code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase__ = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') lowerCAmelCase__ = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase__ = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase__ = sorted(arg_to_scheduler.keys()) lowerCAmelCase__ = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCAmelCase__ ( pl.LightningModule): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="base" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> int: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__lowerCamelCase) _A : Tuple = 0 _A : Union[str, Any] = Path(self.hparams.output_dir) _A : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _A : List[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=__lowerCamelCase , **__lowerCamelCase , ) else: _A : PretrainedConfig = config _A : Optional[int] = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , __lowerCamelCase , __lowerCamelCase): assert hasattr(self.config , __lowerCamelCase), F"model config doesn't have a `{p}` attribute" setattr(self.config , __lowerCamelCase , getattr(self.hparams , __lowerCamelCase)) if tokenizer is None: _A : Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__lowerCamelCase , ) else: _A : PreTrainedTokenizer = tokenizer _A : List[Any] = MODEL_MODES[mode] if model is None: _A : Optional[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path) , config=self.config , cache_dir=__lowerCamelCase , ) else: _A : Any = model def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Union[str, Any]: _A : List[str] = self.model_type.from_pretrained(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: _A : Tuple = arg_to_scheduler[self.hparams.lr_scheduler] _A : int = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) _A : Union[str, Any] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model _A : Optional[int] = ["bias", "LayerNorm.weight"] _A : int = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: _A : Optional[int] = Adafactor( __lowerCamelCase , lr=self.hparams.learning_rate , scale_parameter=__lowerCamelCase , relative_step=__lowerCamelCase) else: _A : List[Any] = AdamW( __lowerCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) _A : Union[str, Any] = optimizer _A : Optional[Any] = self.get_lr_scheduler() return [optimizer], [scheduler] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Dict: return self.validation_step(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: return self.validation_end(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : int = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores _A : Union[str, Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: if stage == "test": _A : Tuple = len(self.test_dataloader().dataset) else: _A : List[str] = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=__lowerCamelCase) _A : List[str] = len(self.train_dataloader().dataset) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False) -> Any: raise NotImplementedError("You must implement this for your task") def _lowerCamelCase ( self) -> Any: return self.train_loader def _lowerCamelCase ( self) -> List[Any]: return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=__lowerCamelCase) def _lowerCamelCase ( self) -> List[Any]: return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> int: return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( __lowerCamelCase , list(filter(__lowerCamelCase , self.hparams.model_name_or_path.split("/"))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.output_dir.joinpath("best_tfmr") _A : Optional[int] = self.step_count self.model.save_pretrained(__lowerCamelCase) self.tokenizer.save_pretrained(__lowerCamelCase) @staticmethod def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase) -> List[str]: parser.add_argument( "--model_name_or_path" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=__lowerCamelCase , help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name" , default=__lowerCamelCase , type=__lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(__lowerCamelCase).parent / "test_run" / "cache") , type=__lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=__lowerCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=__lowerCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=__lowerCamelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=__lowerCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=__lowerCamelCase , help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler" , default="linear" , choices=__lowerCamelCase , metavar=__lowerCamelCase , type=__lowerCamelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=__lowerCamelCase , help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon" , default=1e-8 , type=__lowerCamelCase , help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps" , default=0 , type=__lowerCamelCase , help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers" , default=4 , type=__lowerCamelCase , help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=__lowerCamelCase) parser.add_argument("--train_batch_size" , default=3_2 , type=__lowerCamelCase) parser.add_argument("--eval_batch_size" , default=3_2 , type=__lowerCamelCase) parser.add_argument("--adafactor" , action="store_true") class lowerCAmelCase__ ( pl.Callback): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__lowerCamelCase) class lowerCAmelCase__ ( pl.Callback): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Any: _A : int = trainer.lr_schedulers[0]["scheduler"] _A : Union[str, Any] = {F"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: rank_zero_info("***** Validation results *****") _A : Union[str, Any] = trainer.callback_metrics # Log results for key in sorted(__lowerCamelCase): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__lowerCamelCase , str(metrics[key]))) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[str]: rank_zero_info("***** Test results *****") _A : int = trainer.callback_metrics # Log and save results to file _A : List[Any] = os.path.join(pl_module.hparams.output_dir , "test_results.txt") with open(__lowerCamelCase , "w") as writer: for key in sorted(__lowerCamelCase): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__lowerCamelCase , str(metrics[key]))) writer.write("{} = {}\n".format(__lowerCamelCase , str(metrics[key]))) def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : int ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(UpperCamelCase__ ).parent / "test_run" / "model_checkpoints" ) , type=UpperCamelCase__ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=UpperCamelCase__ , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=UpperCamelCase__ ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=UpperCamelCase__ , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=UpperCamelCase__ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=UpperCamelCase__ , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(UpperCamelCase__ ).parent / "test_run" / "dummy-train-data" ) , type=UpperCamelCase__ , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def _UpperCAmelCase (UpperCamelCase__ : BaseTransformer , UpperCamelCase__ : argparse.Namespace , UpperCamelCase__ : str=None , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=[] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : Union[str, Any] , ): pl.seed_everything(args.seed ) # init model _A : str = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=UpperCamelCase__ ) # add custom checkpoints if checkpoint_callback is None: _A : Optional[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(UpperCamelCase__ ) if logging_callback is None: _A : List[Any] = LoggingCallback() _A : int = {} if args.fpaa: _A : int = 16 if args.gpus > 1: _A : str = "auto" _A : Optional[int] = "ddp" _A : List[str] = args.accumulate_grad_batches _A : str = None _A : Union[str, Any] = "auto" _A : List[str] = pl.Trainer.from_argparse_args( UpperCamelCase__ , weights_summary=UpperCamelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=UpperCamelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **UpperCamelCase__ , ) if args.do_train: trainer.fit(UpperCamelCase__ ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
11
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) __SCREAMING_SNAKE_CASE = "CIDAS/clipseg-rd64-refined" __SCREAMING_SNAKE_CASE = "image_segmenter" __SCREAMING_SNAKE_CASE = CLIPSegForImageSegmentation __SCREAMING_SNAKE_CASE = ["image", "text"] __SCREAMING_SNAKE_CASE = ["image"] def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> str: requires_backends(self , ["vision"]) super().__init__(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[Any]: return self.pre_processor(text=[label] , images=[image] , padding=__lowerCamelCase , return_tensors="pt") def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[int]: with torch.no_grad(): _A : Dict = self.model(**__lowerCamelCase).logits return logits def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Any = outputs.cpu().detach().numpy() _A : int = 0 _A : List[Any] = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
11
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = VQModel __SCREAMING_SNAKE_CASE = "sample" @property def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]: _A : Optional[int] = 4 _A : Tuple = 3 _A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase) return {"sample": image} @property def _lowerCamelCase ( self) -> int: return (3, 3_2, 3_2) @property def _lowerCamelCase ( self) -> List[Any]: return (3, 3_2, 3_2) def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[Any] = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _A : int = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> Any: pass def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(__lowerCamelCase) _A : str = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self) -> Union[str, Any]: _A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(__lowerCamelCase).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) _A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) _A : Optional[int] = image.to(__lowerCamelCase) with torch.no_grad(): _A : List[str] = model(__lowerCamelCase).sample _A : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
11
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _UpperCAmelCase (): _A : int = HfArgumentParser(UpperCamelCase__ ) _A : Tuple = parser.parse_args_into_dataclasses()[0] _A : Optional[Any] = TensorFlowBenchmark(args=UpperCamelCase__ ) try: _A : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: _A : int = "Arg --no_{0} is no longer used, please use --no-{0} instead." _A : List[str] = " ".join(str(UpperCamelCase__ ).split(" " )[:-1] ) _A : Tuple = "" _A : List[str] = eval(str(UpperCamelCase__ ).split(" " )[-1] ) _A : Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _A : List[str] = full_error_msg + begin_error_msg + str(UpperCamelCase__ ) raise ValueError(UpperCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (UnCLIPScheduler,) def _lowerCamelCase ( self , **__lowerCamelCase) -> Any: _A : Dict = { "num_train_timesteps": 1_0_0_0, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**__lowerCamelCase) return config def _lowerCamelCase ( self) -> Dict: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCamelCase) def _lowerCamelCase ( self) -> str: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase) def _lowerCamelCase ( self) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase) def _lowerCamelCase ( self) -> int: for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=__lowerCamelCase) def _lowerCamelCase ( self) -> List[Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : List[Any] = self.scheduler_classes[0] _A : Dict = self.get_scheduler_config(variance_type="fixed_small_log") _A : Optional[Any] = scheduler_class(**__lowerCamelCase) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.00_00e-10)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0_5_4_9_6_2_5)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.9_9_9_4_9_8_7)) < 1e-5 def _lowerCamelCase ( self) -> str: _A : List[Any] = self.scheduler_classes[0] _A : Union[str, Any] = self.get_scheduler_config(variance_type="learned_range") _A : List[str] = scheduler_class(**__lowerCamelCase) _A : Any = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase) - -1_0.1_7_1_2_7_9_0 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=__lowerCamelCase) - -5.7_9_9_8_0_5_2 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=__lowerCamelCase) - -0.0_0_1_0_0_1_1 < 1e-5 def _lowerCamelCase ( self) -> Optional[int]: _A : List[str] = self.scheduler_classes[0] _A : Dict = self.get_scheduler_config() _A : List[str] = scheduler_class(**__lowerCamelCase) _A : Optional[int] = scheduler.timesteps _A : Union[str, Any] = self.dummy_model() _A : List[Any] = self.dummy_sample_deter _A : Any = torch.manual_seed(0) for i, t in enumerate(__lowerCamelCase): # 1. predict noise residual _A : Optional[Any] = model(__lowerCamelCase , __lowerCamelCase) # 2. predict previous mean of sample x_t-1 _A : Optional[int] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase).prev_sample _A : List[Any] = pred_prev_sample _A : str = torch.sum(torch.abs(__lowerCamelCase)) _A : Optional[Any] = torch.mean(torch.abs(__lowerCamelCase)) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5) < 1e-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3) < 1e-3 def _lowerCamelCase ( self) -> Any: _A : Optional[Any] = self.scheduler_classes[0] _A : Union[str, Any] = self.get_scheduler_config() _A : Dict = scheduler_class(**__lowerCamelCase) scheduler.set_timesteps(2_5) _A : Dict = scheduler.timesteps _A : List[Any] = self.dummy_model() _A : Optional[int] = self.dummy_sample_deter _A : str = torch.manual_seed(0) for i, t in enumerate(__lowerCamelCase): # 1. predict noise residual _A : Optional[int] = model(__lowerCamelCase , __lowerCamelCase) if i + 1 == timesteps.shape[0]: _A : List[str] = None else: _A : int = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _A : Any = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase).prev_sample _A : Dict = pred_prev_sample _A : Dict = torch.sum(torch.abs(__lowerCamelCase)) _A : Any = torch.mean(torch.abs(__lowerCamelCase)) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3) < 1e-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8) < 1e-3 def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> int: pass
