_token_id, self.cur_lang_code]
else:
_A : Tuple = [self.cur_lang_code]
_A : Optional[Any] = [self.eos_token_id]
_A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : int = self.convert_ids_to_tokens(self.suffix_tokens)
_A : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase)
if self.legacy_behaviour:
_A : Tuple = []
_A : Any = [self.eos_token_id, self.cur_lang_code]
else:
_A : Union[str, Any] = [self.cur_lang_code]
_A : str = [self.eos_token_id]
_A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : Dict = self.convert_ids_to_tokens(self.suffix_tokens)
_A : Union[str, Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory.")
return
_A : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase):
copyfile(self.vocab_file , __lowerCamelCase)
return (out_vocab_file,)
| 11 | 1 |
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=0.9_99 , UpperCamelCase__ : List[Any]="cosine" , ):
if alpha_transform_type == "cosine":
def alpha_bar_fn(UpperCamelCase__ : Tuple ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(UpperCamelCase__ : List[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" )
_A : Optional[int] = []
for i in range(UpperCamelCase__ ):
_A : int = i / num_diffusion_timesteps
_A : str = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) )
return torch.tensor(UpperCamelCase__ , dtype=torch.floataa )
class lowerCAmelCase__ ( a , a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [e.name for e in KarrasDiffusionSchedulers]
__SCREAMING_SNAKE_CASE = 2
@register_to_config
def __init__( self , __lowerCamelCase = 1_0_0_0 , __lowerCamelCase = 0.0_0_0_8_5 , __lowerCamelCase = 0.0_1_2 , __lowerCamelCase = "linear" , __lowerCamelCase = None , __lowerCamelCase = "epsilon" , __lowerCamelCase = "linspace" , __lowerCamelCase = 0 , ) -> Optional[int]:
if trained_betas is not None:
_A : List[str] = torch.tensor(__lowerCamelCase , dtype=torch.floataa)
elif beta_schedule == "linear":
_A : int = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_A : int = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_A : Dict = betas_for_alpha_bar(__lowerCamelCase)
else:
raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}")
_A : List[Any] = 1.0 - self.betas
_A : Tuple = torch.cumprod(self.alphas , dim=0)
# set all values
self.set_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=None) -> List[Any]:
if schedule_timesteps is None:
_A : List[str] = self.timesteps
_A : str = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter) == 0:
_A : Any = 1 if len(__lowerCamelCase) > 1 else 0
else:
_A : List[Any] = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase) else timestep
_A : List[Any] = self._index_counter[timestep_int]
return indices[pos].item()
@property
def _lowerCamelCase ( self) -> Union[str, Any]:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , ) -> torch.FloatTensor:
_A : Optional[Any] = self.index_for_timestep(__lowerCamelCase)
if self.state_in_first_order:
_A : Tuple = self.sigmas[step_index]
else:
_A : Union[str, Any] = self.sigmas_interpol[step_index]
_A : Dict = sample / ((sigma**2 + 1) ** 0.5)
return sample
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , ) -> Any:
_A : List[Any] = num_inference_steps
_A : Optional[Any] = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
_A : str = np.linspace(0 , num_train_timesteps - 1 , __lowerCamelCase , dtype=__lowerCamelCase)[::-1].copy()
elif self.config.timestep_spacing == "leading":
_A : Optional[int] = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_A : List[Any] = (np.arange(0 , __lowerCamelCase) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
_A : int = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_A : str = (np.arange(__lowerCamelCase , 0 , -step_ratio)).round().copy().astype(__lowerCamelCase)
timesteps -= 1
else:
raise ValueError(
F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.")
_A : Optional[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
_A : str = torch.from_numpy(np.log(__lowerCamelCase)).to(__lowerCamelCase)
_A : str = np.interp(__lowerCamelCase , np.arange(0 , len(__lowerCamelCase)) , __lowerCamelCase)
_A : Optional[Any] = np.concatenate([sigmas, [0.0]]).astype(np.floataa)
_A : Dict = torch.from_numpy(__lowerCamelCase).to(device=__lowerCamelCase)
# interpolate sigmas
_A : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp()
_A : Optional[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]])
_A : Union[str, Any] = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]])
if str(__lowerCamelCase).startswith("mps"):
# mps does not support float64
_A : str = torch.from_numpy(__lowerCamelCase).to(__lowerCamelCase , dtype=torch.floataa)
else:
_A : int = torch.from_numpy(__lowerCamelCase).to(__lowerCamelCase)
# interpolate timesteps
_A : Dict = self.sigma_to_t(__lowerCamelCase).to(__lowerCamelCase , dtype=timesteps.dtype)
_A : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten()
_A : int = torch.cat([timesteps[:1], interleaved_timesteps])
_A : List[str] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
_A : str = defaultdict(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
# get log sigma
_A : Any = sigma.log()
# get distribution
_A : List[str] = log_sigma - self.log_sigmas[:, None]
# get sigmas range
_A : Union[str, Any] = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2)
_A : Optional[Any] = low_idx + 1
_A : List[str] = self.log_sigmas[low_idx]
_A : Any = self.log_sigmas[high_idx]
# interpolate sigmas
_A : Optional[Any] = (low - log_sigma) / (low - high)
_A : Dict = w.clamp(0 , 1)
# transform interpolation to time range
_A : List[Any] = (1 - w) * low_idx + w * high_idx
_A : Any = t.view(sigma.shape)
return t
@property
def _lowerCamelCase ( self) -> Any:
return self.sample is None
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True , ) -> Union[SchedulerOutput, Tuple]:
_A : Optional[int] = self.index_for_timestep(__lowerCamelCase)
# advance index counter by 1
_A : Optional[int] = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
_A : Any = self.sigmas[step_index]
_A : Any = self.sigmas_interpol[step_index + 1]
_A : str = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
_A : Any = self.sigmas[step_index - 1]
_A : List[str] = self.sigmas_interpol[step_index]
_A : int = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
_A : Dict = 0
_A : Optional[int] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
_A : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol
_A : Union[str, Any] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
_A : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol
_A : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(
F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`")
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
_A : Tuple = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
_A : Union[str, Any] = sigma_interpol - sigma_hat
# store for 2nd order step
_A : Union[str, Any] = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
_A : int = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
_A : Union[str, Any] = sigma_next - sigma_hat
_A : Optional[Any] = self.sample
_A : Any = None
_A : Optional[Any] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
_A : List[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase):
# mps does not support float64
_A : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa)
_A : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa)
else:
_A : Dict = self.timesteps.to(original_samples.device)
_A : int = timesteps.to(original_samples.device)
_A : Dict = [self.index_for_timestep(__lowerCamelCase , __lowerCamelCase) for t in timesteps]
_A : Dict = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
_A : Dict = sigma.unsqueeze(-1)
_A : int = original_samples + noise * sigma
return noisy_samples
def __len__( self) -> List[Any]:
return self.config.num_train_timesteps
| 11 |
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ):
_A : Union[str, Any] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" )
_A : Dict = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" )
_A : Dict = format_type
def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ):
_A : Union[str, Any] = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
_A : Union[str, Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['python'])
_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])
_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])
_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])
_register_formatter(CustomFormatter, 'custom')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])
else:
lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')
_register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])
else:
lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')
_register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, 'jax', aliases=[])
else:
lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.')
_register_unavailable_formatter(_jax_error, 'jax', aliases=[])
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ):
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ):
_A : List[str] = get_format_type_from_alias(UpperCamelCase__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**UpperCamelCase__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
| 11 | 1 |
def _UpperCAmelCase (UpperCamelCase__ : str ):
return "".join(chr(ord(UpperCamelCase__ ) - 32 ) if "a" <= char <= "z" else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 11 |
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
_A : int = (boundary[1] - boundary[0]) / steps
_A : Any = boundary[0]
_A : List[Any] = boundary[1]
_A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
_A : str = 0.0
y += (h / 2.0) * f(UpperCamelCase__ )
for i in x_i:
# print(i)
y += h * f(UpperCamelCase__ )
y += (h / 2.0) * f(UpperCamelCase__ )
return y
def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ):
_A : Optional[int] = a + h
while x < (b - h):
yield x
_A : Dict = x + h
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here
_A : Any = (x - 0) * (x - 0)
return y
def _UpperCAmelCase ():
_A : Optional[Any] = 0.0 # Lower bound of integration
_A : Optional[int] = 1.0 # Upper bound of integration
_A : List[Any] = 10.0 # define number of steps or resolution
_A : Any = [a, b] # define boundary of integration
_A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ )
print(f"y = {y}" )
if __name__ == "__main__":
main()
| 11 | 1 |
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
lowerCAmelCase__ = '.'
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
lowerCAmelCase__ = [
'Assert',
'AssignVariableOp',
'EmptyTensorList',
'MergeV2Checkpoints',
'ReadVariableOp',
'ResourceGather',
'RestoreV2',
'SaveV2',
'ShardedFilename',
'StatefulPartitionedCall',
'StaticRegexFullMatch',
'VarHandleOp',
]
def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int ):
_A : Dict = SavedModel()
_A : int = []
with open(os.path.join(UpperCamelCase__ , "utils" , "tf_ops" , "onnx.json" ) ) as f:
_A : Optional[int] = json.load(UpperCamelCase__ )["opsets"]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(UpperCamelCase__ )] )
with open(UpperCamelCase__ , "rb" ) as f:
saved_model.ParseFromString(f.read() )
_A : List[Any] = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
_A : Any = sorted(UpperCamelCase__ )
_A : Any = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(UpperCamelCase__ )
if strict and len(UpperCamelCase__ ) > 0:
raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops )
elif len(UpperCamelCase__ ) > 0:
print(f"Found the following incompatible ops for the opset {opset}:" )
print(*UpperCamelCase__ , sep="\n" )
else:
print(f"The saved model {saved_model_path} can properly be converted with ONNX." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).')
parser.add_argument(
'--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.'
)
parser.add_argument(
'--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.'
)
parser.add_argument(
'--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)'
)
lowerCAmelCase__ = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 11 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
@parameterized.expand([(None,), ("foo.json",)])
def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]:
_A : str = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase)
_A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , __lowerCamelCase)
self.assertEqual(loaded_config.temperature , 0.7)
self.assertEqual(loaded_config.length_penalty , 1.0)
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0)
self.assertEqual(loaded_config.max_length , 2_0)
self.assertEqual(loaded_config.max_time , __lowerCamelCase)
def _lowerCamelCase ( self) -> Optional[int]:
_A : Optional[int] = AutoConfig.from_pretrained("gpt2")
_A : int = GenerationConfig.from_model_config(__lowerCamelCase)
_A : List[Any] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(__lowerCamelCase , __lowerCamelCase)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id)
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Optional[Any] = GenerationConfig()
_A : List[Any] = {
"max_new_tokens": 1_0_2_4,
"foo": "bar",
}
_A : List[str] = copy.deepcopy(__lowerCamelCase)
_A : int = generation_config.update(**__lowerCamelCase)
# update_kwargs was not modified (no side effects)
self.assertEqual(__lowerCamelCase , __lowerCamelCase)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(__lowerCamelCase , {"foo": "bar"})
def _lowerCamelCase ( self) -> Any:
_A : int = GenerationConfig()
_A : int = "bar"
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(__lowerCamelCase)
_A : Any = GenerationConfig.from_pretrained(__lowerCamelCase)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , "bar")
_A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase)
assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config
def _lowerCamelCase ( self) -> List[str]:
_A : Union[str, Any] = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0)
self.assertEqual(default_config.do_sample , __lowerCamelCase)
self.assertEqual(default_config.num_beams , 1)
_A : Optional[int] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7)
self.assertEqual(config.do_sample , __lowerCamelCase)
self.assertEqual(config.num_beams , 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCamelCase)
_A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0)
self.assertEqual(loaded_config.temperature , 1.0)
self.assertEqual(loaded_config.do_sample , __lowerCamelCase)
self.assertEqual(loaded_config.num_beams , 1) # default value
@is_staging_test
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
@classmethod
def _lowerCamelCase ( cls) -> Optional[int]:
_A : Dict = TOKEN
HfFolder.save_token(__lowerCamelCase)
@classmethod
def _lowerCamelCase ( cls) -> List[Any]:
try:
delete_repo(token=cls._token , repo_id="test-generation-config")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org")
except HTTPError:
pass
def _lowerCamelCase ( self) -> Any:
_A : Optional[int] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("test-generation-config" , use_auth_token=self._token)
_A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
# Reset repo
delete_repo(token=self._token , repo_id="test-generation-config")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token)
_A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Union[str, Any] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token)
_A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token)
_A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
| 11 | 1 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env")
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
])
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self) -> str:
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , )
assert hasattr(self , "env")
def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple:
_A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"
# distributed data settings
_A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , )
def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]:
TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv")
@parameterized.expand([(2,)])
def _lowerCamelCase ( self , __lowerCamelCase) -> Any:
# create estimator
_A : Union[str, Any] = self.create_estimator(__lowerCamelCase)
# run training
estimator.fit()
# result dataframe
_A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
_A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
_A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_A : Optional[Any] = (
Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
assert all(t <= self.results["eval_loss"] for t in eval_loss)
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
| 11 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str:
_A : Optional[int] = bp_numa
_A : Dict = bp_numa
_A : Tuple = bp_numa
_A : List[str] = conva_get[:2]
_A : Tuple = conva_get[2]
_A : Optional[int] = size_pa
_A : Optional[Any] = rate_w
_A : Optional[Any] = rate_t
_A : Union[str, Any] = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5)
for i in range(self.conva[1])
]
_A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
_A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
_A : Any = -2 * np.random.rand(self.conva[1]) + 1
_A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1
_A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
# save model dict with pickle
_A : Dict = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(__lowerCamelCase , "wb") as f:
pickle.dump(__lowerCamelCase , __lowerCamelCase)
print(F"Model saved: {save_path}")
@classmethod
def _lowerCamelCase ( cls , __lowerCamelCase) -> Any:
# read saved model
with open(__lowerCamelCase , "rb") as f:
_A : Any = pickle.load(__lowerCamelCase) # noqa: S301
_A : Optional[int] = model_dic.get("conv1")
conv_get.append(model_dic.get("step_conv1"))
_A : str = model_dic.get("size_pooling1")
_A : List[str] = model_dic.get("num_bp1")
_A : Union[str, Any] = model_dic.get("num_bp2")
_A : List[Any] = model_dic.get("num_bp3")
_A : Dict = model_dic.get("rate_weight")
_A : List[Any] = model_dic.get("rate_thre")
# create model instance
_A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
# modify model parameter
_A : List[Any] = model_dic.get("w_conv1")
_A : Union[str, Any] = model_dic.get("wkj")
_A : str = model_dic.get("vji")
_A : List[str] = model_dic.get("thre_conv1")
_A : Optional[Any] = model_dic.get("thre_bp2")
_A : Dict = model_dic.get("thre_bp3")
return conv_ins
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
return 1 / (1 + np.exp(-1 * x))
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
return round(__lowerCamelCase , 3)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]:
# convolution process
_A : Tuple = convs[0]
_A : Union[str, Any] = convs[1]
_A : List[Any] = np.shape(__lowerCamelCase)[0]
# get the data slice of original image data, data_focus
_A : Tuple = []
for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase):
for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase):
_A : Optional[int] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__lowerCamelCase)