11
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase__ = '</w>' lowerCAmelCase__ = '@@ ' def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Optional[int] = set() _A : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _A : Dict = do_lower_case with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[int] = json.load(__lowerCamelCase) _A : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _A : Optional[Any] = None _A : Tuple = None else: with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Optional[int] = merges_handle.read().split("\n")[:-1] _A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges] _A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : List[Any] = {} @property def _lowerCamelCase ( self) -> int: return len(self.decoder) def _lowerCamelCase ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A : int = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[int] = bigram _A : int = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : str = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : str = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : List[str] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : List[Any] = get_pairs(__lowerCamelCase) _A : Tuple = " ".join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _A : List[str] = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _A : int = word.replace(__lowerCamelCase , "") _A : int = word.replace(" " , __lowerCamelCase) _A : Union[str, Any] = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: _A : List[Any] = text.lower() _A : Optional[int] = text.split() _A : List[str] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : str = " ".join(__lowerCamelCase) # make sure @@ tokens are concatenated _A : int = "".join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : Optional[int] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return (vocab_file, merges_file)
11
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "vit_mae" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : List[str] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[int] = hidden_act _A : List[Any] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Union[str, Any] = initializer_range _A : str = layer_norm_eps _A : Any = image_size _A : int = patch_size _A : int = num_channels _A : Dict = qkv_bias _A : Tuple = decoder_num_attention_heads _A : Tuple = decoder_hidden_size _A : List[str] = decoder_num_hidden_layers _A : Optional[Any] = decoder_intermediate_size _A : List[str] = mask_ratio _A : Union[str, Any] = norm_pix_loss
11
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "dpt" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=3_8_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=[2, 5, 8, 1_1] , __lowerCamelCase="project" , __lowerCamelCase=[4, 2, 1, 0.5] , __lowerCamelCase=[9_6, 1_9_2, 3_8_4, 7_6_8] , __lowerCamelCase=2_5_6 , __lowerCamelCase=-1 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.4 , __lowerCamelCase=2_5_5 , __lowerCamelCase=0.1 , __lowerCamelCase=[1, 1_0_2_4, 2_4, 2_4] , __lowerCamelCase=[0, 1] , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__(**__lowerCamelCase) _A : Any = hidden_size _A : Dict = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone.") _A : int = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _A : Dict = BitConfig(**__lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): logger.info("Initializing the config with a `BiT` backbone.") _A : Optional[Any] = BitConfig(**__lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): _A : List[str] = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.") _A : Any = backbone_featmap_shape _A : Optional[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.") else: _A : List[Any] = None _A : List[str] = None _A : int = [] _A : Any = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : int = hidden_act _A : int = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : str = initializer_range _A : Optional[Any] = layer_norm_eps _A : Optional[Any] = image_size _A : Any = patch_size _A : List[Any] = num_channels _A : Union[str, Any] = qkv_bias _A : List[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']") _A : int = readout_type _A : Union[str, Any] = reassemble_factors _A : str = neck_hidden_sizes _A : Optional[Any] = fusion_hidden_size _A : Union[str, Any] = head_in_index _A : List[str] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _A : str = use_auxiliary_head _A : Union[str, Any] = auxiliary_loss_weight _A : Any = semantic_loss_ignore_index _A : Any = semantic_classifier_dropout def _lowerCamelCase ( self) -> Dict: _A : str = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _A : Optional[Any] = self.backbone_config.to_dict() _A : Optional[int] = self.__class__.model_type return output
11
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
from math import factorial def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) _A : Optional[Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _A : Dict = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
11
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase__ = float('nan') class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: _A : List[Any] = sys.stdout _A : str = open(__lowerCamelCase , "a") def __getattr__( self , __lowerCamelCase) -> List[str]: return getattr(self.stdout , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: self.stdout.write(__lowerCamelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M)) def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ): _A : Tuple = [] # deal with critical env vars _A : Dict = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _A : Tuple = [] _A : Dict = "" while len(UpperCamelCase__ ) > 0: current_line += f"{cmd.pop(0 )} " if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) _A : Union[str, Any] = "" return "\\\n".join(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): # unwrap multi-line input _A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own _A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) _A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams _A : Tuple = variation.replace(" " , "-" ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f: _A : List[str] = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): _A : Union[str, Any] = [] _A : Optional[int] = [] _A : Any = f"{id}: {variation:<{longest_variation_len}}" _A : Dict = f"{preamble}: " _A : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): _A : Optional[Any] = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" _A : str = f"\33[2K\r{outcome}" if len(UpperCamelCase__ ) > 0: _A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _A : Any = round(mean_metrics[target_metric_key] , 2 ) _A : Tuple = f"{outcome} {mean_target}" if len(UpperCamelCase__ ) > 1: results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}" print(UpperCamelCase__ ) _A : Optional[int] = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def _UpperCAmelCase (): _A : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = pd.DataFrame(UpperCamelCase__ ) _A : List[str] = "variation" _A : List[Any] = "diff_%" _A : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel _A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): _A : Optional[Any] = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns _A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols # capitalize _A : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible _A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" ) _A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" ) _A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] print("\n\n".join(UpperCamelCase__ ) ) def _UpperCAmelCase (): _A : int = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , ) parser.add_argument( "--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) _A : int = parser.parse_args() _A : Union[str, Any] = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) _A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations _A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) ) _A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys _A : str = args.report_metric_keys.split() # capture prints into a log file for convenience _A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _A : Tuple = Tee(UpperCamelCase__ ) print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" ) print(f"Base command: {' '.join(UpperCamelCase__ )}" ) _A : str = "variation" _A : Union[str, Any] = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ): _A : Dict = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
11
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['BeitFeatureExtractor'] lowerCAmelCase__ = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Overwrite the cached training and evaluation sets"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "The number of processes to use for the preprocessing."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCamelCase ( self) -> int: if self.train_file is not None: _A : Optional[int] = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _A : Dict = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , __lowerCamelCase) -> str: _A : List[Any] = "label" if "label" in features[0].keys() else "labels" _A : Any = [feature.pop(__lowerCamelCase) for feature in features] _A : Optional[int] = len(__lowerCamelCase) _A : int = len(features[0]["input_ids"]) _A : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features ] _A : str = list(chain(*__lowerCamelCase)) _A : Tuple = self.tokenizer.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()} # Add back labels _A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa) return batch def _UpperCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A : int = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _A : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _A : List[str] = {} if data_args.train_file is not None: _A : Optional[int] = data_args.train_file if data_args.validation_file is not None: _A : Tuple = data_args.validation_file _A : Union[str, Any] = data_args.train_file.split("." )[-1] _A : List[str] = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _A : Union[str, Any] = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _A : str = [f"ending{i}" for i in range(4 )] _A : Union[str, Any] = "sent1" _A : str = "sent2" if data_args.max_seq_length is None: _A : Any = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _A : Optional[Any] = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _A : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ : List[Any] ): _A : List[Any] = [[context] * 4 for context in examples[context_name]] _A : Any = examples[question_header_name] _A : Union[str, Any] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out _A : Dict = list(chain(*UpperCamelCase__ ) ) _A : List[Any] = list(chain(*UpperCamelCase__ ) ) # Tokenize _A : str = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _A : Optional[int] = raw_datasets["train"] if data_args.max_train_samples is not None: _A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) _A : Any = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _A : Optional[int] = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _A : Optional[int] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) _A : Dict = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _A : List[str] = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _A : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ : Tuple ): _A , _A : List[str] = eval_predictions _A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _A : List[str] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: _A : Any = None if training_args.resume_from_checkpoint is not None: _A : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A : int = last_checkpoint _A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _A : Optional[int] = train_result.metrics _A : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) _A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("train" , UpperCamelCase__ ) trainer.save_metrics("train" , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _A : List[Any] = trainer.evaluate() _A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) _A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("eval" , UpperCamelCase__ ) trainer.save_metrics("eval" , UpperCamelCase__ ) _A : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
11
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = XGLMTokenizer __SCREAMING_SNAKE_CASE = XGLMTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def _lowerCamelCase ( self) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _A : Union[str, Any] = XGLMTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase) tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self) -> List[Any]: _A : List[Any] = "<pad>" _A : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase) , __lowerCamelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase) , __lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : List[str] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(__lowerCamelCase) , 1_0_0_8) def _lowerCamelCase ( self) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8) def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = XGLMTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase) _A : Any = tokenizer.tokenize("This is a test") self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _A : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _A : Dict = tokenizer.convert_tokens_to_ids(__lowerCamelCase) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _A : str = tokenizer.convert_ids_to_tokens(__lowerCamelCase) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self) -> Union[str, Any]: return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _lowerCamelCase ( self) -> str: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCamelCase , f.name) _A : Optional[Any] = XGLMTokenizer(f.name , keep_accents=__lowerCamelCase) _A : Optional[int] = pickle.dumps(__lowerCamelCase) pickle.loads(__lowerCamelCase) def _lowerCamelCase ( self) -> str: if not self.test_rust_tokenizer: return _A : str = self.get_tokenizer() _A : Optional[int] = self.get_rust_tokenizer() _A : str = "I was born in 92000, and this is falsé." _A : List[str] = tokenizer.tokenize(__lowerCamelCase) _A : int = rust_tokenizer.tokenize(__lowerCamelCase) self.assertListEqual(__lowerCamelCase , __lowerCamelCase) _A : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase) _A : Tuple = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase) self.assertListEqual(__lowerCamelCase , __lowerCamelCase) _A : int = self.get_rust_tokenizer() _A : Tuple = tokenizer.encode(__lowerCamelCase) _A : str = rust_tokenizer.encode(__lowerCamelCase) self.assertListEqual(__lowerCamelCase , __lowerCamelCase) @slow def _lowerCamelCase ( self) -> List[str]: _A : int = "Hello World!" _A : Optional[int] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase)) @slow def _lowerCamelCase ( self) -> Optional[Any]: _A : List[str] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off _A : Tuple = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase)) @slow def _lowerCamelCase ( self) -> Tuple: # fmt: off _A : Dict = { "input_ids": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="facebook/xglm-564M" , padding=__lowerCamelCase , )
11
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env") def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: # create estimator _A : Union[str, Any] = self.create_estimator(__lowerCamelCase) # run training estimator.fit() # result dataframe _A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
11
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "trocr" __SCREAMING_SNAKE_CASE = ["past_key_values"] __SCREAMING_SNAKE_CASE = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase="gelu" , __lowerCamelCase=5_1_2 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=0.0 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , **__lowerCamelCase , ) -> List[Any]: _A : Tuple = vocab_size _A : int = d_model _A : Optional[Any] = decoder_layers _A : int = decoder_attention_heads _A : List[Any] = decoder_ffn_dim _A : int = activation_function _A : int = max_position_embeddings _A : int = dropout _A : Tuple = attention_dropout _A : Any = activation_dropout _A : List[str] = init_std _A : Optional[int] = decoder_layerdrop _A : Tuple = use_cache _A : str = scale_embedding _A : Any = use_learned_position_embeddings _A : Optional[Any] = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None ): require_version(deps[pkg] , UpperCamelCase__ )
11
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=6.0 , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase="fp4" , __lowerCamelCase=False , **__lowerCamelCase , ) -> str: _A : Optional[int] = load_in_abit _A : Union[str, Any] = load_in_abit _A : Union[str, Any] = llm_inta_threshold _A : Optional[int] = llm_inta_skip_modules _A : int = llm_inta_enable_fpaa_cpu_offload _A : List[Any] = llm_inta_has_fpaa_weight _A : Tuple = bnb_abit_quant_type _A : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _A : Optional[int] = torch.floataa elif isinstance(__lowerCamelCase , __lowerCamelCase): _A : Optional[int] = getattr(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , torch.dtype): _A : int = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") self.post_init() def _lowerCamelCase ( self) -> Any: if not isinstance(self.llm_inta_threshold , __lowerCamelCase): raise ValueError("llm_int8_threshold must be a float") if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __lowerCamelCase): raise ValueError("llm_int8_skip_modules must be a list of strings") if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __lowerCamelCase): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean") if not isinstance(self.llm_inta_has_fpaa_weight , __lowerCamelCase): raise ValueError("llm_int8_has_fp16_weight must be a boolean") if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype") if not isinstance(self.bnb_abit_quant_type , __lowerCamelCase): raise ValueError("bnb_4bit_quant_type must be a string") if not isinstance(self.bnb_abit_use_double_quant , __lowerCamelCase): raise ValueError("bnb_4bit_use_double_quant must be a boolean") if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( "0.39.0"): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version") def _lowerCamelCase ( self) -> List[str]: return self.load_in_abit or self.load_in_abit def _lowerCamelCase ( self) -> Any: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _lowerCamelCase ( cls , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Any: _A : Union[str, Any] = cls(**__lowerCamelCase) _A : Any = [] for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) to_remove.append(__lowerCamelCase) for key in to_remove: kwargs.pop(__lowerCamelCase , __lowerCamelCase) if return_unused_kwargs: return config, kwargs else: return config def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: _A : Optional[int] = self.to_dict() _A : Optional[int] = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase) + "\n" writer.write(__lowerCamelCase) def _lowerCamelCase ( self) -> Dict[str, Any]: _A : Optional[Any] = copy.deepcopy(self.__dict__) _A : int = str(output["bnb_4bit_compute_dtype"]).split(".")[1] return output def __repr__( self) -> List[str]: return F"{self.__class__.__name__} {self.to_json_string()}" def _lowerCamelCase ( self , __lowerCamelCase = True) -> str: if use_diff is True: _A : str = self.to_diff_dict() else: _A : Optional[Any] = self.to_dict() return json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase) + "\n" def _lowerCamelCase ( self) -> Dict[str, Any]: _A : List[str] = self.to_dict() # get the default config dict _A : Any = BitsAndBytesConfig().to_dict() _A : Optional[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _A : Tuple = value return serializable_config_dict
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[int] = legacy_behaviour super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) _A : int = vocab_file _A : Optional[Any] = False if not self.vocab_file else True _A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "eng_Latn" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Tuple = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : List[Any] = src_lang _A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Tuple = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding: _A : Tuple = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : List[str] = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] else: _A : Tuple = [self.cur_lang_code] _A : Optional[Any] = [self.eos_token_id] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : Tuple = [] _A : Any = [self.eos_token_id, self.cur_lang_code] else: _A : Union[str, Any] = [self.cur_lang_code] _A : str = [self.eos_token_id] _A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
from collections.abc import Callable import numpy as np def _UpperCAmelCase (UpperCamelCase__ : Callable , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): _A : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _A : Tuple = np.zeros((n + 1,) ) _A : Union[str, Any] = ya _A : List[str] = xa for k in range(UpperCamelCase__ ): _A : Any = y[k] + step_size * ode_func(UpperCamelCase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
11
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
1
from __future__ import annotations from typing import Any class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0) -> None: _A , _A : Any = row, column _A : str = [[default_value for c in range(__lowerCamelCase)] for r in range(__lowerCamelCase)] def __str__( self) -> str: _A : Any = F"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _A : List[str] = 0 for row_vector in self.array: for obj in row_vector: _A : Any = max(__lowerCamelCase , len(str(__lowerCamelCase))) _A : Tuple = F"%{max_element_length}s" # Make string and return def single_line(__lowerCamelCase) -> str: nonlocal string_format_identifier _A : Tuple = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__lowerCamelCase) for row_vector in self.array) return s def __repr__( self) -> str: return str(self) def _lowerCamelCase ( self , __lowerCamelCase) -> bool: if not (isinstance(__lowerCamelCase , (list, tuple)) and len(__lowerCamelCase) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __lowerCamelCase) -> Any: assert self.validate_indicies(__lowerCamelCase) return self.array[loc[0]][loc[1]] def __setitem__( self , __lowerCamelCase , __lowerCamelCase) -> None: assert self.validate_indicies(__lowerCamelCase) _A : Optional[int] = value def __add__( self , __lowerCamelCase) -> Matrix: assert isinstance(__lowerCamelCase , __lowerCamelCase) assert self.row == another.row and self.column == another.column # Add _A : Optional[int] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): _A : str = self[r, c] + another[r, c] return result def __neg__( self) -> Matrix: _A : Any = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): _A : Dict = -self[r, c] return result def __sub__( self , __lowerCamelCase) -> Matrix: return self + (-another) def __mul__( self , __lowerCamelCase) -> Matrix: if isinstance(__lowerCamelCase , (int, float)): # Scalar multiplication _A : Optional[Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): _A : Dict = self[r, c] * another return result elif isinstance(__lowerCamelCase , __lowerCamelCase): # Matrix multiplication assert self.column == another.row _A : str = Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _A : List[str] = F"Unsupported type given for another ({type(__lowerCamelCase)})" raise TypeError(__lowerCamelCase) def _lowerCamelCase ( self) -> Matrix: _A : Any = Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): _A : Optional[int] = self[r, c] return result def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Any: assert isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(__lowerCamelCase , __lowerCamelCase) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _A : Any = v.transpose() _A : Optional[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _UpperCAmelCase (): # a^(-1) _A : int = Matrix(3 , 3 , 0 ) for i in range(3 ): _A : Tuple = 1 print(f"a^(-1) is {ainv}" ) # u, v _A : List[Any] = Matrix(3 , 1 , 0 ) _A , _A , _A : Optional[Any] = 1, 2, -3 _A : Tuple = Matrix(3 , 1 , 0 ) _A , _A , _A : Optional[int] = 4, -2, 5 print(f"u is {u}" ) print(f"v is {v}" ) print(f"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCamelCase__ , UpperCamelCase__ )}" ) def _UpperCAmelCase (): import doctest doctest.testmod() testa()
11
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "funnel" __SCREAMING_SNAKE_CASE = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=[4, 4, 4] , __lowerCamelCase=None , __lowerCamelCase=2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=6_4 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu_new" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=None , __lowerCamelCase=1e-9 , __lowerCamelCase="mean" , __lowerCamelCase="relative_shift" , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , **__lowerCamelCase , ) -> Tuple: _A : int = vocab_size _A : Optional[Any] = block_sizes _A : Tuple = [1] * len(__lowerCamelCase) if block_repeats is None else block_repeats assert len(__lowerCamelCase) == len( self.block_repeats), "`block_sizes` and `block_repeats` should have the same length." _A : Optional[Any] = num_decoder_layers _A : List[str] = d_model _A : Dict = n_head _A : Optional[int] = d_head _A : List[Any] = d_inner _A : Any = hidden_act _A : List[Any] = hidden_dropout _A : Dict = attention_dropout _A : List[Any] = activation_dropout _A : List[Any] = initializer_range _A : str = initializer_std _A : Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." _A : Union[str, Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." _A : List[Any] = attention_type _A : Tuple = separate_cls _A : Tuple = truncate_seq _A : int = pool_q_only super().__init__(**__lowerCamelCase) @property def _lowerCamelCase ( self) -> Any: return sum(self.block_sizes) @num_hidden_layers.setter def _lowerCamelCase ( self , __lowerCamelCase) -> int: raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.") @property def _lowerCamelCase ( self) -> Any: return len(self.block_sizes) @num_blocks.setter def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
11
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) _A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = AutoConfig.from_pretrained("gpt2") _A : int = GenerationConfig.from_model_config(__lowerCamelCase) _A : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = GenerationConfig() _A : List[Any] = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _A : List[str] = copy.deepcopy(__lowerCamelCase) _A : int = generation_config.update(**__lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"}) def _lowerCamelCase ( self) -> Any: _A : int = GenerationConfig() _A : int = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__lowerCamelCase) _A : Any = GenerationConfig.from_pretrained(__lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") _A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase) assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config def _lowerCamelCase ( self) -> List[str]: _A : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCamelCase) self.assertEqual(default_config.num_beams , 1) _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase) _A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[int]: _A : Dict = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _lowerCamelCase ( self) -> Any: _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) _A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Union[str, Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) _A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
11