# calculate the feature map of every single kernel, and saved as list of matrix
_A : Optional[Any] = []
_A : Optional[int] = int((size_data - size_conv) / conv_step + 1)
for i_map in range(__lowerCamelCase):
_A : Optional[int] = []
for i_focus in range(len(__lowerCamelCase)):
_A : Any = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map]))
- thre_convs[i_map]
)
featuremap.append(self.sig(__lowerCamelCase))
_A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape(
__lowerCamelCase , __lowerCamelCase)
data_featuremap.append(__lowerCamelCase)
# expanding the data slice to One dimenssion
_A : Optional[Any] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__lowerCamelCase))
_A : Dict = np.asarray(__lowerCamelCase)
return focus_list, data_featuremap
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict:
# pooling process
_A : Optional[Any] = len(featuremaps[0])
_A : str = int(size_map / size_pooling)
_A : Optional[int] = []
for i_map in range(len(__lowerCamelCase)):
_A : int = featuremaps[i_map]
_A : Optional[int] = []
for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase):
for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase):
_A : str = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__lowerCamelCase))
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__lowerCamelCase))
_A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase)
featuremap_pooled.append(__lowerCamelCase)
return featuremap_pooled
def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple:
# expanding three dimension data to one dimension list
_A : Tuple = []
for i in range(len(__lowerCamelCase)):
_A : Union[str, Any] = np.shape(data[i])
_A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1])
_A : Optional[Any] = data_listed.getA().tolist()[0]
data_expanded.extend(__lowerCamelCase)
_A : Optional[Any] = np.asarray(__lowerCamelCase)
return data_expanded
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
# expanding matrix to one dimension list
_A : List[Any] = np.asarray(__lowerCamelCase)
_A : Union[str, Any] = np.shape(__lowerCamelCase)
_A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1])
return data_expanded
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]:
_A : Dict = []
_A : Any = 0
for i_map in range(__lowerCamelCase):
_A : Union[str, Any] = np.ones((size_map, size_map))
for i in range(0 , __lowerCamelCase , __lowerCamelCase):
for j in range(0 , __lowerCamelCase , __lowerCamelCase):
_A : List[Any] = pd_pool[
i_pool
]
_A : Tuple = i_pool + 1
_A : Optional[Any] = np.multiply(
__lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map])))
pd_all.append(__lowerCamelCase)
return pd_all
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]:
# model traning
print("----------------------Start Training-------------------------")
print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase)))
print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase)))
_A : Tuple = 0
_A : Dict = []
_A : Optional[Any] = 1_0_0_0_0
while rp < n_repeat and mse >= error_accuracy:
_A : Union[str, Any] = 0
print(F"-------------Learning Time {rp}--------------")
for p in range(len(__lowerCamelCase)):
# print('------------Learning Image: %d--------------'%p)
_A : str = np.asmatrix(datas_train[p])
_A : Union[str, Any] = np.asarray(datas_teach[p])
_A , _A : Any = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga)
_A : Optional[int] = np.shape(__lowerCamelCase)
_A : List[str] = self._expand(__lowerCamelCase)
_A : Tuple = data_bp_input
_A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa
_A : List[Any] = self.sig(__lowerCamelCase)
_A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa
_A : List[str] = self.sig(__lowerCamelCase)
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
_A : int = np.multiply(
(data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa)))
_A : Optional[Any] = np.multiply(
np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa)))
_A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji)
_A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga)
_A : Dict = pd_conva_pooled.T.getA().tolist()
_A : Optional[Any] = self._calculate_gradient_from_pool(
__lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1]):
_A : int = self._expand_mat(pd_conva_all[k_conv])
_A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase)
_A : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]))
_A : Any = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv]) * self.rate_thre
)
# all connected layer
_A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
_A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight
_A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre
_A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
_A : Optional[int] = np.sum(abs(data_teach - bp_outa))
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
_A : Any = rp + 1
_A : Dict = error_count / patterns
all_mse.append(__lowerCamelCase)
def draw_error():
_A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(__lowerCamelCase , "+-")
plt.plot(__lowerCamelCase , "r--")
plt.xlabel("Learning Times")
plt.ylabel("All_mse")
plt.grid(__lowerCamelCase , alpha=0.5)
plt.show()
print("------------------Training Complished---------------------")
print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}"))
if draw_e:
draw_error()
return mse
def _lowerCamelCase ( self , __lowerCamelCase) -> int:
# model predict
_A : Union[str, Any] = []
print("-------------------Start Testing-------------------------")
print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase)))
for p in range(len(__lowerCamelCase)):
_A : int = np.asmatrix(datas_test[p])
_A , _A : List[Any] = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : str = self.pooling(__lowerCamelCase , self.size_poolinga)
_A : Optional[int] = self._expand(__lowerCamelCase)
_A : List[Any] = data_bp_input
_A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa
_A : int = self.sig(__lowerCamelCase)
_A : int = bp_outa * self.wkj.T - self.thre_bpa
_A : Optional[int] = self.sig(__lowerCamelCase)
produce_out.extend(bp_outa.getA().tolist())
_A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out]
return np.asarray(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
# return the data of image after convoluting process so we can check it out
_A : Optional[int] = np.asmatrix(__lowerCamelCase)
_A , _A : Tuple = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga)
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 11 | 1 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"]
__SCREAMING_SNAKE_CASE = "OwlViTImageProcessor"
__SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]:
_A : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __lowerCamelCase , )
_A : List[Any] = kwargs.pop("feature_extractor")
_A : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(__lowerCamelCase , __lowerCamelCase)
def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any:
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none.")
if text is not None:
if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)):
_A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)]
elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase):
_A : Optional[Any] = []
# Maximum number of queries across batch
_A : str = max([len(__lowerCamelCase) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(__lowerCamelCase) != max_num_queries:
_A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase))
_A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
encodings.append(__lowerCamelCase)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
_A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
_A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0)
_A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
_A : Optional[Any] = BatchEncoding()
_A : Tuple = input_ids
_A : Dict = attention_mask
if query_images is not None:
_A : Optional[Any] = BatchEncoding()
_A : List[str] = self.image_processor(
__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values
_A : Union[str, Any] = query_pixel_values
if images is not None:
_A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
if text is not None and images is not None:
_A : Tuple = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_A : int = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str:
return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]:
return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase)
@property
def _lowerCamelCase ( self) -> int:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , )
return self.image_processor_class
@property
def _lowerCamelCase ( self) -> List[str]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , )
return self.image_processor
| 11 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
lowerCAmelCase__ = object()
# For specifying empty leaf dict `{}`
lowerCAmelCase__ = object()
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ):
_A : str = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ):
_A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )]
if matches and all(UpperCamelCase__ ):
return True
return False
def _UpperCAmelCase (UpperCamelCase__ : str ):
def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ):
for rule, replacement in rules:
if _match(UpperCamelCase__ , UpperCamelCase__ ):
return replacement
return val
return replace
def _UpperCAmelCase ():
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )),
(("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _UpperCAmelCase (UpperCamelCase__ : List[str] ):
_A : int = _get_partition_rules()
_A : Optional[int] = _replacement_rules(UpperCamelCase__ )
_A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )}
_A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCamelCase__ ) )
| 11 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any]=None ):
_A : Tuple = argparse.ArgumentParser(add_help=UpperCamelCase__ , allow_abbrev=UpperCamelCase__ )
# The main config parser
_A : Union[str, Any] = config_command_parser(UpperCamelCase__ )
# The subparser to add commands to
_A : List[str] = config_parser.add_subparsers(title="subcommands" , dest="subcommand" )
# Then add other parsers with the parent parser
default_command_parser(UpperCamelCase__ , parents=[parent_parser] )
update_command_parser(UpperCamelCase__ , parents=[parent_parser] )
return config_parser
def _UpperCAmelCase ():
_A : Optional[int] = get_config_parser()
_A : Union[str, Any] = config_parser.parse_args()
if not hasattr(UpperCamelCase__ , "func" ):
config_parser.print_help()
exit(1 )
# Run
args.func(UpperCamelCase__ )
if __name__ == "__main__":
main()
| 11 |
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ):
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}"
raise ValueError(UpperCamelCase__ )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}"
raise ValueError(UpperCamelCase__ )
_A : int = input_str.split("_" )
_A : str = 0 if use_pascal else 1
_A : str = words[start_index:]
_A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize]
_A : Any = "" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 11 | 1 |
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( a , a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VQModel
__SCREAMING_SNAKE_CASE = "sample"
@property
def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]:
_A : Optional[int] = 4
_A : Tuple = 3
_A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase)
return {"sample": image}
@property
def _lowerCamelCase ( self) -> int:
return (3, 3_2, 3_2)
@property
def _lowerCamelCase ( self) -> List[Any]:
return (3, 3_2, 3_2)
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : List[Any] = {
"block_out_channels": [3_2, 6_4],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 3,
}
_A : int = self.dummy_input
return init_dict, inputs_dict
def _lowerCamelCase ( self) -> Union[str, Any]:
pass
def _lowerCamelCase ( self) -> Any:
pass
def _lowerCamelCase ( self) -> Any:
_A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase)
self.assertIsNotNone(__lowerCamelCase)
self.assertEqual(len(loading_info["missing_keys"]) , 0)
model.to(__lowerCamelCase)
_A : str = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy")
model.to(__lowerCamelCase).eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
_A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size)
_A : Optional[int] = image.to(__lowerCamelCase)
with torch.no_grad():
_A : List[str] = model(__lowerCamelCase).sample
_A : int = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
_A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3])
# fmt: on
self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
| 11 |
from __future__ import annotations
def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
_A : Dict = list(range(len(UpperCamelCase__ ) ) )
_A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )]
index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ )
_A : float = 0
_A : list[float] = [0] * len(UpperCamelCase__ )
for i in index:
if weight[i] <= capacity:
_A : Union[str, Any] = 1
max_value += value[i]
capacity -= weight[i]
else:
_A : Optional[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 11 | 1 |
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
lowerCAmelCase__ = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
lowerCAmelCase__ = get_tests_dir('fixtures/vocab.json')
lowerCAmelCase__ = get_tests_dir('fixtures')
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def _lowerCamelCase ( self) -> Any:
_A : str = 0
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Dict = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> int:
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Union[str, Any] = WavaVecaConfig()
_A : List[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
# save in new folder
model_config.save_pretrained(__lowerCamelCase)
processor.save_pretrained(__lowerCamelCase)
_A : Dict = AutoProcessor.from_pretrained(__lowerCamelCase)
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> Dict:
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase))
copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , "vocab.json"))
_A : str = AutoProcessor.from_pretrained(__lowerCamelCase)
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> int:
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Dict = WavaVecaFeatureExtractor()
_A : List[Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
_A : Union[str, Any] = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase)
# save in new folder
processor.save_pretrained(__lowerCamelCase)
# drop `processor_class` in tokenizer
with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "r") as f:
_A : Dict = json.load(__lowerCamelCase)
config_dict.pop("processor_class")
with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "w") as f:
f.write(json.dumps(__lowerCamelCase))
_A : int = AutoProcessor.from_pretrained(__lowerCamelCase)
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> Dict:
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Tuple = WavaVecaFeatureExtractor()
_A : List[str] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
_A : Union[str, Any] = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase)
# save in new folder
processor.save_pretrained(__lowerCamelCase)
# drop `processor_class` in feature extractor
with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "r") as f:
_A : Optional[Any] = json.load(__lowerCamelCase)
config_dict.pop("processor_class")
with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "w") as f:
f.write(json.dumps(__lowerCamelCase))
_A : str = AutoProcessor.from_pretrained(__lowerCamelCase)
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> List[str]:
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Tuple = WavaVecaConfig(processor_class="Wav2Vec2Processor")
model_config.save_pretrained(__lowerCamelCase)
# copy relevant files
copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , "vocab.json"))
# create emtpy sample processor
with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "w") as f:
f.write("{}")
_A : Optional[int] = AutoProcessor.from_pretrained(__lowerCamelCase)
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> Union[str, Any]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__lowerCamelCase):
_A : Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowerCamelCase):
_A : Optional[Any] = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase)
_A : str = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase)
self.assertTrue(processor.special_attribute_present)
self.assertEqual(processor.__class__.__name__ , "NewProcessor")
_A : Any = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present)
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor")
_A : Dict = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast")
# Test we can also load the slow version
_A : str = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase)
_A : List[Any] = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present)
self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer")
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer")
def _lowerCamelCase ( self) -> Dict:
try:
AutoConfig.register("custom" , __lowerCamelCase)
AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase)
AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase)
AutoProcessor.register(__lowerCamelCase , __lowerCamelCase)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCamelCase):
AutoProcessor.register(__lowerCamelCase , __lowerCamelCase)
# Now that the config is registered, it can be used as any other config with the auto-API
_A : Any = CustomFeatureExtractor.from_pretrained(__lowerCamelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Optional[int] = os.path.join(__lowerCamelCase , "vocab.txt")
with open(__lowerCamelCase , "w" , encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
_A : List[str] = CustomTokenizer(__lowerCamelCase)
_A : Tuple = CustomProcessor(__lowerCamelCase , __lowerCamelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__lowerCamelCase)
_A : Tuple = AutoProcessor.from_pretrained(__lowerCamelCase)
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def _lowerCamelCase ( self) -> Any:
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = False
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = False
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "AutoFeatureExtractor"
__SCREAMING_SNAKE_CASE = "AutoTokenizer"
__SCREAMING_SNAKE_CASE = False
try:
AutoConfig.register("custom" , __lowerCamelCase)
AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase)
AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase)
AutoProcessor.register(__lowerCamelCase , __lowerCamelCase)
# If remote code is not set, the default is to use local classes.
_A : Dict = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
self.assertEqual(processor.__class__.__name__ , "NewProcessor")
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote code is disabled, we load the local ones.
_A : Any = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase)
self.assertEqual(processor.__class__.__name__ , "NewProcessor")
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote is enabled, we load from the Hub.