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(a) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , **__lowerCamelCase) -> Dict: super().__init__(**__lowerCamelCase) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch.") # No specific FOR_XXX available yet def __call__( self , __lowerCamelCase , **__lowerCamelCase) -> Any: return super().__call__(__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , **__lowerCamelCase) -> Any: _A : Dict = {} if "candidate_labels" in kwargs: _A : Any = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: _A : Optional[int] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="This is a sound of {}.") -> Any: if isinstance(__lowerCamelCase , __lowerCamelCase): if audio.startswith("http://") or audio.startswith("https://"): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _A : Dict = requests.get(__lowerCamelCase).content else: with open(__lowerCamelCase , "rb") as f: _A : Tuple = f.read() if isinstance(__lowerCamelCase , __lowerCamelCase): _A : Any = ffmpeg_read(__lowerCamelCase , self.feature_extractor.sampling_rate) if not isinstance(__lowerCamelCase , np.ndarray): raise ValueError("We expect a numpy ndarray as input") if len(audio.shape) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline") _A : Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt") _A : Optional[int] = candidate_labels _A : Dict = [hypothesis_template.format(__lowerCamelCase) for x in candidate_labels] _A : List[str] = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase) _A : int = [text_inputs] return inputs def _lowerCamelCase ( self , __lowerCamelCase) -> int: _A : Union[str, Any] = model_inputs.pop("candidate_labels") _A : Optional[Any] = model_inputs.pop("text_inputs") if isinstance(text_inputs[0] , __lowerCamelCase): _A : str = text_inputs[0] else: # Batching case. _A : Dict = text_inputs[0][0] _A : List[Any] = self.model(**__lowerCamelCase , **__lowerCamelCase) _A : str = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def _lowerCamelCase ( self , __lowerCamelCase) -> Any: _A : int = model_outputs.pop("candidate_labels") _A : Any = model_outputs["logits"][0] if self.framework == "pt": _A : Tuple = logits.softmax(dim=0) _A : str = probs.tolist() else: raise ValueError("`tf` framework not supported.") _A : Tuple = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase) , key=lambda __lowerCamelCase: -x[0]) ] return result
11
import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str: _A : Optional[int] = bp_numa _A : Dict = bp_numa _A : Tuple = bp_numa _A : List[str] = conva_get[:2] _A : Tuple = conva_get[2] _A : Optional[int] = size_pa _A : Optional[Any] = rate_w _A : Optional[Any] = rate_t _A : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] _A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Any = -2 * np.random.rand(self.conva[1]) + 1 _A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1 _A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1 def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # save model dict with pickle _A : Dict = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__lowerCamelCase , "wb") as f: pickle.dump(__lowerCamelCase , __lowerCamelCase) print(F"Model saved: {save_path}") @classmethod def _lowerCamelCase ( cls , __lowerCamelCase) -> Any: # read saved model with open(__lowerCamelCase , "rb") as f: _A : Any = pickle.load(__lowerCamelCase) # noqa: S301 _A : Optional[int] = model_dic.get("conv1") conv_get.append(model_dic.get("step_conv1")) _A : str = model_dic.get("size_pooling1") _A : List[str] = model_dic.get("num_bp1") _A : Union[str, Any] = model_dic.get("num_bp2") _A : List[Any] = model_dic.get("num_bp3") _A : Dict = model_dic.get("rate_weight") _A : List[Any] = model_dic.get("rate_thre") # create model instance _A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # modify model parameter _A : List[Any] = model_dic.get("w_conv1") _A : Union[str, Any] = model_dic.get("wkj") _A : str = model_dic.get("vji") _A : List[str] = model_dic.get("thre_conv1") _A : Optional[Any] = model_dic.get("thre_bp2") _A : Dict = model_dic.get("thre_bp3") return conv_ins def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return 1 / (1 + np.exp(-1 * x)) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: return round(__lowerCamelCase , 3) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # convolution process _A : Tuple = convs[0] _A : Union[str, Any] = convs[1] _A : List[Any] = np.shape(__lowerCamelCase)[0] # get the data slice of original image data, data_focus _A : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): _A : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__lowerCamelCase) # calculate the feature map of every single kernel, and saved as list of matrix _A : Optional[Any] = [] _A : Optional[int] = int((size_data - size_conv) / conv_step + 1) for i_map in range(__lowerCamelCase): _A : Optional[int] = [] for i_focus in range(len(__lowerCamelCase)): _A : Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(__lowerCamelCase)) _A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape( __lowerCamelCase , __lowerCamelCase) data_featuremap.append(__lowerCamelCase) # expanding the data slice to One dimenssion _A : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__lowerCamelCase)) _A : Dict = np.asarray(__lowerCamelCase) return focus_list, data_featuremap def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict: # pooling process _A : Optional[Any] = len(featuremaps[0]) _A : str = int(size_map / size_pooling) _A : Optional[int] = [] for i_map in range(len(__lowerCamelCase)): _A : int = featuremaps[i_map] _A : Optional[int] = [] for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase): for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase): _A : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__lowerCamelCase)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__lowerCamelCase)) _A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase) featuremap_pooled.append(__lowerCamelCase) return featuremap_pooled def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: # expanding three dimension data to one dimension list _A : Tuple = [] for i in range(len(__lowerCamelCase)): _A : Union[str, Any] = np.shape(data[i]) _A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1]) _A : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__lowerCamelCase) _A : Optional[Any] = np.asarray(__lowerCamelCase) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: # expanding matrix to one dimension list _A : List[Any] = np.asarray(__lowerCamelCase) _A : Union[str, Any] = np.shape(__lowerCamelCase) _A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Dict = [] _A : Any = 0 for i_map in range(__lowerCamelCase): _A : Union[str, Any] = np.ones((size_map, size_map)) for i in range(0 , __lowerCamelCase , __lowerCamelCase): for j in range(0 , __lowerCamelCase , __lowerCamelCase): _A : List[Any] = pd_pool[ i_pool ] _A : Tuple = i_pool + 1 _A : Optional[Any] = np.multiply( __lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(__lowerCamelCase) return pd_all def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]: # model traning print("----------------------Start Training-------------------------") print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase))) print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase))) _A : Tuple = 0 _A : Dict = [] _A : Optional[Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _A : Union[str, Any] = 0 print(F"-------------Learning Time {rp}--------------") for p in range(len(__lowerCamelCase)): # print('------------Learning Image: %d--------------'%p) _A : str = np.asmatrix(datas_train[p]) _A : Union[str, Any] = np.asarray(datas_teach[p]) _A , _A : Any = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = np.shape(__lowerCamelCase) _A : List[str] = self._expand(__lowerCamelCase) _A : Tuple = data_bp_input _A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa _A : List[Any] = self.sig(__lowerCamelCase) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa _A : List[str] = self.sig(__lowerCamelCase) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _A : int = np.multiply( (data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Optional[Any] = np.multiply( np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji) _A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga) _A : Dict = pd_conva_pooled.T.getA().tolist() _A : Optional[Any] = self._calculate_gradient_from_pool( __lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): _A : int = self._expand_mat(pd_conva_all[k_conv]) _A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase) _A : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) _A : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer _A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight _A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre _A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _A : Optional[int] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _A : Any = rp + 1 _A : Dict = error_count / patterns all_mse.append(__lowerCamelCase) def draw_error(): _A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(__lowerCamelCase , "+-") plt.plot(__lowerCamelCase , "r--") plt.xlabel("Learning Times") plt.ylabel("All_mse") plt.grid(__lowerCamelCase , alpha=0.5) plt.show() print("------------------Training Complished---------------------") print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def _lowerCamelCase ( self , __lowerCamelCase) -> int: # model predict _A : Union[str, Any] = [] print("-------------------Start Testing-------------------------") print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase))) for p in range(len(__lowerCamelCase)): _A : int = np.asmatrix(datas_test[p]) _A , _A : List[Any] = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : str = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = self._expand(__lowerCamelCase) _A : List[Any] = data_bp_input _A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa _A : int = self.sig(__lowerCamelCase) _A : int = bp_outa * self.wkj.T - self.thre_bpa _A : Optional[int] = self.sig(__lowerCamelCase) produce_out.extend(bp_outa.getA().tolist()) _A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out] return np.asarray(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # return the data of image after convoluting process so we can check it out _A : Optional[int] = np.asmatrix(__lowerCamelCase) _A , _A : Tuple = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
11
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=4 , ) -> Dict: _A : Dict = parent _A : Optional[int] = batch_size _A : Dict = seq_length _A : Tuple = is_training _A : Optional[Any] = use_attention_mask _A : Tuple = use_token_type_ids _A : Optional[int] = use_labels _A : str = vocab_size _A : int = hidden_size _A : Dict = num_hidden_layers _A : Any = num_attention_heads _A : Optional[int] = intermediate_size _A : int = hidden_act _A : List[Any] = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Union[str, Any] = type_vocab_size _A : Dict = type_sequence_label_size _A : Dict = initializer_range _A : int = num_choices def _lowerCamelCase ( self) -> Union[str, Any]: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _A : List[str] = None if self.use_attention_mask: _A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) _A : Optional[Any] = None if self.use_token_type_ids: _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _A : int = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self) -> Union[str, Any]: _A : Dict = self.prepare_config_and_inputs() _A , _A , _A , _A : Tuple = config_and_inputs _A : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Dict = FlaxRoFormerModelTester(self) @slow def _lowerCamelCase ( self) -> Union[str, Any]: for model_class_name in self.all_model_classes: _A : int = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=__lowerCamelCase) _A : Dict = model(np.ones((1, 1))) self.assertIsNotNone(__lowerCamelCase) @require_flax class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @slow def _lowerCamelCase ( self) -> Dict: _A : Any = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") _A : List[str] = jnp.array([[0, 1, 2, 3, 4, 5]]) _A : str = model(__lowerCamelCase)[0] _A : List[str] = 5_0_0_0_0 _A : Dict = (1, 6, vocab_size) self.assertEqual(output.shape , __lowerCamelCase) _A : Optional[Any] = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4))
11
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): _A : str = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def _UpperCAmelCase (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : int = _get_partition_rules() _A : Optional[int] = _replacement_rules(UpperCamelCase__ ) _A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
11
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
11
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) _A : int = input_str.split("_" ) _A : str = 0 if use_pascal else 1 _A : str = words[start_index:] _A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] _A : Any = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
11
1
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase__ = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' lowerCAmelCase__ = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' lowerCAmelCase__ = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : bool , UpperCamelCase__ : Optional[Dict[int, int]] = None , UpperCamelCase__ : bool = False , ): if label_map is not None: for old_id, new_id in label_map.items(): _A : Union[str, Any] = new_id # turn into Numpy arrays _A : str = np.array(UpperCamelCase__ ) _A : List[Any] = np.array(UpperCamelCase__ ) if reduce_labels: _A : str = 255 _A : Union[str, Any] = label - 1 _A : Optional[int] = 255 _A : List[Any] = label != ignore_index _A : Any = np.not_equal(UpperCamelCase__ , UpperCamelCase__ ) _A : str = pred_label[mask] _A : Any = np.array(UpperCamelCase__ )[mask] _A : Tuple = pred_label[pred_label == label] _A : int = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] _A : List[Any] = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] _A : Optional[int] = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] _A : Tuple = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : bool , UpperCamelCase__ : Optional[Dict[int, int]] = None , UpperCamelCase__ : bool = False , ): _A : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) _A : int = np.zeros((num_labels,) , dtype=np.floataa ) _A : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) _A : int = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCamelCase__ , UpperCamelCase__ ): _A , _A , _A , _A : str = intersect_and_union( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : bool , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Dict[int, int]] = None , UpperCamelCase__ : bool = False , ): _A , _A , _A , _A : Optional[int] = total_intersect_and_union( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # compute metrics _A : List[str] = {} _A : Any = total_area_intersect.sum() / total_area_label.sum() _A : Union[str, Any] = total_area_intersect / total_area_union _A : Union[str, Any] = total_area_intersect / total_area_label _A : Union[str, Any] = np.nanmean(UpperCamelCase__ ) _A : List[Any] = np.nanmean(UpperCamelCase__ ) _A : List[str] = all_acc _A : Tuple = iou _A : Tuple = acc if nan_to_num is not None: _A : List[Any] = {metric: np.nan_to_num(UpperCamelCase__ , nan=UpperCamelCase__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCAmelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), }) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , ) -> Optional[Any]: _A : int = mean_iou( results=__lowerCamelCase , gt_seg_maps=__lowerCamelCase , num_labels=__lowerCamelCase , ignore_index=__lowerCamelCase , nan_to_num=__lowerCamelCase , label_map=__lowerCamelCase , reduce_labels=__lowerCamelCase , ) return iou_result
11
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = 'pytorch_model.bin' @dataclasses.dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."}) __SCREAMING_SNAKE_CASE = dataclasses.field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."}) __SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."}) __SCREAMING_SNAKE_CASE = dataclasses.field( default=a , metadata={"help": "A csv or a json file containing the validation data."}) __SCREAMING_SNAKE_CASE = dataclasses.field( default=a , metadata={"help": "The name of the task to train on."} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=a , metadata={"help": "The list of labels for the task."}) @dataclasses.dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}) __SCREAMING_SNAKE_CASE = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."}) __SCREAMING_SNAKE_CASE = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=a , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=a , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=a , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=a , metadata={"help": "Random seed for initialization."} , ) def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): _A : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _A : List[Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _A : str = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _A : Optional[Any] = dataset.sort("probability" , reverse=UpperCamelCase__ ) _A : Dict = dataset.select(range(UpperCamelCase__ ) ) _A : List[str] = dataset.remove_columns(["label", "probability"] ) _A : int = dataset.rename_column("prediction" , "label" ) _A : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _A : int = dataset.shuffle(seed=args.seed ) _A : List[Any] = os.path.join(UpperCamelCase__ , f"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , **UpperCamelCase__ : str ): _A : Any = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _A : Optional[int] = STModelArguments(model_name_or_path=UpperCamelCase__ ) _A : Optional[int] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _A : Tuple = STTrainingArguments(output_dir=UpperCamelCase__ ) _A : Optional[int] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _A : List[Any] = {} _A : List[Any] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _A : Dict = args.train_file _A : Any = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _A : Any = args.eval_file for key in data_files: _A : int = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: _A : List[str] = extension else: assert extension == args.data_file_extension, f"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), f"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) _A : Union[str, Any] = f"{args.output_dir}/self-train_iter-{{}}".format _A : List[str] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _A : List[str] = None _A : int = None _A : str = 0 _A : Tuple = False # Show the progress bar _A : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _A : Any = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _A : List[Any] = os.path.join(UpperCamelCase__ , "stage-1" ) _A : Optional[int] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _A : int = os.path.join(UpperCamelCase__ , "best-checkpoint" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("Self-training job completed: iteration: %d, stage: 1." , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _A : Tuple = os.path.join(UpperCamelCase__ , "best-checkpoint" ) _A : List[Any] = os.path.join(UpperCamelCase__ , "stage-2" ) # Update arguments_dict _A : List[Any] = model_path _A : Union[str, Any] = data_files["train"] _A : Union[str, Any] = current_output_dir _A : str = os.path.join(UpperCamelCase__ , "best-checkpoint" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("Self-training job completed: iteration: %d, stage: 2." , UpperCamelCase__ ) _A : int = iteration _A : List[str] = data_dir_format(iteration + 1 ) _A : List[Any] = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , "best-checkpoint" ) ) _A : str = config.idalabel _A : Optional[int] = os.path.join(UpperCamelCase__ , "eval_results_best-checkpoint.json" ) _A : int = os.path.join(UpperCamelCase__ , "test_results_best-checkpoint.json" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , "r" ) as f: _A : Optional[Any] = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _A : List[str] = os.path.join(UpperCamelCase__ , "infer_output_best-checkpoint.csv" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _A : int = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] _A : str = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , f"eval_results_iter-{iteration}.json" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , f"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _A : Optional[int] = os.path.join(UpperCamelCase__ , f"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _A : Dict = eval_result if best_iteration is None: _A : List[str] = new_iteration _A : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _A : Dict = new_iteration _A : int = new_eval_result _A : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _A : Optional[Any] = new_iteration _A : Tuple = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _A : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , UpperCamelCase__ ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , f"eval_results_iter-{iteration}.json" ) , os.path.join(UpperCamelCase__ , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , f"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(UpperCamelCase__ , "eval_results_best-iteration.json" ) , )
11
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase)
11
1
def _UpperCAmelCase (UpperCamelCase__ : str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _A : Any = "" while len(UpperCamelCase__ ) % 3 != 0: _A : Optional[Any] = "0" + bin_string _A : Union[str, Any] = [ bin_string[index : index + 3] for index in range(len(UpperCamelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _A : Tuple = 0 for index, val in enumerate(UpperCamelCase__ ): oct_val += int(2 ** (2 - index) * int(UpperCamelCase__ ) ) oct_string += str(UpperCamelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
11
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "roc_bert" def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=True , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=7_6_8 , __lowerCamelCase=9_1_0 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2_4_8_5_8 , __lowerCamelCase=True , **__lowerCamelCase , ) -> Dict: _A : int = vocab_size _A : List[str] = max_position_embeddings _A : Union[str, Any] = hidden_size _A : str = num_hidden_layers _A : Dict = num_attention_heads _A : List[Any] = intermediate_size _A : List[Any] = hidden_act _A : Dict = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : str = initializer_range _A : str = type_vocab_size _A : Dict = layer_norm_eps _A : Union[str, Any] = use_cache _A : Optional[Any] = enable_pronunciation _A : Tuple = enable_shape _A : str = pronunciation_embed_dim _A : Tuple = pronunciation_vocab_size _A : Union[str, Any] = shape_embed_dim _A : List[str] = shape_vocab_size _A : List[str] = concat_input _A : Tuple = position_embedding_type _A : Union[str, Any] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase)
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): # word like '180' or '身高' or '神' for char in word: _A : str = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : List[str] = set() for token in tokens: _A : List[Any] = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) _A : Dict = list(UpperCamelCase__ ) return word_list def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : set() ): if not chinese_word_set: return bert_tokens _A : Any = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) _A : List[str] = bert_tokens _A , _A : str = 0, len(UpperCamelCase__ ) while start < end: _A : Optional[Any] = True if is_chinese(bert_word[start] ): _A : List[str] = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): _A : Union[str, Any] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _A : Union[str, Any] = "##" + bert_word[j] _A : List[Any] = start + i _A : Optional[Any] = False break if single_word: start += 1 return bert_word def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : LTP , UpperCamelCase__ : BertTokenizer ): _A : str = [] for i in range(0 , len(UpperCamelCase__ ) , 100 ): _A : Dict = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws _A : Union[str, Any] = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) _A : str = [] for i in range(0 , len(UpperCamelCase__ ) , 100 ): _A : Tuple = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) _A : List[Any] = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): _A : List[Any] = [] for id in input_ids: _A : List[Any] = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) _A : List[str] = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) _A : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": _A : Optional[int] = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def _UpperCAmelCase (UpperCamelCase__ : Any ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _A : List[Any] = f.readlines() _A : Optional[int] = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _A : int = LTP(args.ltp ) # faster in GPU device _A : Optional[Any] = BertTokenizer.from_pretrained(args.bert ) _A : Optional[int] = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _A : int = [json.dumps(UpperCamelCase__ ) + "\n" for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) lowerCAmelCase__ = parser.parse_args() main(args)
11
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _UpperCAmelCase (UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int=None ): return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "The csv file to plot."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Disable logarithmic scale when plotting"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __SCREAMING_SNAKE_CASE = list_field( default=a , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): try: int(UpperCamelCase__ ) return True except ValueError: return False def _UpperCAmelCase (UpperCamelCase__ : List[str] ): try: float(UpperCamelCase__ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Dict: _A : Any = args _A : Optional[Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline="") as csv_file: _A : Union[str, Any] = csv.DictReader(__lowerCamelCase) for row in reader: _A : Tuple = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"])) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"])) if can_convert_to_int(row["result"]): # value is not None _A : Union[str, Any] = int(row["result"]) elif can_convert_to_float(row["result"]): # value is not None _A : Tuple = float(row["result"]) def _lowerCamelCase ( self) -> int: _A , _A : Union[str, Any] = plt.subplots() _A : str = "Time usage" if self.args.is_time else "Memory usage" _A : Dict = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log") ax.set_yscale("log") for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): _A : List[str] = sorted(set(self.result_dict[model_name]["bsz"])) _A : int = sorted(set(self.result_dict[model_name]["seq_len"])) _A : List[str] = self.result_dict[model_name]["result"] ((_A) , (_A)) : Dict = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _A : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _A : Optional[int] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCamelCase , ) else: _A : List[str] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_A) , (_A)) : Union[str, Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) _A : int = np.asarray(__lowerCamelCase , __lowerCamelCase)[: len(__lowerCamelCase)] plt.scatter( __lowerCamelCase , __lowerCamelCase , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}") plt.plot(__lowerCamelCase , __lowerCamelCase , "--") title_str += F" {label_model_name} vs." _A : str = title_str[:-4] _A : int = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__lowerCamelCase) plt.xlabel(__lowerCamelCase) plt.ylabel(__lowerCamelCase) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def _UpperCAmelCase (): _A : List[str] = HfArgumentParser(UpperCamelCase__ ) _A : Union[str, Any] = parser.parse_args_into_dataclasses()[0] _A : Any = Plot(args=UpperCamelCase__ ) plot.plot() if __name__ == "__main__": main()
11