_A : Union[str, Any] = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowerCamelCase)
self.assertEqual(processor.__class__.__name__ , "NewProcessor")
self.assertTrue(processor.special_attribute_present)
self.assertTrue(processor.feature_extractor.special_attribute_present)
self.assertTrue(processor.tokenizer.special_attribute_present)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def _lowerCamelCase ( self) -> Dict:
_A : Tuple = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert")
self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast")
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext")
self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor")
@is_staging_test
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def _lowerCamelCase ( cls) -> Any:
_A : Any = TOKEN
HfFolder.save_token(__lowerCamelCase)
@classmethod
def _lowerCamelCase ( cls) -> List[str]:
try:
delete_repo(token=cls._token , repo_id="test-processor")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-processor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-processor")
except HTTPError:
pass
def _lowerCamelCase ( self) -> Tuple:
_A : Optional[Any] = WavaVecaProcessor.from_pretrained(__lowerCamelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__lowerCamelCase , "test-processor") , push_to_hub=__lowerCamelCase , use_auth_token=self._token)
_A : str = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor")
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase))
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab())
def _lowerCamelCase ( self) -> str:
_A : Optional[Any] = WavaVecaProcessor.from_pretrained(__lowerCamelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__lowerCamelCase , "test-processor-org") , push_to_hub=__lowerCamelCase , use_auth_token=self._token , organization="valid_org" , )
_A : List[str] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org")
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase))
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab())
def _lowerCamelCase ( self) -> int:
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
_A : Any = CustomFeatureExtractor.from_pretrained(__lowerCamelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
_A : str = os.path.join(__lowerCamelCase , "vocab.txt")
with open(__lowerCamelCase , "w" , encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
_A : List[Any] = CustomTokenizer(__lowerCamelCase)
_A : int = CustomProcessor(__lowerCamelCase , __lowerCamelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(F"{USER}/test-dynamic-processor" , token=self._token)
_A : Optional[Any] = Repository(__lowerCamelCase , clone_from=F"{USER}/test-dynamic-processor" , token=self._token)
processor.save_pretrained(__lowerCamelCase)
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor",
"AutoProcessor": "custom_processing.CustomProcessor",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json")) as f:
_A : Any = json.load(__lowerCamelCase)
self.assertDictEqual(
tokenizer_config["auto_map"] , {
"AutoTokenizer": ["custom_tokenization.CustomTokenizer", None],
"AutoProcessor": "custom_processing.CustomProcessor",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , "custom_feature_extraction.py")))
self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , "custom_tokenization.py")))
self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , "custom_processing.py")))
repo.push_to_hub()
_A : List[Any] = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=__lowerCamelCase)
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor")
| 11 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None:
warnings.warn(
"The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use BeitImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase)
| 11 | 1 |
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
lowerCAmelCase__ = logging.get_logger(__name__)
def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ):
_A : Dict = set()
_A : Optional[int] = []
def parse_line(UpperCamelCase__ : Tuple ):
for line in fp:
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_A : str = line.decode("UTF-8" )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(" " ):
# process a single warning and move it to `selected_warnings`.
if len(UpperCamelCase__ ) > 0:
_A : List[str] = "\n".join(UpperCamelCase__ )
# Only keep the warnings specified in `targets`
if any(f": {x}: " in warning for x in targets ):
selected_warnings.add(UpperCamelCase__ )
buffer.clear()
continue
else:
_A : Optional[int] = line.strip()
buffer.append(UpperCamelCase__ )
if from_gh:
for filename in os.listdir(UpperCamelCase__ ):
_A : Tuple = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
if not os.path.isdir(UpperCamelCase__ ):
# read the file
if filename != "warnings.txt":
continue
with open(UpperCamelCase__ ) as fp:
parse_line(UpperCamelCase__ )
else:
try:
with zipfile.ZipFile(UpperCamelCase__ ) as z:
for filename in z.namelist():
if not os.path.isdir(UpperCamelCase__ ):
# read the file
if filename != "warnings.txt":
continue
with z.open(UpperCamelCase__ ) as fp:
parse_line(UpperCamelCase__ )
except Exception:
logger.warning(
f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." )
return selected_warnings
def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ):
_A : int = set()
_A : int = [os.path.join(UpperCamelCase__ , UpperCamelCase__ ) for p in os.listdir(UpperCamelCase__ ) if (p.endswith(".zip" ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(UpperCamelCase__ , UpperCamelCase__ ) )
return selected_warnings
if __name__ == "__main__":
def _UpperCAmelCase (UpperCamelCase__ : int ):
return values.split("," )
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
# optional parameters
parser.add_argument(
'--targets',
default='DeprecationWarning,UserWarning,FutureWarning',
type=list_str,
help='Comma-separated list of target warning(s) which we want to extract.',
)
parser.add_argument(
'--from_gh',
action='store_true',
help='If running from a GitHub action workflow and collecting warnings from its artifacts.',
)
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
lowerCAmelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print('=' * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
lowerCAmelCase__ = extract_warnings(args.output_dir, args.targets)
lowerCAmelCase__ = sorted(selected_warnings)
with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 11 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]:
_A : int = parent
_A : Optional[Any] = batch_size
_A : str = image_size
_A : Tuple = patch_size
_A : Tuple = num_channels
_A : Optional[int] = embed_dim
_A : Dict = depths
_A : Any = num_heads
_A : Any = window_size
_A : int = mlp_ratio
_A : Any = qkv_bias
_A : Union[str, Any] = hidden_dropout_prob
_A : Optional[Any] = attention_probs_dropout_prob
_A : Dict = drop_path_rate
_A : List[Any] = hidden_act
_A : Any = use_absolute_embeddings
_A : Optional[int] = patch_norm
_A : Tuple = layer_norm_eps
_A : List[str] = initializer_range
_A : Optional[int] = is_training
_A : Optional[Any] = scope
_A : Optional[int] = use_labels
_A : Dict = type_sequence_label_size
_A : str = encoder_stride
_A : Optional[int] = out_features
_A : Optional[int] = out_indices
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
_A : Optional[Any] = None
if self.use_labels:
_A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_A : Optional[int] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self) -> Union[str, Any]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]:
_A : Dict = MaskFormerSwinModel(config=__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : int = model(__lowerCamelCase)
_A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
_A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim))
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict:
_A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : Dict = model(__lowerCamelCase)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4])
# verify ValueError
with self.parent.assertRaises(__lowerCamelCase):
_A : Union[str, Any] = ["stem"]
_A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase)
def _lowerCamelCase ( self) -> Dict:
_A : Any = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Optional[int] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( a , a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def _lowerCamelCase ( self) -> str:
_A : Union[str, Any] = MaskFormerSwinModelTester(self)
_A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7)
@require_torch_multi_gpu
@unittest.skip(
reason=(
"`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"
" `nn.DataParallel`"
))
def _lowerCamelCase ( self) -> Union[str, Any]:
pass
def _lowerCamelCase ( self) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self) -> str:
return
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase)
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCamelCase)
@unittest.skip("Swin does not use inputs_embeds")
def _lowerCamelCase ( self) -> str:
pass
@unittest.skip("Swin does not support feedforward chunking")
def _lowerCamelCase ( self) -> List[Any]:
pass
def _lowerCamelCase ( self) -> Optional[int]:
_A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Union[str, Any] = model_class(__lowerCamelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
_A : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear))
def _lowerCamelCase ( self) -> Any:
_A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(__lowerCamelCase)
_A : Optional[int] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : int = [*signature.parameters.keys()]
_A : Optional[int] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase)
@unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions")
def _lowerCamelCase ( self) -> Tuple:
pass
@unittest.skip(reason="MaskFormerSwin is only used as an internal backbone")
def _lowerCamelCase ( self) -> str:
pass
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]:
_A : Any = model_class(__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
with torch.no_grad():
_A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase))
_A : Tuple = outputs.hidden_states
_A : Any = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1)
self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase)
# Swin has a different seq_length
_A : Optional[int] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
_A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
def _lowerCamelCase ( self) -> Dict:
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_A : List[Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Optional[int] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> Tuple:
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Optional[int] = 3
_A : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
_A : Optional[int] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
_A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_A : List[Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width))
@unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints")
def _lowerCamelCase ( self) -> List[str]:
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin")
def _lowerCamelCase ( self) -> List[str]:
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin")
def _lowerCamelCase ( self) -> str:
pass
def _lowerCamelCase ( self) -> Optional[Any]:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(__lowerCamelCase):
_A : Optional[int] = 0
return t
def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}):
with torch.no_grad():
_A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase)
_A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple()
def recursive_check(__lowerCamelCase , __lowerCamelCase):
if isinstance(__lowerCamelCase , (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase):
recursive_check(__lowerCamelCase , __lowerCamelCase)
elif isinstance(__lowerCamelCase , __lowerCamelCase):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values()):
recursive_check(__lowerCamelCase , __lowerCamelCase)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=(
"Tuple and dict output are not equal. Difference:"
F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has"
F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}."
) , )
recursive_check(__lowerCamelCase , __lowerCamelCase)
for model_class in self.all_model_classes:
_A : List[Any] = model_class(__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
_A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
_A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
_A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
_A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
_A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True})
_A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
_A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True})
@require_torch
class lowerCAmelCase__ ( unittest.TestCase , a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE = MaskFormerSwinConfig
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Tuple = MaskFormerSwinModelTester(self)
def _lowerCamelCase ( self) -> Optional[Any]:
_A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Union[str, Any] = inputs_dict["pixel_values"].shape[0]
for backbone_class in self.all_model_classes:
_A : Optional[Any] = backbone_class(__lowerCamelCase)
backbone.to(__lowerCamelCase)
backbone.eval()
_A : List[Any] = backbone(**__lowerCamelCase)
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , __lowerCamelCase)
self.assertTrue(len(outputs.feature_maps) == len(backbone.channels))
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels))
self.assertIsNone(outputs.hidden_states)
self.assertIsNone(outputs.attentions)
# Test output_hidden_states=True
_A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase)
self.assertIsNotNone(outputs.hidden_states)
self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names))
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_A , _A , _A : List[str] = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels))
# Test output_attentions=True
if self.has_attentions:
_A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase)
self.assertIsNotNone(outputs.attentions)
| 11 | 1 |
def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ):
_A : str = 0
_A : Tuple = len(UpperCamelCase__ ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
_A : Dict = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCamelCase__ ):
return None
_A : Union[str, Any] = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
_A : List[str] = left
_A : Union[str, Any] = point
elif point > right:
_A : Any = right
_A : Any = point
else:
if item < current_item:
_A : Union[str, Any] = point - 1
else:
_A : List[str] = point + 1
return None
def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ):
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
_A : List[Any] = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(UpperCamelCase__ ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
elif point > right:
return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , point - 1 )
else:
return interpolation_search_by_recursion(
UpperCamelCase__ , UpperCamelCase__ , point + 1 , UpperCamelCase__ )
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ):
if collection != sorted(UpperCamelCase__ ):
raise ValueError("Collection must be ascending sorted" )
return True
if __name__ == "__main__":
import sys
lowerCAmelCase__ = 0
if debug == 1:
lowerCAmelCase__ = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('Sequence must be ascending sorted to apply interpolation search')
lowerCAmelCase__ = 67
lowerCAmelCase__ = interpolation_search(collection, target)
if result is not None:
print(f"{target} found at positions: {result}")
else:
print('Not found')
| 11 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase__ = {
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 | 1 |
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def _lowerCamelCase ( *__lowerCamelCase , **__lowerCamelCase) -> Union[str, Any]:
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = MODEL_FOR_OBJECT_DETECTION_MAPPING
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]:
_A : Dict = ObjectDetectionPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase)
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple:
_A : Optional[int] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0)
self.assertGreater(len(__lowerCamelCase) , 0)
for detected_object in outputs:
self.assertEqual(
__lowerCamelCase , {
"score": ANY(__lowerCamelCase),
"label": ANY(__lowerCamelCase),
"box": {"xmin": ANY(__lowerCamelCase), "ymin": ANY(__lowerCamelCase), "xmax": ANY(__lowerCamelCase), "ymax": ANY(__lowerCamelCase)},
} , )
import datasets
_A : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test")
_A : str = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
_A : str = object_detector(__lowerCamelCase , threshold=0.0)
self.assertEqual(len(__lowerCamelCase) , len(__lowerCamelCase))
for outputs in batch_outputs:
self.assertGreater(len(__lowerCamelCase) , 0)
for detected_object in outputs:
self.assertEqual(
__lowerCamelCase , {
"score": ANY(__lowerCamelCase),
"label": ANY(__lowerCamelCase),
"box": {"xmin": ANY(__lowerCamelCase), "ymin": ANY(__lowerCamelCase), "xmax": ANY(__lowerCamelCase), "ymax": ANY(__lowerCamelCase)},
} , )
@require_tf
@unittest.skip("Object detection not implemented in TF")
def _lowerCamelCase ( self) -> List[Any]:
pass
@require_torch
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[Any] = "hf-internal-testing/tiny-detr-mobilenetsv3"
_A : Optional[int] = AutoModelForObjectDetection.from_pretrained(__lowerCamelCase)
_A : int = AutoFeatureExtractor.from_pretrained(__lowerCamelCase)
_A : Optional[Any] = ObjectDetectionPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase)
_A : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0)
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
] , )
_A : Any = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
[
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
],
[
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
{"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}},
],
] , )
@require_torch
@slow
def _lowerCamelCase ( self) -> Optional[Any]:
_A : List[Any] = "facebook/detr-resnet-50"
_A : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__lowerCamelCase)
_A : Optional[int] = AutoFeatureExtractor.from_pretrained(__lowerCamelCase)
_A : Union[str, Any] = ObjectDetectionPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase)
_A : Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
] , )
_A : Any = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
])
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
[
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
],
[
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
],
] , )
@require_torch
@slow
def _lowerCamelCase ( self) -> Optional[Any]:
_A : int = "facebook/detr-resnet-50"
_A : str = pipeline("object-detection" , model=__lowerCamelCase)
_A : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
] , )
_A : List[Any] = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
])
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
[
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
],
[
{"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}},
{"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}},
{"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}},
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
],
] , )
@require_torch
@slow
def _lowerCamelCase ( self) -> int:
_A : Any = 0.9_9_8_5
_A : List[str] = "facebook/detr-resnet-50"
_A : Dict = pipeline("object-detection" , model=__lowerCamelCase)
_A : List[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__lowerCamelCase)
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}},
{"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}},
] , )
@require_torch
@require_pytesseract
@slow
def _lowerCamelCase ( self) -> Tuple:
_A : str = "Narsil/layoutlmv3-finetuned-funsd"
_A : Optional[Any] = 0.9_9_9_3
_A : Any = pipeline("object-detection" , model=__lowerCamelCase , threshold=__lowerCamelCase)
_A : List[str] = object_detector(
"https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png")
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4) , [
{"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}},
{"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}},
] , )
| 11 |
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ):
_A , _A : Any = image.size
_A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
_A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] )
_A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0
_A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 )
_A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ )
return 2.0 * image - 1.0
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]:
super().__init__()
self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase)
@torch.no_grad()
def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]:
if isinstance(__lowerCamelCase , PIL.Image.Image):
_A : Tuple = 1
elif isinstance(__lowerCamelCase , torch.Tensor):
_A : Union[str, Any] = image.shape[0]
else:
raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}")
if isinstance(__lowerCamelCase , PIL.Image.Image):
_A : Union[str, Any] = preprocess(__lowerCamelCase)
_A , _A : Union[str, Any] = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
_A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width)
_A : str = next(self.unet.parameters()).dtype
_A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase)
_A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase)
# set timesteps and move to the correct device
self.scheduler.set_timesteps(__lowerCamelCase , device=self.device)
_A : Any = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
_A : List[str] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
_A : Optional[int] = {}
if accepts_eta:
_A : List[Any] = eta
for t in self.progress_bar(__lowerCamelCase):
# concat latents and low resolution image in the channel dimension.
_A : List[Any] = torch.cat([latents, image] , dim=1)
_A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase)
# predict the noise residual
_A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample
# compute the previous noisy sample x_t -> x_t-1
_A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample
# decode the image latents with the VQVAE
_A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample
_A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0)
_A : Tuple = image / 2 + 0.5
_A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
_A : Optional[int] = self.numpy_to_pil(__lowerCamelCase)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCamelCase)
| 11 | 1 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=4 , ) -> str:
_A : Any = parent
_A : Dict = batch_size
_A : Dict = seq_length
_A : Union[str, Any] = is_training
_A : List[Any] = use_attention_mask
_A : str = use_token_type_ids
_A : Dict = use_labels
_A : List[str] = vocab_size
_A : Dict = hidden_size
_A : List[Any] = num_hidden_layers
_A : int = num_attention_heads
_A : List[Any] = intermediate_size
_A : int = hidden_act
_A : List[str] = hidden_dropout_prob
_A : List[str] = attention_probs_dropout_prob
_A : Optional[int] = max_position_embeddings
_A : List[str] = type_vocab_size
_A : Dict = type_sequence_label_size
_A : List[str] = initializer_range
_A : Dict = num_choices
def _lowerCamelCase ( self) -> str:
_A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_A : Dict = None
if self.use_attention_mask:
_A : Dict = random_attention_mask([self.batch_size, self.seq_length])
_A : str = None
if self.use_token_type_ids:
_A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
_A : Any = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[Any] = self.prepare_config_and_inputs()
_A , _A , _A , _A : Any = config_and_inputs
_A : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def _lowerCamelCase ( self) -> str:
_A : Dict = self.prepare_config_and_inputs()
_A , _A , _A , _A : Optional[Any] = config_and_inputs
_A : Any = True
_A : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
_A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class lowerCAmelCase__ ( a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self) -> Tuple:
_A : Union[str, Any] = FlaxRobertaPreLayerNormModelTester(self)
@slow
def _lowerCamelCase ( self) -> Optional[int]:
for model_class_name in self.all_model_classes:
_A : List[str] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__lowerCamelCase)
_A : int = model(np.ones((1, 1)))
self.assertIsNotNone(__lowerCamelCase)
@require_flax
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
@slow
def _lowerCamelCase ( self) -> Optional[int]:
_A : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__lowerCamelCase)
_A : List[Any] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa)
_A : Optional[int] = model(__lowerCamelCase)[0]
_A : Union[str, Any] = [1, 1_1, 5_0_2_6_5]
self.assertEqual(list(output.shape) , __lowerCamelCase)
# compare the actual values for a slice.
_A : Dict = np.array(
[[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa)
self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4))
@slow
def _lowerCamelCase ( self) -> int:
_A : Optional[Any] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__lowerCamelCase)
_A : str = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa)
_A : Dict = model(__lowerCamelCase)[0]
# compare the actual values for a slice.
_A : List[str] = np.array(
[[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa)
self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4))
| 11 |
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( a , a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VQModel
__SCREAMING_SNAKE_CASE = "sample"
@property
def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]:
_A : Optional[int] = 4
_A : Tuple = 3
_A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase)
return {"sample": image}
@property
def _lowerCamelCase ( self) -> int:
return (3, 3_2, 3_2)
@property
def _lowerCamelCase ( self) -> List[Any]:
return (3, 3_2, 3_2)
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : List[Any] = {
"block_out_channels": [3_2, 6_4],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 3,
}
_A : int = self.dummy_input
return init_dict, inputs_dict
def _lowerCamelCase ( self) -> Union[str, Any]:
pass
def _lowerCamelCase ( self) -> Any:
pass
def _lowerCamelCase ( self) -> Any:
_A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase)
self.assertIsNotNone(__lowerCamelCase)
self.assertEqual(len(loading_info["missing_keys"]) , 0)
model.to(__lowerCamelCase)
_A : str = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy")
model.to(__lowerCamelCase).eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
_A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size)
_A : Optional[int] = image.to(__lowerCamelCase)
with torch.no_grad():
_A : List[str] = model(__lowerCamelCase).sample
_A : int = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
_A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3])
# fmt: on
self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
| 11 | 1 |
import math
import unittest
def _UpperCAmelCase (UpperCamelCase__ : int ):
assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self) -> Optional[Any]:
self.assertTrue(is_prime(2))
self.assertTrue(is_prime(3))
self.assertTrue(is_prime(5))
self.assertTrue(is_prime(7))
self.assertTrue(is_prime(1_1))
self.assertTrue(is_prime(1_3))
self.assertTrue(is_prime(1_7))
self.assertTrue(is_prime(1_9))
self.assertTrue(is_prime(2_3))
self.assertTrue(is_prime(2_9))
def _lowerCamelCase ( self) -> List[Any]:
with self.assertRaises(__lowerCamelCase):
is_prime(-1_9)
self.assertFalse(
is_prime(0) , "Zero doesn't have any positive factors, primes must have exactly two." , )
self.assertFalse(
is_prime(1) , "One only has 1 positive factor, primes must have exactly two." , )
self.assertFalse(is_prime(2 * 2))
self.assertFalse(is_prime(2 * 3))
self.assertFalse(is_prime(3 * 3))
self.assertFalse(is_prime(3 * 5))
self.assertFalse(is_prime(3 * 5 * 7))
if __name__ == "__main__":
unittest.main()
| 11 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/mbart-large-en-ro': (
'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'
),
'facebook/mbart-large-cc25': (
'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json',
'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json',
},
}
lowerCAmelCase__ = {
'facebook/mbart-large-en-ro': 10_24,
'facebook/mbart-large-cc25': 10_24,
}
# fmt: off
lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
__SCREAMING_SNAKE_CASE = MBartTokenizer
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it
_A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token
super().__init__(
vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , )
_A : Union[str, Any] = vocab_file
_A : int = False if not self.vocab_file else True
_A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens})
_A : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_A : Optional[int] = src_lang if src_lang is not None else "en_XX"
_A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang)
_A : int = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def _lowerCamelCase ( self) -> str:
return self._src_lang
@src_lang.setter
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
_A : List[str] = [self.sep_token_id]
_A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
_A : str = src_lang
_A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
_A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase)
_A : Dict = tgt_lang_id
return inputs
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding:
_A : Any = src_lang
_A : int = tgt_lang
return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self) -> List[str]:
return self.set_src_lang_special_tokens(self.src_lang)
def _lowerCamelCase ( self) -> List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : int = self.convert_tokens_to_ids(__lowerCamelCase)
_A : int = []
_A : List[str] = [self.eos_token_id, self.cur_lang_code]
_A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : str = self.convert_ids_to_tokens(self.suffix_tokens)
_A : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase)
_A : List[Any] = []
_A : str = [self.eos_token_id, self.cur_lang_code]
_A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : int = self.convert_ids_to_tokens(self.suffix_tokens)
_A : str = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory.")
return
_A : int = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase):
copyfile(self.vocab_file , __lowerCamelCase)
return (out_vocab_file,)
| 11 | 1 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "gptj"
__SCREAMING_SNAKE_CASE = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , __lowerCamelCase=5_0_4_0_0 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=2_8 , __lowerCamelCase=1_6 , __lowerCamelCase=6_4 , __lowerCamelCase=None , __lowerCamelCase="gelu_new" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0_2 , __lowerCamelCase=True , __lowerCamelCase=5_0_2_5_6 , __lowerCamelCase=5_0_2_5_6 , __lowerCamelCase=False , **__lowerCamelCase , ) -> Any:
_A : Dict = vocab_size
_A : Any = n_positions
_A : List[str] = n_embd
_A : Optional[int] = n_layer
_A : str = n_head
_A : Union[str, Any] = n_inner
_A : List[Any] = rotary_dim
_A : int = activation_function
_A : Dict = resid_pdrop
_A : int = embd_pdrop
_A : int = attn_pdrop
_A : Tuple = layer_norm_epsilon
_A : List[Any] = initializer_range
_A : Dict = use_cache
_A : Any = bos_token_id
_A : Optional[int] = eos_token_id
super().__init__(
bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase)
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase = "default" , __lowerCamelCase = None , __lowerCamelCase = False , ) -> Dict:
super().__init__(__lowerCamelCase , task=__lowerCamelCase , patching_specs=__lowerCamelCase , use_past=__lowerCamelCase)
if not getattr(self._config , "pad_token_id" , __lowerCamelCase):
# TODO: how to do that better?
_A : Dict = 0
@property
def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]:
_A : Optional[int] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs")
_A : List[Any] = {0: "batch", 1: "past_sequence + sequence"}
else:
_A : Dict = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _lowerCamelCase ( self) -> int:
return self._config.n_layer
@property
def _lowerCamelCase ( self) -> int:
return self._config.n_head
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Mapping[str, Any]:
_A : Tuple = super(__lowerCamelCase , self).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase)
# We need to order the input in the way they appears in the forward()
_A : Union[str, Any] = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
_A , _A : Optional[Any] = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_A : Optional[int] = seqlen + 2
_A : Optional[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_A : List[str] = [
(torch.zeros(__lowerCamelCase), torch.zeros(__lowerCamelCase)) for _ in range(self.num_layers)
]
_A : List[Any] = common_inputs["attention_mask"]
if self.use_past:
_A : str = ordered_inputs["attention_mask"].dtype
_A : Union[str, Any] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase)] , dim=1)
return ordered_inputs
@property
def _lowerCamelCase ( self) -> int:
return 1_3
| 11 |
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'vocab_file': 'vocab.json',
'tokenizer_config_file': 'tokenizer_config.json',
'merges_file': 'merges.txt',
}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json'
),
},
'tokenizer_config_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json'
),
},
'merges_file': {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt'
),
},
}
lowerCAmelCase__ = '</w>'
lowerCAmelCase__ = '@@ '
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ):
_A : Optional[int] = set()
_A : Optional[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A : List[Any] = char
return pairs
# Speech2Text2 has no max input length
lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]:
super().__init__(
unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , )
_A : Dict = do_lower_case
with open(__lowerCamelCase , encoding="utf-8") as vocab_handle:
_A : Optional[int] = json.load(__lowerCamelCase)
_A : Optional[Any] = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.")
_A : Optional[Any] = None
_A : Tuple = None
else:
with open(__lowerCamelCase , encoding="utf-8") as merges_handle:
_A : Optional[int] = merges_handle.read().split("\n")[:-1]
_A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges]
_A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase))))
_A : List[Any] = {}
@property
def _lowerCamelCase ( self) -> int:
return len(self.decoder)
def _lowerCamelCase ( self) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder)
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
_A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
_A : int = get_pairs(__lowerCamelCase)
if not pairs:
return token
while True:
_A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf")))
if bigram not in self.bpe_ranks:
break
_A , _A : Optional[int] = bigram
_A : int = []
_A : str = 0
while i < len(__lowerCamelCase):
try:
_A : str = word.index(__lowerCamelCase , __lowerCamelCase)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
_A : str = j
if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
_A : List[str] = tuple(__lowerCamelCase)
_A : List[str] = new_word
if len(__lowerCamelCase) == 1:
break
else:
_A : List[Any] = get_pairs(__lowerCamelCase)
_A : Tuple = " ".join(__lowerCamelCase)
if word == "\n " + BPE_TOKEN_MERGES:
_A : List[str] = "\n" + BPE_TOKEN_MERGES
if word.endswith(__lowerCamelCase):
_A : int = word.replace(__lowerCamelCase , "")
_A : int = word.replace(" " , __lowerCamelCase)
_A : Union[str, Any] = word
return word
def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]:
if self.bpe_ranks is None:
raise ValueError(
"This tokenizer was instantiated without a `merges.txt` file, so"
" that it can only be used for decoding, not for encoding."
"Make sure to provide `merges.txt` file at instantiation to enable "
"encoding.")
if self.do_lower_case:
_A : List[Any] = text.lower()
_A : Optional[int] = text.split()
_A : List[str] = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" ")))
return split_tokens
def _lowerCamelCase ( self , __lowerCamelCase) -> int:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token))
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
_A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token)
return result
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
_A : str = " ".join(__lowerCamelCase)
# make sure @@ tokens are concatenated
_A : int = "".join(string.split(__lowerCamelCase))
return string
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory")
return
_A : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
_A : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"])
with open(__lowerCamelCase , "w" , encoding="utf-8") as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n")
_A : Union[str, Any] = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(__lowerCamelCase , "w" , encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]):
if index != token_index:
logger.warning(
F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!")