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = VQModel __SCREAMING_SNAKE_CASE = "sample" @property def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]: _A : Optional[int] = 4 _A : Tuple = 3 _A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase) return {"sample": image} @property def _lowerCamelCase ( self) -> int: return (3, 3_2, 3_2) @property def _lowerCamelCase ( self) -> List[Any]: return (3, 3_2, 3_2) def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[Any] = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _A : int = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> Any: pass def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(__lowerCamelCase) _A : str = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self) -> Union[str, Any]: _A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(__lowerCamelCase).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) _A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) _A : Optional[int] = image.to(__lowerCamelCase) with torch.no_grad(): _A : List[str] = model(__lowerCamelCase).sample _A : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
11
1
from __future__ import annotations lowerCAmelCase__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _UpperCAmelCase (UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[list[int]] , ): _A : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid _A : List[str] = 1 _A : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid _A : List[str] = init[0] _A : Tuple = init[1] _A : Optional[Any] = 0 _A : Optional[Any] = g + heuristic[x][y] # cost from starting cell to destination cell _A : Tuple = [[f, g, x, y]] _A : str = False # flag that is set when search is complete _A : Optional[Any] = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _A : Tuple = cell.pop() _A : List[str] = next_cell[2] _A : str = next_cell[3] _A : Optional[int] = next_cell[1] if x == goal[0] and y == goal[1]: _A : Tuple = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions _A : Tuple = x + DIRECTIONS[i][0] _A : Optional[int] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _A : Optional[Any] = g + cost _A : Dict = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _A : Union[str, Any] = 1 _A : List[Any] = i _A : Optional[int] = [] _A : Optional[int] = goal[0] _A : Tuple = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _A : List[Any] = x - DIRECTIONS[action[x][y]][0] _A : Tuple = y - DIRECTIONS[action[x][y]][1] _A : Any = xa _A : List[str] = ya invpath.append([x, y] ) _A : str = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCAmelCase__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCAmelCase__ = [0, 0] # all coordinates are given in format [y,x] lowerCAmelCase__ = [len(grid) - 1, len(grid[0]) - 1] lowerCAmelCase__ = 1 # the cost map which pushes the path closer to the goal lowerCAmelCase__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCAmelCase__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCAmelCase__ = 99 lowerCAmelCase__ ,lowerCAmelCase__ = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _UpperCAmelCase (): _A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=UpperCamelCase__ , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=UpperCamelCase__ , default=5 ) parser.add_argument("--batch_size" , type=UpperCamelCase__ , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=UpperCamelCase__ , default=1 ) parser.add_argument("--freeze" , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument("--learning_rate" , type=UpperCamelCase__ , default=5E-4 ) parser.add_argument("--seed" , type=UpperCamelCase__ , default=0 ) parser.add_argument("--lr_scheduler_type" , type=UpperCamelCase__ , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=UpperCamelCase__ , default=10 ) parser.add_argument("--weight_decay" , type=UpperCamelCase__ , default=0.01 ) parser.add_argument("--output_dir" , type=UpperCamelCase__ , default="./results" ) return parser.parse_args() lowerCAmelCase__ = load('accuracy') def _UpperCAmelCase (UpperCamelCase__ : int ): _A , _A : List[Any] = eval_pred _A : Tuple = np.argmax(UpperCamelCase__ , axis=1 ) return metric.compute(predictions=UpperCamelCase__ , references=UpperCamelCase__ ) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase) -> None: super().__init__() _A : Union[str, Any] = trainer def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if control.should_evaluate: _A : Optional[Any] = deepcopy(__lowerCamelCase) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train") return control_copy def _UpperCAmelCase (): _A : List[Any] = get_args() set_seed(args.seed ) _A : Optional[int] = load_dataset("codeparrot/codecomplex" , split="train" ) _A : Union[str, Any] = dataset.train_test_split(test_size=0.2 ) _A : List[Any] = train_test["test"].train_test_split(test_size=0.5 ) _A : List[Any] = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _A : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt ) _A : Tuple = tokenizer.eos_token _A : Optional[int] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _A : Union[str, Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _A : Optional[int] = False _A : List[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(UpperCamelCase__ : Any ): _A : Optional[int] = tokenizer(example["src"] , truncation=UpperCamelCase__ , max_length=1024 ) _A : str = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _A : Union[str, Any] = train_test_validation.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=train_test_validation["train"].column_names , ) _A : str = DataCollatorWithPadding(tokenizer=UpperCamelCase__ ) _A : List[str] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) _A : str = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) print("Training..." ) trainer.add_callback(CustomCallback(UpperCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
11
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase__ = '</w>' lowerCAmelCase__ = '@@ ' def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Optional[int] = set() _A : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _A : Dict = do_lower_case with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[int] = json.load(__lowerCamelCase) _A : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _A : Optional[Any] = None _A : Tuple = None else: with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Optional[int] = merges_handle.read().split("\n")[:-1] _A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges] _A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : List[Any] = {} @property def _lowerCamelCase ( self) -> int: return len(self.decoder) def _lowerCamelCase ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A : int = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[int] = bigram _A : int = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : str = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : str = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : List[str] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : List[Any] = get_pairs(__lowerCamelCase) _A : Tuple = " ".join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _A : List[str] = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _A : int = word.replace(__lowerCamelCase , "") _A : int = word.replace(" " , __lowerCamelCase) _A : Union[str, Any] = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: _A : List[Any] = text.lower() _A : Optional[int] = text.split() _A : List[str] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : str = " ".join(__lowerCamelCase) # make sure @@ tokens are concatenated _A : int = "".join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : Optional[int] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return (vocab_file, merges_file)
11
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "vit_mae" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : List[str] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[int] = hidden_act _A : List[Any] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Union[str, Any] = initializer_range _A : str = layer_norm_eps _A : Any = image_size _A : int = patch_size _A : int = num_channels _A : Dict = qkv_bias _A : Tuple = decoder_num_attention_heads _A : Tuple = decoder_hidden_size _A : List[str] = decoder_num_hidden_layers _A : Optional[Any] = decoder_intermediate_size _A : List[str] = mask_ratio _A : Union[str, Any] = norm_pix_loss
11
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> Tuple: _A : Optional[int] = "hf-internal-testing/tiny-random-t5" _A : str = AutoTokenizer.from_pretrained(__lowerCamelCase) _A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase) _A : str = tokenizer("This is me" , return_tensors="pt") _A : str = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules())) _A : Union[str, Any] = model.generate(**__lowerCamelCase) _A : Dict = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules())) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase) _A : int = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules())) _A : Optional[int] = model_reloaded.generate(**__lowerCamelCase) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Optional[Any]: _A : int = "hf-internal-testing/tiny-random-t5" _A : Any = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase) _A : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase): model.save_pretrained(__lowerCamelCase) _A : int = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase)
11
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): _A : str = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def _UpperCAmelCase (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : int = _get_partition_rules() _A : Optional[int] = _replacement_rules(UpperCamelCase__ ) _A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
11
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase__ = float('nan') class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: _A : List[Any] = sys.stdout _A : str = open(__lowerCamelCase , "a") def __getattr__( self , __lowerCamelCase) -> List[str]: return getattr(self.stdout , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: self.stdout.write(__lowerCamelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M)) def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ): _A : Tuple = [] # deal with critical env vars _A : Dict = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _A : Tuple = [] _A : Dict = "" while len(UpperCamelCase__ ) > 0: current_line += f"{cmd.pop(0 )} " if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) _A : Union[str, Any] = "" return "\\\n".join(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): # unwrap multi-line input _A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own _A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) _A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams _A : Tuple = variation.replace(" " , "-" ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f: _A : List[str] = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): _A : Union[str, Any] = [] _A : Optional[int] = [] _A : Any = f"{id}: {variation:<{longest_variation_len}}" _A : Dict = f"{preamble}: " _A : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): _A : Optional[Any] = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" _A : str = f"\33[2K\r{outcome}" if len(UpperCamelCase__ ) > 0: _A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _A : Any = round(mean_metrics[target_metric_key] , 2 ) _A : Tuple = f"{outcome} {mean_target}" if len(UpperCamelCase__ ) > 1: results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}" print(UpperCamelCase__ ) _A : Optional[int] = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def _UpperCAmelCase (): _A : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = pd.DataFrame(UpperCamelCase__ ) _A : List[str] = "variation" _A : List[Any] = "diff_%" _A : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel _A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): _A : Optional[Any] = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns _A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols # capitalize _A : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible _A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" ) _A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" ) _A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] print("\n\n".join(UpperCamelCase__ ) ) def _UpperCAmelCase (): _A : int = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , ) parser.add_argument( "--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) _A : int = parser.parse_args() _A : Union[str, Any] = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) _A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations _A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) ) _A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys _A : str = args.report_metric_keys.split() # capture prints into a log file for convenience _A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _A : Tuple = Tee(UpperCamelCase__ ) print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" ) print(f"Base command: {' '.join(UpperCamelCase__ )}" ) _A : str = "variation" _A : Union[str, Any] = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ): _A : Dict = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
11
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "gpt_neo" __SCREAMING_SNAKE_CASE = ["past_key_values"] __SCREAMING_SNAKE_CASE = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , __lowerCamelCase=5_0_2_5_7 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=2_4 , __lowerCamelCase=[[["global", "local"], 1_2]] , __lowerCamelCase=1_6 , __lowerCamelCase=None , __lowerCamelCase=2_5_6 , __lowerCamelCase="gelu_new" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0_2 , __lowerCamelCase=True , __lowerCamelCase=5_0_2_5_6 , __lowerCamelCase=5_0_2_5_6 , **__lowerCamelCase , ) -> Union[str, Any]: _A : str = vocab_size _A : List[Any] = max_position_embeddings _A : Union[str, Any] = hidden_size _A : Dict = num_layers _A : str = num_heads _A : Optional[Any] = intermediate_size _A : str = window_size _A : Dict = activation_function _A : List[str] = resid_dropout _A : Union[str, Any] = embed_dropout _A : Dict = attention_dropout _A : int = classifier_dropout _A : List[Any] = layer_norm_epsilon _A : List[str] = initializer_range _A : Any = use_cache _A : Any = bos_token_id _A : str = eos_token_id _A : Optional[Any] = attention_types _A : Dict = self.expand_attention_types_params(__lowerCamelCase) if len(self.attention_layers) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " F"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument.") super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase) @staticmethod def _lowerCamelCase ( __lowerCamelCase) -> Any: _A : List[Any] = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): import torch _A : str = input.size() _A : Any = len(UpperCamelCase__ ) _A : List[str] = shape[dimension] _A : Optional[Any] = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _A : str = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode="floor" ) + 1 _A : Dict = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _A : str = [slice(UpperCamelCase__ )] * rank _A : int = indices _A : List[Any] = input[s] _A : List[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ): import torch _A : Dict = torch.arange(1 , UpperCamelCase__ ) _A : List[str] = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _A : List[Any] = remainders == 0 _A : str = candidates[divisor_indices] _A : Optional[int] = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode="floor" ) class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: _A : Union[str, Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs") _A : str = {0: "batch", 1: "past_sequence + sequence"} else: _A : Union[str, Any] = {0: "batch", 1: "sequence"} return common_inputs @property def _lowerCamelCase ( self) -> int: return self._config.num_heads def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Mapping[str, Any]: _A : Any = super(__lowerCamelCase , self).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase) # We need to order the input in the way they appears in the forward() _A : str = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _A , _A : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _A : Dict = seqlen + 2 _A : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _A : Dict = [ (torch.zeros(__lowerCamelCase), torch.zeros(__lowerCamelCase)) for _ in range(self.num_layers) ] _A : Optional[Any] = common_inputs["attention_mask"] if self.use_past: _A : Optional[Any] = ordered_inputs["attention_mask"].dtype _A : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase)] , dim=1) return ordered_inputs @property def _lowerCamelCase ( self) -> int: return 1_3
11
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Overwrite the cached training and evaluation sets"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "The number of processes to use for the preprocessing."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCamelCase ( self) -> int: if self.train_file is not None: _A : Optional[int] = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _A : Dict = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , __lowerCamelCase) -> str: _A : List[Any] = "label" if "label" in features[0].keys() else "labels" _A : Any = [feature.pop(__lowerCamelCase) for feature in features] _A : Optional[int] = len(__lowerCamelCase) _A : int = len(features[0]["input_ids"]) _A : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features ] _A : str = list(chain(*__lowerCamelCase)) _A : Tuple = self.tokenizer.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()} # Add back labels _A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa) return batch def _UpperCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A : int = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _A : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _A : List[str] = {} if data_args.train_file is not None: _A : Optional[int] = data_args.train_file if data_args.validation_file is not None: _A : Tuple = data_args.validation_file _A : Union[str, Any] = data_args.train_file.split("." )[-1] _A : List[str] = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _A : Union[str, Any] = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _A : str = [f"ending{i}" for i in range(4 )] _A : Union[str, Any] = "sent1" _A : str = "sent2" if data_args.max_seq_length is None: _A : Any = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _A : Optional[Any] = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _A : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ : List[Any] ): _A : List[Any] = [[context] * 4 for context in examples[context_name]] _A : Any = examples[question_header_name] _A : Union[str, Any] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out _A : Dict = list(chain(*UpperCamelCase__ ) ) _A : List[Any] = list(chain(*UpperCamelCase__ ) ) # Tokenize _A : str = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _A : Optional[int] = raw_datasets["train"] if data_args.max_train_samples is not None: _A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) _A : Any = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _A : Optional[int] = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _A : Optional[int] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) _A : Dict = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _A : List[str] = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _A : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ : Tuple ): _A , _A : List[str] = eval_predictions _A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _A : List[str] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: _A : Any = None if training_args.resume_from_checkpoint is not None: _A : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A : int = last_checkpoint _A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _A : Optional[int] = train_result.metrics _A : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) _A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("train" , UpperCamelCase__ ) trainer.save_metrics("train" , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _A : List[Any] = trainer.evaluate() _A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) _A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("eval" , UpperCamelCase__ ) trainer.save_metrics("eval" , UpperCamelCase__ ) _A : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
11
1
from __future__ import annotations lowerCAmelCase__ = '#' class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> None: _A : dict = {} def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self._trie for char in text: if char not in trie: _A : List[str] = {} _A : List[str] = trie[char] _A : Dict = True def _lowerCamelCase ( self , __lowerCamelCase) -> tuple | list: _A : Optional[int] = self._trie for char in prefix: if char in trie: _A : Any = trie[char] else: return [] return self._elements(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> tuple: _A : Any = [] for c, v in d.items(): _A : Optional[Any] = [" "] if c == END else [(c + s) for s in self._elements(__lowerCamelCase)] result.extend(__lowerCamelCase) return tuple(__lowerCamelCase) lowerCAmelCase__ = Trie() lowerCAmelCase__ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _UpperCAmelCase (UpperCamelCase__ : str ): _A : Tuple = trie.find_word(UpperCamelCase__ ) return tuple(string + word for word in suffixes ) def _UpperCAmelCase (): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
11
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env") def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: # create estimator _A : Union[str, Any] = self.create_estimator(__lowerCamelCase) # run training estimator.fit() # result dataframe _A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
11
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCAmelCase__ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCAmelCase__ = typing.Union[np.floataa, int, float] # noqa: UP007 def _UpperCAmelCase (UpperCamelCase__ : Vector , UpperCamelCase__ : Vector ): return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def _UpperCAmelCase (UpperCamelCase__ : Vector , UpperCamelCase__ : Vector ): return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def _UpperCAmelCase (): from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) benchmark()
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCAmelCase__ = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCAmelCase__ = { 'jukebox': 5_12, } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_LYRIC_TOKENS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=["v3", "v2", "v2"] , __lowerCamelCase=5_1_2 , __lowerCamelCase=5 , __lowerCamelCase="<|endoftext|>" , **__lowerCamelCase , ) -> int: _A : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else unk_token super().__init__( unk_token=__lowerCamelCase , n_genres=__lowerCamelCase , version=__lowerCamelCase , max_n_lyric_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : List[str] = version _A : Dict = max_n_lyric_tokens _A : str = n_genres with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : List[str] = json.load(__lowerCamelCase) with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : str = json.load(__lowerCamelCase) with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[Any] = json.load(__lowerCamelCase) _A : int = r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder) == 7_9: _A : Tuple = oov.replace(r"\-'" , r"\-+'") _A : Any = regex.compile(__lowerCamelCase) _A : Dict = {v: k for k, v in self.artists_encoder.items()} _A : Optional[int] = {v: k for k, v in self.genres_encoder.items()} _A : Optional[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def _lowerCamelCase ( self) -> str: return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder) def _lowerCamelCase ( self) -> Optional[Any]: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: _A : str = [self.artists_encoder.get(__lowerCamelCase , 0) for artist in list_artists] for genres in range(len(__lowerCamelCase)): _A : Dict = [self.genres_encoder.get(__lowerCamelCase , 0) for genre in list_genres[genres]] _A : Dict = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres])) _A : int = [[self.lyrics_encoder.get(__lowerCamelCase , 0) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return list(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: _A , _A , _A : int = self.prepare_for_tokenization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._tokenize(__lowerCamelCase) return artist, genre, lyrics def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version)): if self.version[idx] == "v3": _A : List[str] = artists[idx].lower() _A : List[str] = [genres[idx].lower()] else: _A : List[Any] = self._normalize(artists[idx]) + ".v2" _A : List[str] = [ self._normalize(__lowerCamelCase) + ".v2" for genre in genres[idx].split("_") ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _A : Dict = regex.compile(r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+") _A : List[Any] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" _A : Optional[Any] = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase))} _A : str = 0 _A : Tuple = len(__lowerCamelCase) + 1 _A : Union[str, Any] = self.vocab _A : str = {v: k for k, v in self.vocab.items()} _A : Tuple = "" else: _A : int = regex.compile(r"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+") _A : Tuple = self._run_strip_accents(__lowerCamelCase) _A : str = lyrics.replace("\\" , "\n") _A : Optional[int] = self.out_of_vocab.sub("" , __lowerCamelCase), [], [] return artists, genres, lyrics def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A : Any = unicodedata.normalize("NFD" , __lowerCamelCase) _A : Tuple = [] for char in text: _A : Optional[int] = unicodedata.category(__lowerCamelCase) if cat == "Mn": continue output.append(__lowerCamelCase) return "".join(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : Tuple = ( [chr(__lowerCamelCase) for i in range(ord("a") , ord("z") + 1)] + [chr(__lowerCamelCase) for i in range(ord("A") , ord("Z") + 1)] + [chr(__lowerCamelCase) for i in range(ord("0") , ord("9") + 1)] + ["."] ) _A : Dict = frozenset(__lowerCamelCase) _A : Any = re.compile(r"_+") _A : Dict = "".join([c if c in accepted else "_" for c in text.lower()]) _A : Optional[int] = pattern.sub("_" , __lowerCamelCase).strip("_") return text def _lowerCamelCase ( self , __lowerCamelCase) -> str: return " ".join(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False) -> Dict: # Convert to TensorType if not isinstance(__lowerCamelCase , __lowerCamelCase): _A : Optional[Any] = TensorType(__lowerCamelCase) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.") import tensorflow as tf _A : Optional[Any] = tf.constant _A : str = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") import torch _A : int = torch.tensor _A : str = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") import jax.numpy as jnp # noqa: F811 _A : List[Any] = jnp.array _A : int = _is_jax else: _A : Optional[Any] = np.asarray _A : List[str] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _A : Any = [inputs] if not is_tensor(__lowerCamelCase): _A : List[str] = as_tensor(__lowerCamelCase) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length.") return inputs def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="" , __lowerCamelCase="pt") -> BatchEncoding: _A : List[Any] = [0, 0, 0] _A : str = [artist] * len(self.version) _A : List[str] = [genres] * len(self.version) _A , _A , _A : Union[str, Any] = self.tokenize(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A , _A , _A : Tuple = self._convert_token_to_id(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Dict = [-INFINITY] * len(full_tokens[-1]) _A : Dict = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__lowerCamelCase) for i in range(len(self.version)) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks}) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : str = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__lowerCamelCase)) _A : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__lowerCamelCase)) _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__lowerCamelCase)) return (artists_file, genres_file, lyrics_file) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : List[Any] = self.artists_decoder.get(__lowerCamelCase) _A : Union[str, Any] = [self.genres_decoder.get(__lowerCamelCase) for genre in genres_index] _A : Optional[int] = [self.lyrics_decoder.get(__lowerCamelCase) for character in lyric_index] return artist, genres, lyrics