_A : Optional[int] = token_index
writer.write(" ".join(__lowerCamelCase) + "\n")
index += 1
return (vocab_file, merges_file)
| 11 | 1 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
lowerCAmelCase__ = logging.getLogger(__name__)
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None) -> int:
super().__init__(
__lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , )
_A : int = None
def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]:
logger.info("initializing retrieval")
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("dist initialized")
# needs to be set manually
_A : Any = self._infer_socket_ifname()
# avoid clash with the NCCL port
_A : int = str(distributed_port + 1)
_A : Tuple = dist.new_group(ranks=__lowerCamelCase , backend="gloo")
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("dist not initialized / main")
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group)
def _lowerCamelCase ( self) -> Optional[Any]:
return dist.get_rank(group=self.process_group) == 0
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa) -> Union[str, Any]:
_A : Tuple = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase)
dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group)
return target_tensor
def _lowerCamelCase ( self) -> List[str]:
_A : Any = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
_A : Optional[Any] = next((addr for addr in addrs if addr.startswith("e")) , __lowerCamelCase)
return ifname
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
_A , _A : int = self._main_retrieve(__lowerCamelCase , __lowerCamelCase)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase)
# distributed training
_A : Tuple = dist.get_world_size(group=self.process_group)
# gather logic
_A : Optional[Any] = None
if self._is_main():
_A : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(__lowerCamelCase)]
dist.gather(torch.tensor(__lowerCamelCase) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group)
# scatter logic
_A : List[str] = question_hidden_states.shape[0]
_A : str = []
_A : int = []
if self._is_main():
assert len(__lowerCamelCase) == world_size
_A , _A : Tuple = self._main_retrieve(torch.cat(__lowerCamelCase).numpy() , __lowerCamelCase)
_A , _A : Tuple = torch.tensor(__lowerCamelCase), torch.tensor(__lowerCamelCase)
_A : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase)
_A : Any = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase)
_A : int = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa)
_A : List[str] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]])
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase)
| 11 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "vit_mae"
def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int:
super().__init__(**__lowerCamelCase)
_A : int = hidden_size
_A : List[str] = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : Optional[Any] = intermediate_size
_A : Optional[int] = hidden_act
_A : List[Any] = hidden_dropout_prob
_A : List[Any] = attention_probs_dropout_prob
_A : Union[str, Any] = initializer_range
_A : str = layer_norm_eps
_A : Any = image_size
_A : int = patch_size
_A : int = num_channels
_A : Dict = qkv_bias
_A : Tuple = decoder_num_attention_heads
_A : Tuple = decoder_hidden_size
_A : List[str] = decoder_num_hidden_layers
_A : Optional[Any] = decoder_intermediate_size
_A : List[str] = mask_ratio
_A : Union[str, Any] = norm_pix_loss
| 11 | 1 |
from collections.abc import Sequence
from queue import Queue
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None) -> Union[str, Any]:
_A : str = start
_A : Optional[int] = end
_A : List[str] = val
_A : Tuple = (start + end) // 2
_A : Any = left
_A : List[Any] = right
def __repr__( self) -> Any:
return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})"
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase) -> List[str]:
_A : str = collection
_A : Optional[Any] = function
if self.collection:
_A : Optional[int] = self._build_tree(0 , len(__lowerCamelCase) - 1)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple:
self._update_tree(self.root , __lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[str]:
return self._query_range(self.root , __lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[str]:
if start == end:
return SegmentTreeNode(__lowerCamelCase , __lowerCamelCase , self.collection[start])
_A : List[Any] = (start + end) // 2
_A : int = self._build_tree(__lowerCamelCase , __lowerCamelCase)
_A : Optional[Any] = self._build_tree(mid + 1 , __lowerCamelCase)
return SegmentTreeNode(__lowerCamelCase , __lowerCamelCase , self.fn(left.val , right.val) , __lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> int:
if node.start == i and node.end == i:
_A : List[str] = val
return
if i <= node.mid:
self._update_tree(node.left , __lowerCamelCase , __lowerCamelCase)
else:
self._update_tree(node.right , __lowerCamelCase , __lowerCamelCase)
_A : str = self.fn(node.left.val , node.right.val)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> str:
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , __lowerCamelCase , __lowerCamelCase)
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , __lowerCamelCase , node.mid) , self._query_range(node.right , node.mid + 1 , __lowerCamelCase) , )
else:
# range in right child tree
return self._query_range(node.right , __lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> Dict:
if self.root is not None:
_A : Optional[int] = Queue()
queue.put(self.root)
while not queue.empty():
_A : Tuple = queue.get()
yield node
if node.left is not None:
queue.put(node.left)
if node.right is not None:
queue.put(node.right)
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('*' * 50)
lowerCAmelCase__ = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 11 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 | 1 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True , __lowerCamelCase = False) -> Dict:
_A : Dict = scheduler
_A : Union[str, Any] = optimizers if isinstance(__lowerCamelCase , (list, tuple)) else [optimizers]
_A : int = split_batches
_A : int = step_with_optimizer
_A : Any = GradientState()
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase)
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase)
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
_A : List[Any] = AcceleratorState().num_processes
for _ in range(__lowerCamelCase):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , "total_steps"):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase)
else:
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self) -> Union[str, Any]:
return self.scheduler.get_last_lr()
def _lowerCamelCase ( self) -> Optional[Any]:
return self.scheduler.state_dict()
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
self.scheduler.load_state_dict(__lowerCamelCase)
def _lowerCamelCase ( self) -> Tuple:
return self.scheduler.get_lr()
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str:
return self.scheduler.print_lr(*__lowerCamelCase , **__lowerCamelCase)
| 11 |
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
lowerCAmelCase__ = float('nan')
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase) -> Optional[Any]:
_A : List[Any] = sys.stdout
_A : str = open(__lowerCamelCase , "a")
def __getattr__( self , __lowerCamelCase) -> List[str]:
return getattr(self.stdout , __lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
self.stdout.write(__lowerCamelCase)
# strip tqdm codes
self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M))
def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ):
_A : Tuple = []
# deal with critical env vars
_A : Dict = ["CUDA_VISIBLE_DEVICES"]
for key in env_keys:
_A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ )
if val is not None:
cmd.append(f"{key}={val}" )
# python executable (not always needed if the script is executable)
_A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1]
cmd.append(UpperCamelCase__ )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
_A : Tuple = []
_A : Dict = ""
while len(UpperCamelCase__ ) > 0:
current_line += f"{cmd.pop(0 )} "
if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(UpperCamelCase__ )
_A : Union[str, Any] = ""
return "\\\n".join(UpperCamelCase__ )
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ):
# unwrap multi-line input
_A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd )
# remove --output_dir if any and set our own
_A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd )
args.base_cmd += f" --output_dir {output_dir}"
# ensure we have --overwrite_output_dir
_A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ):
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , )
_A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ )
if verbose:
print("STDOUT" , result.stdout )
print("STDERR" , result.stderr )
# save the streams
_A : Tuple = variation.replace(" " , "-" )
with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f:
f.write(result.stdout )
with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print("failed" )
return {target_metric_key: nan}
with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f:
_A : List[str] = json.load(UpperCamelCase__ )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ):
_A : Union[str, Any] = []
_A : Optional[int] = []
_A : Any = f"{id}: {variation:<{longest_variation_len}}"
_A : Dict = f"{preamble}: "
_A : Union[str, Any] = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ):
_A : Optional[Any] = process_run_single(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
_A : Optional[Any] = single_run_metrics[target_metric_key]
if not math.isnan(UpperCamelCase__ ):
metrics.append(UpperCamelCase__ )
results.append(UpperCamelCase__ )
outcome += "✓"
else:
outcome += "✘"
_A : str = f"\33[2K\r{outcome}"
if len(UpperCamelCase__ ) > 0:
_A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
_A : Any = round(mean_metrics[target_metric_key] , 2 )
_A : Tuple = f"{outcome} {mean_target}"
if len(UpperCamelCase__ ) > 1:
results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}"
print(UpperCamelCase__ )
_A : Optional[int] = variation
return mean_metrics
else:
print(UpperCamelCase__ )
return {variation_key: variation, target_metric_key: nan}
def _UpperCAmelCase ():
_A : int = torch.cuda.get_device_properties(torch.device("cuda" ) )
return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n"
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ):
_A : Any = pd.DataFrame(UpperCamelCase__ )
_A : List[str] = "variation"
_A : List[Any] = "diff_%"
_A : int = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
_A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(UpperCamelCase__ ):
# as a fallback, use the minimal value as the sentinel
_A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(UpperCamelCase__ ):
_A : Optional[Any] = df.apply(
lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis="columns" , )
# re-order columns
_A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys]
_A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols
# capitalize
_A : Tuple = df.rename(str.capitalize , axis="columns" )
# make the cols as narrow as possible
_A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" )
_A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" )
_A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )]
print("\n\n".join(UpperCamelCase__ ) )
def _UpperCAmelCase ():
_A : int = argparse.ArgumentParser()
parser.add_argument(
"--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , )
parser.add_argument(
"--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , )
parser.add_argument(
"--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , )
parser.add_argument(
"--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , )
parser.add_argument(
"--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , )
parser.add_argument(
"--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , )
parser.add_argument(
"--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , )
parser.add_argument(
"--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , )
_A : int = parser.parse_args()
_A : Union[str, Any] = args.output_dir
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
_A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ )
# split each dimension into its --foo variations
_A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
_A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) )
_A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations )
# split wanted keys
_A : str = args.report_metric_keys.split()
# capture prints into a log file for convenience
_A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt"
print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" )
print(f"and this script's output is also piped into {report_fn}" )
_A : Tuple = Tee(UpperCamelCase__ )
print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" )
print(f"Base command: {' '.join(UpperCamelCase__ )}" )
_A : str = "variation"
_A : Union[str, Any] = []
for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ):
_A : Dict = base_cmd + variation.split()
results.append(
process_run(
id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) )
process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ )
if __name__ == "__main__":
main()
| 11 | 1 |
import os
def _UpperCAmelCase ():
_A : Tuple = os.path.join(os.path.dirname(UpperCamelCase__ ) , "num.txt" )
with open(UpperCamelCase__ ) as file_hand:
return str(sum(int(UpperCamelCase__ ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 11 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
lowerCAmelCase__ = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__SCREAMING_SNAKE_CASE = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "Overwrite the cached training and evaluation sets"})
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={"help": "The number of processes to use for the preprocessing."} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__SCREAMING_SNAKE_CASE = field(
default=a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def _lowerCamelCase ( self) -> int:
if self.train_file is not None:
_A : Optional[int] = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_A : Dict = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
def __call__( self , __lowerCamelCase) -> str:
_A : List[Any] = "label" if "label" in features[0].keys() else "labels"
_A : Any = [feature.pop(__lowerCamelCase) for feature in features]
_A : Optional[int] = len(__lowerCamelCase)
_A : int = len(features[0]["input_ids"])
_A : Tuple = [
[{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features
]
_A : str = list(chain(*__lowerCamelCase))
_A : Tuple = self.tokenizer.pad(
__lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()}
# Add back labels
_A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa)
return batch
def _UpperCAmelCase ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A : int = training_args.get_process_log_level()
logger.setLevel(UpperCamelCase__ )
datasets.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
_A : List[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A : Optional[int] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_A : List[str] = {}
if data_args.train_file is not None:
_A : Optional[int] = data_args.train_file
if data_args.validation_file is not None:
_A : Tuple = data_args.validation_file
_A : Union[str, Any] = data_args.train_file.split("." )[-1]
_A : List[str] = load_dataset(
UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
_A : Union[str, Any] = load_dataset(
"swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A : Optional[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A : Optional[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_A : str = [f"ending{i}" for i in range(4 )]
_A : Union[str, Any] = "sent1"
_A : str = "sent2"
if data_args.max_seq_length is None:
_A : Any = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_A : Optional[Any] = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
_A : int = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(UpperCamelCase__ : List[Any] ):
_A : List[Any] = [[context] * 4 for context in examples[context_name]]
_A : Any = examples[question_header_name]
_A : Union[str, Any] = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ )
]
# Flatten out
_A : Dict = list(chain(*UpperCamelCase__ ) )
_A : List[Any] = list(chain(*UpperCamelCase__ ) )
# Tokenize
_A : str = tokenizer(
UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_A : Optional[int] = raw_datasets["train"]
if data_args.max_train_samples is not None:
_A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples )
_A : Any = train_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_A : Optional[int] = train_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_A : Optional[int] = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples )
_A : Dict = eval_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_A : List[str] = eval_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
_A : str = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(UpperCamelCase__ : Tuple ):
_A , _A : List[str] = eval_predictions
_A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_A : List[str] = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
_A : Any = None
if training_args.resume_from_checkpoint is not None:
_A : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A : int = last_checkpoint
_A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
trainer.save_model() # Saves the tokenizer too for easy upload
_A : Optional[int] = train_result.metrics
_A : Tuple = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ )
)
_A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("train" , UpperCamelCase__ )
trainer.save_metrics("train" , UpperCamelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_A : List[Any] = trainer.evaluate()
_A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ )
_A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("eval" , UpperCamelCase__ )
trainer.save_metrics("eval" , UpperCamelCase__ )
_A : Tuple = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCamelCase__ )
else:
trainer.create_model_card(**UpperCamelCase__ )
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 11 | 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--txt2img_unclip',
default='kakaobrain/karlo-v1-alpha',
type=str,
required=False,
help='The pretrained txt2img unclip.',
)
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
lowerCAmelCase__ = CLIPImageProcessor()
lowerCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14')
lowerCAmelCase__ = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 11 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env")
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
])
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self) -> str:
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , )
assert hasattr(self , "env")
def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple:
_A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"
# distributed data settings
_A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , )
def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]:
TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv")
@parameterized.expand([(2,)])
def _lowerCamelCase ( self , __lowerCamelCase) -> Any:
# create estimator
_A : Union[str, Any] = self.create_estimator(__lowerCamelCase)
# run training
estimator.fit()
# result dataframe
_A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
_A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
_A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_A : Optional[Any] = (
Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
assert all(t <= self.results["eval_loss"] for t in eval_loss)
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
| 11 | 1 |
lowerCAmelCase__ = {
'a': 'AAAAA',
'b': 'AAAAB',
'c': 'AAABA',
'd': 'AAABB',
'e': 'AABAA',
'f': 'AABAB',
'g': 'AABBA',
'h': 'AABBB',
'i': 'ABAAA',
'j': 'BBBAA',
'k': 'ABAAB',
'l': 'ABABA',
'm': 'ABABB',
'n': 'ABBAA',
'o': 'ABBAB',
'p': 'ABBBA',
'q': 'ABBBB',
'r': 'BAAAA',
's': 'BAAAB',
't': 'BAABA',
'u': 'BAABB',
'v': 'BBBAB',
'w': 'BABAA',
'x': 'BABAB',
'y': 'BABBA',
'z': 'BABBB',
' ': ' ',
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _UpperCAmelCase (UpperCamelCase__ : str ):
_A : Union[str, Any] = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _UpperCAmelCase (UpperCamelCase__ : str ):
if set(UpperCamelCase__ ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
_A : Optional[int] = ""
for word in coded.split():
while len(UpperCamelCase__ ) != 0:
decoded += decode_dict[word[:5]]
_A : Optional[int] = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 11 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"]
__SCREAMING_SNAKE_CASE = "OwlViTImageProcessor"
__SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]:
_A : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __lowerCamelCase , )
_A : List[Any] = kwargs.pop("feature_extractor")
_A : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(__lowerCamelCase , __lowerCamelCase)
def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any:
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none.")
if text is not None:
if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)):
_A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)]
elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase):
_A : Optional[Any] = []
# Maximum number of queries across batch
_A : str = max([len(__lowerCamelCase) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(__lowerCamelCase) != max_num_queries:
_A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase))
_A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
encodings.append(__lowerCamelCase)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
_A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
_A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0)
_A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0)
_A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
_A : Optional[Any] = BatchEncoding()
_A : Tuple = input_ids
_A : Dict = attention_mask
if query_images is not None:
_A : Optional[Any] = BatchEncoding()
_A : List[str] = self.image_processor(
__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values
_A : Union[str, Any] = query_pixel_values
if images is not None:
_A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
if text is not None and images is not None:
_A : Tuple = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_A : int = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str:
return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]:
return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase)
@property
def _lowerCamelCase ( self) -> int:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , )
return self.image_processor_class
@property
def _lowerCamelCase ( self) -> List[str]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , )
return self.image_processor
| 11 | 1 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger('transformers.models.speecht5')
lowerCAmelCase__ = {
'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm',
'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection',
'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv',
'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed',
}
lowerCAmelCase__ = {
'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens',
'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha',
}
lowerCAmelCase__ = {
'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0',
'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1',
'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer',
'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha',
'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer',
}
lowerCAmelCase__ = {
'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out',
'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out',
'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv',
'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm',
'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv',
'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm',
'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv',
'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm',
'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv',
'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm',
'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv',
'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm',
}
lowerCAmelCase__ = {
'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens',
}
lowerCAmelCase__ = {
'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head',
}
lowerCAmelCase__ = {
'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj',
'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj',
'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj',
'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj',
'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm',
'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense',
'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense',
'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm',
'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k',
}
lowerCAmelCase__ = {
'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj',
'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj',
'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj',
'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj',
'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm',
'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj',
'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj',
'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj',
'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj',
'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm',
'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense',
'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense',
'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm',
}
lowerCAmelCase__ = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
lowerCAmelCase__ = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
lowerCAmelCase__ = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
lowerCAmelCase__ = []
lowerCAmelCase__ = [
'encoder.version',
'encoder.layers.*.norm_k.weight',
'encoder.layers.*.norm_k.bias',
'decoder.version',
'decoder.layers.*.norm_k.weight',
'decoder.layers.*.norm_k.bias',
'decoder.pos_emb.pe_k',
'speech_encoder_prenet.embed_positions._float_tensor',
'text_decoder_prenet.embed_positions._float_tensor',
]
lowerCAmelCase__ = IGNORE_KEYS + [
'encoder.proj',
'text_encoder_prenet.*',
'speech_decoder_prenet.*',
'speech_decoder_postnet.*',
]
lowerCAmelCase__ = IGNORE_KEYS + [
'encoder.proj',
'speech_encoder_prenet.*',
'text_decoder_prenet.*',
'text_decoder_postnet.*',
]
lowerCAmelCase__ = IGNORE_KEYS + [
'encoder.proj',
'text_encoder_prenet.*',
'text_decoder_prenet.*',
'text_decoder_postnet.*',
]
def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple ):
for attribute in key.split("." ):
_A : Tuple = getattr(UpperCamelCase__ , UpperCamelCase__ )
if weight_type is not None:
_A : str = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape
else:
_A : Optional[int] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
_A : Optional[int] = value
elif weight_type == "weight_g":
_A : str = value
elif weight_type == "weight_v":
_A : Optional[int] = value
elif weight_type == "bias":
_A : Union[str, Any] = value
elif weight_type == "running_mean":
_A : Any = value
elif weight_type == "running_var":
_A : List[str] = value
elif weight_type == "num_batches_tracked":
_A : Any = value
else:
_A : List[str] = value
logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." )
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ):
for key in ignore_keys:
if key.endswith(".*" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_A , _A : Optional[int] = key.split(".*." )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
_A : List[str] = []
if task == "s2t":
_A : List[str] = hf_model.speechta.encoder.prenet.feature_encoder
_A : int = MAPPING_S2T
_A : List[Any] = IGNORE_KEYS_S2T
elif task == "t2s":
_A : Tuple = None
_A : Optional[Any] = MAPPING_T2S
_A : Any = IGNORE_KEYS_T2S
elif task == "s2s":
_A : int = hf_model.speechta.encoder.prenet.feature_encoder
_A : Tuple = MAPPING_S2S
_A : str = IGNORE_KEYS_S2S
else:
raise ValueError(f"Unsupported task: {task}" )
for name, value in fairseq_dict.items():
if should_ignore(UpperCamelCase__ , UpperCamelCase__ ):
logger.info(f"{name} was ignored" )
continue
_A : List[str] = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == "group" , )
_A : Union[str, Any] = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_A , _A : str = key.split(".*." )
if prefix in name and suffix in name:
_A : Union[str, Any] = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_A : List[Any] = True
if "*" in mapped_key:
_A : Optional[int] = name.split(UpperCamelCase__ )[0].split("." )[-2]
_A : Dict = mapped_key.replace("*" , UpperCamelCase__ )
if "weight_g" in name:
_A : List[Any] = "weight_g"
elif "weight_v" in name:
_A : str = "weight_v"
elif "bias" in name:
_A : List[Any] = "bias"
elif "weight" in name:
_A : Dict = "weight"
elif "running_mean" in name:
_A : Any = "running_mean"
elif "running_var" in name:
_A : Optional[int] = "running_var"
elif "num_batches_tracked" in name:
_A : Optional[int] = "num_batches_tracked"
else:
_A : Optional[int] = None
set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
continue
if not is_used:
unused_weights.append(UpperCamelCase__ )
logger.warning(f"Unused weights: {unused_weights}" )
def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : str ):
_A : List[str] = full_name.split("conv_layers." )[-1]
_A : int = name.split("." )
_A : Any = int(items[0] )
_A : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
_A : List[Any] = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
_A : Optional[Any] = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
_A : int = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
_A : Tuple = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(UpperCamelCase__ )
@torch.no_grad()
def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : str=None , ):
if config_path is not None:
_A : List[Any] = SpeechTaConfig.from_pretrained(UpperCamelCase__ )
else:
_A : Optional[int] = SpeechTaConfig()
if task == "s2t":
_A : Tuple = config.max_text_positions
_A : Optional[Any] = SpeechTaForSpeechToText(UpperCamelCase__ )
elif task == "t2s":
_A : Optional[Any] = 1876
_A : List[Any] = 600
_A : Optional[Any] = config.max_speech_positions
_A : List[Any] = SpeechTaForTextToSpeech(UpperCamelCase__ )
elif task == "s2s":
_A : Optional[int] = 1876
_A : str = config.max_speech_positions
_A : Optional[int] = SpeechTaForSpeechToSpeech(UpperCamelCase__ )
else:
raise ValueError(f"Unknown task name: {task}" )
if vocab_path:
_A : Dict = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_A : Dict = AddedToken("<mask>" , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )
_A : Dict = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
_A : int = SpeechTaFeatureExtractor()
_A : List[str] = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
_A : Union[str, Any] = torch.load(UpperCamelCase__ )
recursively_load_weights(fairseq_checkpoint["model"] , UpperCamelCase__ , UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if repo_id:
print("Pushing to the hub..." )
processor.push_to_hub(UpperCamelCase__ )
model.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
'--task',
default='s2t',
type=str,
help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.',
)
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
lowerCAmelCase__ = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 11 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]):
_A : Optional[int] = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(__lowerCamelCase)
def _lowerCamelCase ( self) -> int:
_A : Optional[int] = "sshleifer/tiny-gpt2"
_A : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : List[str] = PyTorchBenchmark(__lowerCamelCase)
_A : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Dict:
_A : int = "sgugger/tiny-distilbert-classification"
_A : str = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , )
_A : Dict = PyTorchBenchmark(__lowerCamelCase)
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Tuple = "sshleifer/tiny-gpt2"
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase)
_A : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision")
def _lowerCamelCase ( self) -> int:
_A : Any = "sshleifer/tiny-gpt2"
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Any = PyTorchBenchmark(__lowerCamelCase)
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> Any:
_A : Union[str, Any] = "sshleifer/tiny-gpt2"
_A : Any = AutoConfig.from_pretrained(__lowerCamelCase)
# set architectures equal to `None`
_A : Dict = None
_A : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> int:
_A : List[Any] = "sshleifer/tiny-gpt2"
_A : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase)
_A : int = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == "cpu" , "Can't do half precision")
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Any = "sshleifer/tiny-gpt2"
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , )
_A : List[Any] = PyTorchBenchmark(__lowerCamelCase)
_A : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> str:
_A : List[str] = "sshleifer/tiny-gpt2"
_A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> int:
_A : Tuple = "sshleifer/tinier_bart"
_A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def _lowerCamelCase ( self) -> str:
_A : List[Any] = "sshleifer/tiny-gpt2"
_A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> int:
_A : int = "sshleifer/tinier_bart"
_A : str = AutoConfig.from_pretrained(__lowerCamelCase)
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config])
_A : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def _lowerCamelCase ( self) -> Dict:
_A : List[str] = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(__lowerCamelCase)
benchmark.run()
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists())
self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists())
def _lowerCamelCase ( self) -> int:
_A : Dict = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(__lowerCamelCase):
self.assertTrue(hasattr(__lowerCamelCase , "sequential"))
self.assertTrue(hasattr(__lowerCamelCase , "cumulative"))
self.assertTrue(hasattr(__lowerCamelCase , "current"))
self.assertTrue(hasattr(__lowerCamelCase , "total"))
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , )
_A : Optional[int] = PyTorchBenchmark(__lowerCamelCase)
_A : Dict = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
| 11 | 1 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
lowerCAmelCase__ = 'bert-base-cased'
lowerCAmelCase__ = 'fp16'
lowerCAmelCase__ = 'bf16'
lowerCAmelCase__ = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowerCAmelCase__ ( a):
'''simple docstring'''
def _lowerCamelCase ( self) -> Optional[int]:
super().setUp()
_A : int = dict(
ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , )
def _lowerCamelCase ( self) -> List[Any]:
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__lowerCamelCase):
_A : List[Any] = self.dist_env.copy()
_A : Tuple = F"{i + 1}"
_A : List[str] = strategy
with mockenv_context(**__lowerCamelCase):
_A : List[Any] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1))
def _lowerCamelCase ( self) -> str:
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__lowerCamelCase):
_A : Union[str, Any] = self.dist_env.copy()
_A : int = prefetch_policy
with mockenv_context(**__lowerCamelCase):
_A : Union[str, Any] = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch)
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1))
def _lowerCamelCase ( self) -> List[str]:
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__lowerCamelCase):
_A : List[Any] = self.dist_env.copy()
_A : Optional[int] = state_dict_type
with mockenv_context(**__lowerCamelCase):
_A : Dict = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1))
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu)
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only)
def _lowerCamelCase ( self) -> List[str]:
_A : Optional[Any] = AutoModel.from_pretrained(__lowerCamelCase)
for policy in FSDP_AUTO_WRAP_POLICY:
_A : Tuple = self.dist_env.copy()
_A : Any = policy
if policy == "TRANSFORMER_BASED_WRAP":
_A : int = "BertLayer"
elif policy == "SIZE_BASED_WRAP":
_A : str = "2000"
with mockenv_context(**__lowerCamelCase):
_A : Tuple = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase)
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy)
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy)
_A : Optional[int] = self.dist_env.copy()
_A : str = "TRANSFORMER_BASED_WRAP"
_A : Union[str, Any] = "T5Layer"
with mockenv_context(**__lowerCamelCase):
_A : Union[str, Any] = FullyShardedDataParallelPlugin()
with self.assertRaises(__lowerCamelCase) as cm:
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase)
self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception))
_A : Tuple = self.dist_env.copy()
_A : Optional[Any] = "SIZE_BASED_WRAP"
_A : int = "0"
with mockenv_context(**__lowerCamelCase):
_A : Any = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase)
self.assertIsNone(fsdp_plugin.auto_wrap_policy)
def _lowerCamelCase ( self) -> List[Any]:
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
_A : Optional[int] = self.dist_env.copy()
_A : List[str] = mp_dtype
with mockenv_context(**__lowerCamelCase):
_A : Optional[Any] = Accelerator()
if mp_dtype == "fp16":
_A : Union[str, Any] = torch.floataa
elif mp_dtype == "bf16":
_A : Optional[Any] = torch.bfloataa
_A : List[Any] = MixedPrecision(param_dtype=__lowerCamelCase , reduce_dtype=__lowerCamelCase , buffer_dtype=__lowerCamelCase)
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __lowerCamelCase)
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , __lowerCamelCase))
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler)
AcceleratorState._reset_state(__lowerCamelCase)
def _lowerCamelCase ( self) -> Any:
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
_A : str = self.dist_env.copy()
_A : List[Any] = str(__lowerCamelCase).lower()
with mockenv_context(**__lowerCamelCase):
_A : Optional[int] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__lowerCamelCase))
@require_fsdp
@require_multi_gpu
@slow
class lowerCAmelCase__ ( a):
'''simple docstring'''
def _lowerCamelCase ( self) -> int:
super().setUp()
_A : List[str] = 0.8_2
_A : List[Any] = [
"fsdp_shard_grad_op_transformer_based_wrap",
"fsdp_full_shard_transformer_based_wrap",
]
_A : Tuple = {
"multi_gpu_fp16": 3_2_0_0,
"fsdp_shard_grad_op_transformer_based_wrap_fp16": 2_0_0_0,
"fsdp_full_shard_transformer_based_wrap_fp16": 1_9_0_0,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
_A : int = 1_6_0
_A : Optional[Any] = 1_6_0
_A : Optional[Any] = inspect.getfile(accelerate.test_utils)
_A : int = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"])
def _lowerCamelCase ( self) -> Optional[int]:
_A : Tuple = os.path.join(self.test_scripts_folder , "test_performance.py")
_A : Optional[int] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"]
for config in self.performance_configs:
_A : Optional[Any] = cmd.copy()
for i, strategy in enumerate(__lowerCamelCase):
if strategy.lower() in config:
cmd_config.append(F"--fsdp_sharding_strategy={i+1}")
break
if "fp32" in config:
cmd_config.append("--mixed_precision=no")
else:
cmd_config.append("--mixed_precision=fp16")
if "cpu_offload" in config:
cmd_config.append("--fsdp_offload_params=True")
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"--fsdp_auto_wrap_policy={policy}")
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer")
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000")
cmd_config.extend(
[
self.test_file_path,
F"--output_dir={self.tmpdir}",
F"--performance_lower_bound={self.performance_lower_bound}",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(__lowerCamelCase , env=os.environ.copy())
def _lowerCamelCase ( self) -> Dict:
_A : List[Any] = os.path.join(self.test_scripts_folder , "test_checkpointing.py")
_A : Any = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
"--use_fsdp",
"--mixed_precision=fp16",
"--fsdp_transformer_layer_cls_to_wrap=BertLayer",
]
for i, strategy in enumerate(__lowerCamelCase):
_A : List[Any] = cmd.copy()
cmd_config.append(F"--fsdp_sharding_strategy={i+1}")
if strategy != "FULL_SHARD":
continue
_A : List[Any] = len(__lowerCamelCase)
for state_dict_type in FSDP_STATE_DICT_TYPE:
_A : int = cmd_config[:state_dict_config_index]
cmd_config.append(F"--fsdp_state_dict_type={state_dict_type}")
cmd_config.extend(
[
self.test_file_path,
F"--output_dir={self.tmpdir}",
"--partial_train_epoch=1",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(__lowerCamelCase , env=os.environ.copy())
_A : Dict = cmd_config[:-1]
_A : Any = os.path.join(self.tmpdir , "epoch_0")
cmd_config.extend(
[
F"--resume_from_checkpoint={resume_from_checkpoint}",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(__lowerCamelCase , env=os.environ.copy())
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[int] = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py")
_A : List[Any] = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
_A : List[str] = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["--mixed_precision=fp16"])
else:
cmd_config.extend(["--mixed_precision=no"])
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["--use_fsdp"])
for i, strategy in enumerate(__lowerCamelCase):
if strategy.lower() in spec:
cmd_config.append(F"--fsdp_sharding_strategy={i+1}")
break
if "cpu_offload" in spec:
cmd_config.append("--fsdp_offload_params=True")
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"--fsdp_auto_wrap_policy={policy}")
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer")
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000")
cmd_config.extend(
[
self.test_file_path,
F"--output_dir={self.tmpdir}",
F"--peak_memory_upper_bound={peak_mem_upper_bound}",
F"--n_train={self.n_train}",
F"--n_val={self.n_val}",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(__lowerCamelCase , env=os.environ.copy())
| 11 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase__ = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'
),
},
}
lowerCAmelCase__ = {
'facebook/nllb-large-en-ro': 10_24,
'facebook/nllb-200-distilled-600M': 10_24,
}
# fmt: off
lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"]
__SCREAMING_SNAKE_CASE = NllbTokenizer
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple:
# Mask token behave like a normal word, i.e. include the space before it
_A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token
_A : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , )
_A : int = vocab_file
_A : Optional[Any] = False if not self.vocab_file else True
_A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens})
_A : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_A : Optional[int] = src_lang if src_lang is not None else "eng_Latn"
_A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang)
_A : List[str] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def _lowerCamelCase ( self) -> str:
return self._src_lang
@src_lang.setter
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]:
_A : Tuple = [self.sep_token_id]
_A : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
_A : List[Any] = src_lang
_A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)
_A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase)
_A : Tuple = tgt_lang_id
return inputs
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding:
_A : Tuple = src_lang
_A : int = tgt_lang
return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase)
def _lowerCamelCase ( self) -> str:
return self.set_src_lang_special_tokens(self.src_lang)
def _lowerCamelCase ( self) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Dict = self.convert_tokens_to_ids(__lowerCamelCase)
if self.legacy_behaviour:
_A : List[str] = []
_A : Dict = [self.eos_token_id, self.cur_lang_code]
else:
_A : Tuple = [self.cur_lang_code]
_A : Optional[Any] = [self.eos_token_id]
_A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : int = self.convert_ids_to_tokens(self.suffix_tokens)
_A : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
_A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase)
if self.legacy_behaviour:
_A : Tuple = []
_A : Any = [self.eos_token_id, self.cur_lang_code]
else:
_A : Union[str, Any] = [self.cur_lang_code]
_A : str = [self.eos_token_id]
_A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens)
_A : Dict = self.convert_ids_to_tokens(self.suffix_tokens)
_A : Union[str, Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(__lowerCamelCase):
logger.error(F"Vocabulary path ({save_directory}) should be a directory.")
return
_A : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase):
copyfile(self.vocab_file , __lowerCamelCase)
return (out_vocab_file,)
| 11 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ = {
'configuration_efficientformer': [
'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientFormerConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['EfficientFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientFormerForImageClassification',
'EfficientFormerForImageClassificationWithTeacher',
'EfficientFormerModel',
'EfficientFormerPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFEfficientFormerForImageClassification',
'TFEfficientFormerForImageClassificationWithTeacher',
'TFEfficientFormerModel',
'TFEfficientFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 |
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ):
_A : Union[str, Any] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" )
_A : Dict = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" )
_A : Dict = format_type
def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ):
_A : Union[str, Any] = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
_A : Union[str, Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['python'])
_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])
_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])
_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])
_register_formatter(CustomFormatter, 'custom')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])
else:
lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')
_register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])
else:
lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')
_register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, 'jax', aliases=[])
else:
lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.')
_register_unavailable_formatter(_jax_error, 'jax', aliases=[])
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ):
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ):
_A : List[str] = get_format_type_from_alias(UpperCamelCase__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**UpperCamelCase__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
| 11 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase__ = {
'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'],
'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['VisionTextDualEncoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['FlaxVisionTextDualEncoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['TFVisionTextDualEncoderModel']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 11 |
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
_A : int = (boundary[1] - boundary[0]) / steps
_A : Any = boundary[0]
_A : List[Any] = boundary[1]
_A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
_A : str = 0.0
y += (h / 2.0) * f(UpperCamelCase__ )
for i in x_i:
# print(i)
y += h * f(UpperCamelCase__ )
y += (h / 2.0) * f(UpperCamelCase__ )
return y
def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ):
_A : Optional[int] = a + h
while x < (b - h):
yield x
_A : Dict = x + h
def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here
_A : Any = (x - 0) * (x - 0)
return y
def _UpperCAmelCase ():
_A : Optional[Any] = 0.0 # Lower bound of integration
_A : Optional[int] = 1.0 # Upper bound of integration
_A : List[Any] = 10.0 # define number of steps or resolution
_A : Any = [a, b] # define boundary of integration
_A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ )
print(f"y = {y}" )
if __name__ == "__main__":
main()
| 11 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase__ = {
'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['VivitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'VivitModel',
'VivitPreTrainedModel',
'VivitForVideoClassification',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
@parameterized.expand([(None,), ("foo.json",)])
def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]:
_A : str = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase)
_A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , __lowerCamelCase)
self.assertEqual(loaded_config.temperature , 0.7)
self.assertEqual(loaded_config.length_penalty , 1.0)
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0)
self.assertEqual(loaded_config.max_length , 2_0)
self.assertEqual(loaded_config.max_time , __lowerCamelCase)
def _lowerCamelCase ( self) -> Optional[int]:
_A : Optional[int] = AutoConfig.from_pretrained("gpt2")
_A : int = GenerationConfig.from_model_config(__lowerCamelCase)
_A : List[Any] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(__lowerCamelCase , __lowerCamelCase)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id)
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Optional[Any] = GenerationConfig()
_A : List[Any] = {
"max_new_tokens": 1_0_2_4,
"foo": "bar",
}
_A : List[str] = copy.deepcopy(__lowerCamelCase)
_A : int = generation_config.update(**__lowerCamelCase)
# update_kwargs was not modified (no side effects)
self.assertEqual(__lowerCamelCase , __lowerCamelCase)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(__lowerCamelCase , {"foo": "bar"})
def _lowerCamelCase ( self) -> Any:
_A : int = GenerationConfig()
_A : int = "bar"
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(__lowerCamelCase)
_A : Any = GenerationConfig.from_pretrained(__lowerCamelCase)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , "bar")
_A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase)
assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config
def _lowerCamelCase ( self) -> List[str]:
_A : Union[str, Any] = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0)
self.assertEqual(default_config.do_sample , __lowerCamelCase)
self.assertEqual(default_config.num_beams , 1)
_A : Optional[int] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7)
self.assertEqual(config.do_sample , __lowerCamelCase)
self.assertEqual(config.num_beams , 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__lowerCamelCase)
_A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0)
self.assertEqual(loaded_config.temperature , 1.0)
self.assertEqual(loaded_config.do_sample , __lowerCamelCase)
self.assertEqual(loaded_config.num_beams , 1) # default value
@is_staging_test
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
@classmethod
def _lowerCamelCase ( cls) -> Optional[int]:
_A : Dict = TOKEN
HfFolder.save_token(__lowerCamelCase)
@classmethod
def _lowerCamelCase ( cls) -> List[Any]:
try:
delete_repo(token=cls._token , repo_id="test-generation-config")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org")
except HTTPError:
pass
def _lowerCamelCase ( self) -> Any:
_A : Optional[int] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("test-generation-config" , use_auth_token=self._token)
_A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
# Reset repo
delete_repo(token=self._token , repo_id="test-generation-config")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token)
_A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Union[str, Any] = GenerationConfig(
do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token)
_A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token)
_A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
| 11 | 1 |
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 11 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str:
_A : Optional[int] = bp_numa
_A : Dict = bp_numa
_A : Tuple = bp_numa
_A : List[str] = conva_get[:2]
_A : Tuple = conva_get[2]
_A : Optional[int] = size_pa
_A : Optional[Any] = rate_w
_A : Optional[Any] = rate_t
_A : Union[str, Any] = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5)
for i in range(self.conva[1])
]
_A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
_A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5)
_A : Any = -2 * np.random.rand(self.conva[1]) + 1
_A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1
_A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
# save model dict with pickle
_A : Dict = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(__lowerCamelCase , "wb") as f:
pickle.dump(__lowerCamelCase , __lowerCamelCase)
print(F"Model saved: {save_path}")
@classmethod
def _lowerCamelCase ( cls , __lowerCamelCase) -> Any:
# read saved model
with open(__lowerCamelCase , "rb") as f:
_A : Any = pickle.load(__lowerCamelCase) # noqa: S301
_A : Optional[int] = model_dic.get("conv1")
conv_get.append(model_dic.get("step_conv1"))
_A : str = model_dic.get("size_pooling1")
_A : List[str] = model_dic.get("num_bp1")
_A : Union[str, Any] = model_dic.get("num_bp2")
_A : List[Any] = model_dic.get("num_bp3")
_A : Dict = model_dic.get("rate_weight")
_A : List[Any] = model_dic.get("rate_thre")
# create model instance
_A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
# modify model parameter
_A : List[Any] = model_dic.get("w_conv1")
_A : Union[str, Any] = model_dic.get("wkj")
_A : str = model_dic.get("vji")
_A : List[str] = model_dic.get("thre_conv1")
_A : Optional[Any] = model_dic.get("thre_bp2")
_A : Dict = model_dic.get("thre_bp3")
return conv_ins
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
return 1 / (1 + np.exp(-1 * x))
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
return round(__lowerCamelCase , 3)
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]:
# convolution process
_A : Tuple = convs[0]
_A : Union[str, Any] = convs[1]
_A : List[Any] = np.shape(__lowerCamelCase)[0]
# get the data slice of original image data, data_focus
_A : Tuple = []
for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase):
for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase):
_A : Optional[int] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(__lowerCamelCase)
# calculate the feature map of every single kernel, and saved as list of matrix
_A : Optional[Any] = []
_A : Optional[int] = int((size_data - size_conv) / conv_step + 1)
for i_map in range(__lowerCamelCase):
_A : Optional[int] = []
for i_focus in range(len(__lowerCamelCase)):
_A : Any = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map]))
- thre_convs[i_map]
)
featuremap.append(self.sig(__lowerCamelCase))
_A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape(
__lowerCamelCase , __lowerCamelCase)
data_featuremap.append(__lowerCamelCase)
# expanding the data slice to One dimenssion
_A : Optional[Any] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(__lowerCamelCase))
_A : Dict = np.asarray(__lowerCamelCase)
return focus_list, data_featuremap
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict:
# pooling process
_A : Optional[Any] = len(featuremaps[0])
_A : str = int(size_map / size_pooling)
_A : Optional[int] = []
for i_map in range(len(__lowerCamelCase)):
_A : int = featuremaps[i_map]
_A : Optional[int] = []
for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase):
for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase):
_A : str = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(__lowerCamelCase))
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(__lowerCamelCase))
_A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase)
featuremap_pooled.append(__lowerCamelCase)
return featuremap_pooled
def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple:
# expanding three dimension data to one dimension list
_A : Tuple = []
for i in range(len(__lowerCamelCase)):
_A : Union[str, Any] = np.shape(data[i])
_A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1])
_A : Optional[Any] = data_listed.getA().tolist()[0]
data_expanded.extend(__lowerCamelCase)
_A : Optional[Any] = np.asarray(__lowerCamelCase)
return data_expanded
def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]:
# expanding matrix to one dimension list
_A : List[Any] = np.asarray(__lowerCamelCase)
_A : Union[str, Any] = np.shape(__lowerCamelCase)
_A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1])
return data_expanded
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]:
_A : Dict = []
_A : Any = 0
for i_map in range(__lowerCamelCase):
_A : Union[str, Any] = np.ones((size_map, size_map))
for i in range(0 , __lowerCamelCase , __lowerCamelCase):
for j in range(0 , __lowerCamelCase , __lowerCamelCase):
_A : List[Any] = pd_pool[
i_pool
]
_A : Tuple = i_pool + 1
_A : Optional[Any] = np.multiply(
__lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map])))
pd_all.append(__lowerCamelCase)
return pd_all
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]:
# model traning
print("----------------------Start Training-------------------------")
print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase)))
print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase)))
_A : Tuple = 0
_A : Dict = []
_A : Optional[Any] = 1_0_0_0_0
while rp < n_repeat and mse >= error_accuracy:
_A : Union[str, Any] = 0
print(F"-------------Learning Time {rp}--------------")
for p in range(len(__lowerCamelCase)):
# print('------------Learning Image: %d--------------'%p)
_A : str = np.asmatrix(datas_train[p])
_A : Union[str, Any] = np.asarray(datas_teach[p])
_A , _A : Any = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga)
_A : Optional[int] = np.shape(__lowerCamelCase)
_A : List[str] = self._expand(__lowerCamelCase)
_A : Tuple = data_bp_input
_A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa
_A : List[Any] = self.sig(__lowerCamelCase)
_A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa
_A : List[str] = self.sig(__lowerCamelCase)
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
_A : int = np.multiply(
(data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa)))
_A : Optional[Any] = np.multiply(
np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa)))
_A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji)
_A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga)
_A : Dict = pd_conva_pooled.T.getA().tolist()
_A : Optional[Any] = self._calculate_gradient_from_pool(
__lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1]):
_A : int = self._expand_mat(pd_conva_all[k_conv])
_A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase)
_A : List[Any] = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]))
_A : Any = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv]) * self.rate_thre
)
# all connected layer
_A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
_A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight
_A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre
_A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
_A : Optional[int] = np.sum(abs(data_teach - bp_outa))
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
_A : Any = rp + 1
_A : Dict = error_count / patterns
all_mse.append(__lowerCamelCase)
def draw_error():
_A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(__lowerCamelCase , "+-")
plt.plot(__lowerCamelCase , "r--")
plt.xlabel("Learning Times")
plt.ylabel("All_mse")
plt.grid(__lowerCamelCase , alpha=0.5)
plt.show()
print("------------------Training Complished---------------------")
print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}"))
if draw_e:
draw_error()
return mse
def _lowerCamelCase ( self , __lowerCamelCase) -> int:
# model predict
_A : Union[str, Any] = []
print("-------------------Start Testing-------------------------")
print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase)))
for p in range(len(__lowerCamelCase)):
_A : int = np.asmatrix(datas_test[p])
_A , _A : List[Any] = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : str = self.pooling(__lowerCamelCase , self.size_poolinga)
_A : Optional[int] = self._expand(__lowerCamelCase)
_A : List[Any] = data_bp_input
_A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa
_A : int = self.sig(__lowerCamelCase)
_A : int = bp_outa * self.wkj.T - self.thre_bpa
_A : Optional[int] = self.sig(__lowerCamelCase)
produce_out.extend(bp_outa.getA().tolist())
_A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out]
return np.asarray(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
# return the data of image after convoluting process so we can check it out
_A : Optional[int] = np.asmatrix(__lowerCamelCase)
_A , _A : Tuple = self.convolute(
__lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga)
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 11 | 1 |
from __future__ import annotations
def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
_A : Dict = list(range(len(UpperCamelCase__ ) ) )
_A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )]
index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ )
_A : float = 0
_A : list[float] = [0] * len(UpperCamelCase__ )
for i in index:
if weight[i] <= capacity:
_A : Union[str, Any] = 1
max_value += value[i]
capacity -= weight[i]
else:
_A : Optional[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 11 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
lowerCAmelCase__ = object()
# For specifying empty leaf dict `{}`
lowerCAmelCase__ = object()
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ):
_A : str = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ):
_A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )]
if matches and all(UpperCamelCase__ ):
return True
return False
def _UpperCAmelCase (UpperCamelCase__ : str ):
def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ):
for rule, replacement in rules:
if _match(UpperCamelCase__ , UpperCamelCase__ ):
return replacement
return val
return replace
def _UpperCAmelCase ():
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )),
(("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _UpperCAmelCase (UpperCamelCase__ : List[str] ):
_A : int = _get_partition_rules()
_A : Optional[int] = _replacement_rules(UpperCamelCase__ )
_A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )}
_A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCamelCase__ ) )
| 11 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 11 |
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ):
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}"
raise ValueError(UpperCamelCase__ )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}"
raise ValueError(UpperCamelCase__ )
_A : int = input_str.split("_" )
_A : str = 0 if use_pascal else 1
_A : str = words[start_index:]
_A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize]
_A : Any = "" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 11 | 1 |
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
lowerCAmelCase__ = TypeVar('T')
class lowerCAmelCase__ ( Generic[T]):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase) -> None:
_A : Any | T = None
_A : int = len(__lowerCamelCase)
_A : list[T] = [any_type for _ in range(self.N)] + arr
_A : Any = fnc
self.build()
def _lowerCamelCase ( self) -> None:
for p in range(self.N - 1 , 0 , -1):
_A : int = self.fn(self.st[p * 2] , self.st[p * 2 + 1])
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None:
p += self.N
_A : List[str] = v
while p > 1:
_A : List[Any] = p // 2
_A : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1])
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> T | None: # noqa: E741
_A , _A : Optional[Any] = l + self.N, r + self.N
_A : T | None = None
while l <= r:
if l % 2 == 1:
_A : Optional[int] = self.st[l] if res is None else self.fn(__lowerCamelCase , self.st[l])
if r % 2 == 0:
_A : List[Any] = self.st[r] if res is None else self.fn(__lowerCamelCase , self.st[r])
_A , _A : Optional[Any] = (l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
lowerCAmelCase__ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12]
lowerCAmelCase__ = {
0: 7,
1: 2,
2: 6,
3: -14,
4: 5,
5: 4,
6: 7,
7: -10,
8: 9,
9: 10,
10: 12,
11: 1,
}
lowerCAmelCase__ = SegmentTree(test_array, min)
lowerCAmelCase__ = SegmentTree(test_array, max)
lowerCAmelCase__ = SegmentTree(test_array, lambda a, b: a + b)
def _UpperCAmelCase ():
for i in range(len(UpperCamelCase__ ) ):
for j in range(UpperCamelCase__ , len(UpperCamelCase__ ) ):
_A : Any = reduce(UpperCamelCase__ , test_array[i : j + 1] )
_A : Optional[int] = reduce(UpperCamelCase__ , test_array[i : j + 1] )
_A : int = reduce(lambda UpperCamelCase__ , UpperCamelCase__ : a + b , test_array[i : j + 1] )
assert min_range == min_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ )
assert max_range == max_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ )
assert sum_range == sum_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ )
test_all_segments()
for index, value in test_updates.items():
lowerCAmelCase__ = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 11 |
from __future__ import annotations
def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
_A : Dict = list(range(len(UpperCamelCase__ ) ) )
_A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )]
index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ )
_A : float = 0
_A : list[float] = [0] * len(UpperCamelCase__ )
for i in index:
if weight[i] <= capacity:
_A : Union[str, Any] = 1
max_value += value[i]
capacity -= weight[i]
else:
_A : Optional[Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 11 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'microsoft/beit-base-patch16-224-pt22k': (
'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "beit"
def __init__( self , __lowerCamelCase=8_1_9_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=True , __lowerCamelCase=[3, 5, 7, 1_1] , __lowerCamelCase=[1, 2, 3, 6] , __lowerCamelCase=True , __lowerCamelCase=0.4 , __lowerCamelCase=2_5_6 , __lowerCamelCase=1 , __lowerCamelCase=False , __lowerCamelCase=2_5_5 , **__lowerCamelCase , ) -> str:
super().__init__(**__lowerCamelCase)
_A : Union[str, Any] = vocab_size
_A : Union[str, Any] = hidden_size
_A : Optional[Any] = num_hidden_layers
_A : str = num_attention_heads
_A : List[str] = intermediate_size
_A : Any = hidden_act
_A : Tuple = hidden_dropout_prob
_A : Dict = attention_probs_dropout_prob
_A : int = initializer_range
_A : Any = layer_norm_eps
_A : Optional[int] = image_size
_A : Optional[int] = patch_size
_A : Optional[Any] = num_channels
_A : str = use_mask_token
_A : int = use_absolute_position_embeddings
_A : List[Any] = use_relative_position_bias
_A : List[Any] = use_shared_relative_position_bias
_A : Optional[Any] = layer_scale_init_value
_A : Dict = drop_path_rate
_A : Union[str, Any] = use_mean_pooling
# decode head attributes (semantic segmentation)
_A : Dict = out_indices
_A : Dict = pool_scales
# auxiliary head attributes (semantic segmentation)
_A : List[Any] = use_auxiliary_head
_A : Dict = auxiliary_loss_weight
_A : str = auxiliary_channels
_A : str = auxiliary_num_convs
_A : Optional[Any] = auxiliary_concat_input
_A : int = semantic_loss_ignore_index
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = version.parse("1.11")
@property
def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
])
@property
def _lowerCamelCase ( self) -> float:
return 1e-4
| 11 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None:
warnings.warn(
"The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use BeitImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase)
| 11 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json',
}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "timesformer"
def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> Tuple:
super().__init__(**__lowerCamelCase)
_A : Any = image_size
_A : Union[str, Any] = patch_size
_A : Tuple = num_channels
_A : Dict = num_frames
_A : int = hidden_size
_A : Union[str, Any] = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : Optional[int] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : List[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Tuple = initializer_range
_A : Tuple = layer_norm_eps
_A : str = qkv_bias
_A : str = attention_type
_A : Dict = drop_path_rate
| 11 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]:
_A : int = parent
_A : Optional[Any] = batch_size
_A : str = image_size
_A : Tuple = patch_size
_A : Tuple = num_channels
_A : Optional[int] = embed_dim
_A : Dict = depths
_A : Any = num_heads
_A : Any = window_size
_A : int = mlp_ratio
_A : Any = qkv_bias
_A : Union[str, Any] = hidden_dropout_prob
_A : Optional[Any] = attention_probs_dropout_prob
_A : Dict = drop_path_rate
_A : List[Any] = hidden_act
_A : Any = use_absolute_embeddings
_A : Optional[int] = patch_norm
_A : Tuple = layer_norm_eps
_A : List[str] = initializer_range
_A : Optional[int] = is_training
_A : Optional[Any] = scope
_A : Optional[int] = use_labels
_A : Dict = type_sequence_label_size
_A : str = encoder_stride
_A : Optional[int] = out_features
_A : Optional[int] = out_indices
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
_A : Optional[Any] = None
if self.use_labels:
_A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_A : Optional[int] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self) -> Union[str, Any]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]:
_A : Dict = MaskFormerSwinModel(config=__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : int = model(__lowerCamelCase)
_A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
_A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim))
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict:
_A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : Dict = model(__lowerCamelCase)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4])
# verify ValueError
with self.parent.assertRaises(__lowerCamelCase):
_A : Union[str, Any] = ["stem"]
_A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase)
def _lowerCamelCase ( self) -> Dict:
_A : Any = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Optional[int] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( a , a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def _lowerCamelCase ( self) -> str:
_A : Union[str, Any] = MaskFormerSwinModelTester(self)
_A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7)
@require_torch_multi_gpu
@unittest.skip(
reason=(
"`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"
" `nn.DataParallel`"
))
def _lowerCamelCase ( self) -> Union[str, Any]:
pass
def _lowerCamelCase ( self) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self) -> str:
return
def _lowerCamelCase ( self) -> List[Any]:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase)
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCamelCase)
@unittest.skip("Swin does not use inputs_embeds")
def _lowerCamelCase ( self) -> str:
pass
@unittest.skip("Swin does not support feedforward chunking")
def _lowerCamelCase ( self) -> List[Any]:
pass
def _lowerCamelCase ( self) -> Optional[int]:
_A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Union[str, Any] = model_class(__lowerCamelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
_A : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear))
def _lowerCamelCase ( self) -> Any:
_A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(__lowerCamelCase)
_A : Optional[int] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : int = [*signature.parameters.keys()]
_A : Optional[int] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase)
@unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions")
def _lowerCamelCase ( self) -> Tuple:
pass
@unittest.skip(reason="MaskFormerSwin is only used as an internal backbone")
def _lowerCamelCase ( self) -> str:
pass
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]:
_A : Any = model_class(__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
with torch.no_grad():
_A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase))
_A : Tuple = outputs.hidden_states
_A : Any = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1)
self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase)
# Swin has a different seq_length
_A : Optional[int] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
_A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
def _lowerCamelCase ( self) -> Dict:
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_A : List[Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Optional[int] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
def _lowerCamelCase ( self) -> Tuple:
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Optional[int] = 3
_A : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
_A : Optional[int] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
_A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_A : List[Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width))
@unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints")
def _lowerCamelCase ( self) -> List[str]:
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin")
def _lowerCamelCase ( self) -> List[str]:
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin")
def _lowerCamelCase ( self) -> str:
pass
def _lowerCamelCase ( self) -> Optional[Any]:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(__lowerCamelCase):
_A : Optional[int] = 0
return t
def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}):
with torch.no_grad():
_A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase)
_A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple()
def recursive_check(__lowerCamelCase , __lowerCamelCase):
if isinstance(__lowerCamelCase , (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase):
recursive_check(__lowerCamelCase , __lowerCamelCase)
elif isinstance(__lowerCamelCase , __lowerCamelCase):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values()):
recursive_check(__lowerCamelCase , __lowerCamelCase)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=(
"Tuple and dict output are not equal. Difference:"
F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has"
F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}."
) , )
recursive_check(__lowerCamelCase , __lowerCamelCase)
for model_class in self.all_model_classes:
_A : List[Any] = model_class(__lowerCamelCase)
model.to(__lowerCamelCase)
model.eval()
_A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
_A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
_A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
_A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)
_A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
_A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True})
_A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
_A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase)
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True})
@require_torch
class lowerCAmelCase__ ( unittest.TestCase , a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE = MaskFormerSwinConfig
def _lowerCamelCase ( self) -> Optional[Any]:
_A : Tuple = MaskFormerSwinModelTester(self)
def _lowerCamelCase ( self) -> Optional[Any]:
_A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Union[str, Any] = inputs_dict["pixel_values"].shape[0]
for backbone_class in self.all_model_classes:
_A : Optional[Any] = backbone_class(__lowerCamelCase)
backbone.to(__lowerCamelCase)
backbone.eval()
_A : List[Any] = backbone(**__lowerCamelCase)
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , __lowerCamelCase)
self.assertTrue(len(outputs.feature_maps) == len(backbone.channels))
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels))
self.assertIsNone(outputs.hidden_states)
self.assertIsNone(outputs.attentions)
# Test output_hidden_states=True
_A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase)
self.assertIsNotNone(outputs.hidden_states)
self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names))
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_A , _A , _A : List[str] = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels))
# Test output_attentions=True
if self.has_attentions:
_A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase)
self.assertIsNotNone(outputs.attentions)
| 11 | 1 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('T')
class lowerCAmelCase__ ( Generic[T]):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42 # Cache store of keys
__SCREAMING_SNAKE_CASE = 42 # References of the keys in cache
__SCREAMING_SNAKE_CASE = 10 # Maximum capacity of cache
def __init__( self , __lowerCamelCase) -> None:
_A : List[Any] = deque()
_A : Union[str, Any] = set()
if not n:
_A : List[Any] = sys.maxsize
elif n < 0:
raise ValueError("n should be an integer greater than 0.")
else:
_A : str = n
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
if x not in self.key_reference:
if len(self.dq_store) == LRUCache._MAX_CAPACITY:
_A : Optional[Any] = self.dq_store.pop()
self.key_reference.remove(__lowerCamelCase)
else:
self.dq_store.remove(__lowerCamelCase)
self.dq_store.appendleft(__lowerCamelCase)
self.key_reference.add(__lowerCamelCase)
def _lowerCamelCase ( self) -> None:
for k in self.dq_store:
print(__lowerCamelCase)
def __repr__( self) -> str:
return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}"
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = LRUCache(4)
lru_cache.refer('A')
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer('A')
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 11 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase__ = {
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.