11
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=7_6_8) -> Union[str, Any]: super().__init__(__lowerCamelCase) _A : Union[str, Any] = proj_size _A : List[Any] = CLIPVisionModel(__lowerCamelCase) _A : Dict = PaintByExampleMapper(__lowerCamelCase) _A : Optional[Any] = nn.LayerNorm(config.hidden_size) _A : int = nn.Linear(config.hidden_size , self.proj_size) # uncondition for scaling _A : Union[str, Any] = nn.Parameter(torch.randn((1, 1, self.proj_size))) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=False) -> Any: _A : Optional[int] = self.model(pixel_values=__lowerCamelCase) _A : Optional[int] = clip_output.pooler_output _A : Dict = self.mapper(latent_states[:, None]) _A : List[Any] = self.final_layer_norm(__lowerCamelCase) _A : Dict = self.proj_out(__lowerCamelCase) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase) -> List[Any]: super().__init__() _A : Optional[int] = (config.num_hidden_layers + 1) // 5 _A : Tuple = config.hidden_size _A : int = 1 _A : int = nn.ModuleList( [ BasicTransformerBlock(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , activation_fn="gelu" , attention_bias=__lowerCamelCase) for _ in range(__lowerCamelCase) ]) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for block in self.blocks: _A : Union[str, Any] = block(__lowerCamelCase) return hidden_states
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[int] = legacy_behaviour super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) _A : int = vocab_file _A : Optional[Any] = False if not self.vocab_file else True _A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "eng_Latn" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Tuple = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : List[Any] = src_lang _A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Tuple = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding: _A : Tuple = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : List[str] = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] else: _A : Tuple = [self.cur_lang_code] _A : Optional[Any] = [self.eos_token_id] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : Tuple = [] _A : Any = [self.eos_token_id, self.cur_lang_code] else: _A : Union[str, Any] = [self.cur_lang_code] _A : str = [self.eos_token_id] _A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "rwkv" __SCREAMING_SNAKE_CASE = {"max_position_embeddings": "context_length"} def __init__( self , __lowerCamelCase=5_0_2_7_7 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=3_2 , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=1e-5 , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=6 , __lowerCamelCase=False , __lowerCamelCase=True , **__lowerCamelCase , ) -> Any: _A : Tuple = vocab_size _A : Union[str, Any] = context_length _A : Union[str, Any] = hidden_size _A : str = num_hidden_layers _A : str = attention_hidden_size if attention_hidden_size is not None else hidden_size _A : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size _A : Any = layer_norm_epsilon _A : int = rescale_every _A : int = use_cache _A : List[Any] = bos_token_id _A : List[Any] = eos_token_id super().__init__( tie_word_embeddings=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase)
11
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
1
# Lint as: python3 import itertools import os import re lowerCAmelCase__ = re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCAmelCase__ = re.compile(R'([a-z\d])([A-Z])') lowerCAmelCase__ = re.compile(R'(?<!_)_(?!_)') lowerCAmelCase__ = re.compile(R'(_{2,})') lowerCAmelCase__ = R'^\w+(\.\w+)*$' lowerCAmelCase__ = R'<>:/\|?*' def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): _A : str = _uppercase_uppercase_re.sub(r"\1_\2" , UpperCamelCase__ ) _A : List[Any] = _lowercase_uppercase_re.sub(r"\1_\2" , UpperCamelCase__ ) return name.lower() def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A : Optional[int] = _single_underscore_re.split(UpperCamelCase__ ) _A : List[Any] = [_multiple_underscores_re.split(UpperCamelCase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCamelCase__ ) if n != "" ) def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict ): if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , UpperCamelCase__ ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(UpperCamelCase__ )}-{split}" def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=None ): _A : Optional[int] = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) if filetype_suffix: prefix += f".{filetype_suffix}" _A : Optional[int] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) return f"{filepath}*" def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None ): _A : Tuple = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) _A : List[Any] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if shard_lengths: _A : List[Any] = len(UpperCamelCase__ ) _A : Union[str, Any] = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(UpperCamelCase__ )] if filetype_suffix: _A : Union[str, Any] = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: _A : Optional[Any] = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
11
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "vit_mae" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : List[str] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[int] = hidden_act _A : List[Any] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Union[str, Any] = initializer_range _A : str = layer_norm_eps _A : Any = image_size _A : int = patch_size _A : int = num_channels _A : Dict = qkv_bias _A : Tuple = decoder_num_attention_heads _A : Tuple = decoder_hidden_size _A : List[str] = decoder_num_hidden_layers _A : Optional[Any] = decoder_intermediate_size _A : List[str] = mask_ratio _A : Union[str, Any] = norm_pix_loss
11
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) _A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = AutoConfig.from_pretrained("gpt2") _A : int = GenerationConfig.from_model_config(__lowerCamelCase) _A : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = GenerationConfig() _A : List[Any] = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _A : List[str] = copy.deepcopy(__lowerCamelCase) _A : int = generation_config.update(**__lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"}) def _lowerCamelCase ( self) -> Any: _A : int = GenerationConfig() _A : int = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__lowerCamelCase) _A : Any = GenerationConfig.from_pretrained(__lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") _A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase) assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config def _lowerCamelCase ( self) -> List[str]: _A : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCamelCase) self.assertEqual(default_config.num_beams , 1) _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase) _A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[int]: _A : Dict = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _lowerCamelCase ( self) -> Any: _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) _A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Union[str, Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) _A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
11
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=6_4 , __lowerCamelCase=None) -> Optional[int]: _A : int = np.random.default_rng(__lowerCamelCase) _A : Dict = length _A : Any = rng.normal(size=(length,)).astype(np.floataa) _A : Any = a * self.x + b + rng.normal(scale=0.1 , size=(length,)).astype(np.floataa) def __len__( self) -> Union[str, Any]: return self.length def __getitem__( self , __lowerCamelCase) -> Any: return {"x": self.x[i], "y": self.y[i]} class lowerCAmelCase__ ( torch.nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=False) -> Any: super().__init__() _A : Any = torch.nn.Parameter(torch.tensor([2, 3]).float()) _A : str = torch.nn.Parameter(torch.tensor([2, 3]).float()) _A : Any = True def _lowerCamelCase ( self , __lowerCamelCase=None) -> Optional[int]: if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") _A : Any = False return x * self.a[0] + self.b[0] class lowerCAmelCase__ ( torch.nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=False) -> Union[str, Any]: super().__init__() _A : Any = torch.nn.Parameter(torch.tensor(__lowerCamelCase).float()) _A : Optional[int] = torch.nn.Parameter(torch.tensor(__lowerCamelCase).float()) _A : str = True def _lowerCamelCase ( self , __lowerCamelCase=None) -> int: if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") _A : Union[str, Any] = False return x * self.a + self.b def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int = 16 ): from datasets import load_dataset from transformers import AutoTokenizer _A : Any = AutoTokenizer.from_pretrained("bert-base-cased" ) _A : int = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _A : Any = load_dataset("csv" , data_files=UpperCamelCase__ ) _A : int = datasets["train"].unique("label" ) _A : Union[str, Any] = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _A : str = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" ) if "label" in examples: _A : Optional[Any] = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _A : int = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(UpperCamelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(UpperCamelCase__ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _A : int = DataLoader(tokenized_datasets["train"] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) _A : Any = DataLoader(tokenized_datasets["validation"] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
11
import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str: _A : Optional[int] = bp_numa _A : Dict = bp_numa _A : Tuple = bp_numa _A : List[str] = conva_get[:2] _A : Tuple = conva_get[2] _A : Optional[int] = size_pa _A : Optional[Any] = rate_w _A : Optional[Any] = rate_t _A : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] _A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Any = -2 * np.random.rand(self.conva[1]) + 1 _A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1 _A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1 def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # save model dict with pickle _A : Dict = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__lowerCamelCase , "wb") as f: pickle.dump(__lowerCamelCase , __lowerCamelCase) print(F"Model saved: {save_path}") @classmethod def _lowerCamelCase ( cls , __lowerCamelCase) -> Any: # read saved model with open(__lowerCamelCase , "rb") as f: _A : Any = pickle.load(__lowerCamelCase) # noqa: S301 _A : Optional[int] = model_dic.get("conv1") conv_get.append(model_dic.get("step_conv1")) _A : str = model_dic.get("size_pooling1") _A : List[str] = model_dic.get("num_bp1") _A : Union[str, Any] = model_dic.get("num_bp2") _A : List[Any] = model_dic.get("num_bp3") _A : Dict = model_dic.get("rate_weight") _A : List[Any] = model_dic.get("rate_thre") # create model instance _A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # modify model parameter _A : List[Any] = model_dic.get("w_conv1") _A : Union[str, Any] = model_dic.get("wkj") _A : str = model_dic.get("vji") _A : List[str] = model_dic.get("thre_conv1") _A : Optional[Any] = model_dic.get("thre_bp2") _A : Dict = model_dic.get("thre_bp3") return conv_ins def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return 1 / (1 + np.exp(-1 * x)) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: return round(__lowerCamelCase , 3) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # convolution process _A : Tuple = convs[0] _A : Union[str, Any] = convs[1] _A : List[Any] = np.shape(__lowerCamelCase)[0] # get the data slice of original image data, data_focus _A : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): _A : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__lowerCamelCase) # calculate the feature map of every single kernel, and saved as list of matrix _A : Optional[Any] = [] _A : Optional[int] = int((size_data - size_conv) / conv_step + 1) for i_map in range(__lowerCamelCase): _A : Optional[int] = [] for i_focus in range(len(__lowerCamelCase)): _A : Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(__lowerCamelCase)) _A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape( __lowerCamelCase , __lowerCamelCase) data_featuremap.append(__lowerCamelCase) # expanding the data slice to One dimenssion _A : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__lowerCamelCase)) _A : Dict = np.asarray(__lowerCamelCase) return focus_list, data_featuremap def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict: # pooling process _A : Optional[Any] = len(featuremaps[0]) _A : str = int(size_map / size_pooling) _A : Optional[int] = [] for i_map in range(len(__lowerCamelCase)): _A : int = featuremaps[i_map] _A : Optional[int] = [] for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase): for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase): _A : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__lowerCamelCase)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__lowerCamelCase)) _A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase) featuremap_pooled.append(__lowerCamelCase) return featuremap_pooled def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: # expanding three dimension data to one dimension list _A : Tuple = [] for i in range(len(__lowerCamelCase)): _A : Union[str, Any] = np.shape(data[i]) _A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1]) _A : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__lowerCamelCase) _A : Optional[Any] = np.asarray(__lowerCamelCase) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: # expanding matrix to one dimension list _A : List[Any] = np.asarray(__lowerCamelCase) _A : Union[str, Any] = np.shape(__lowerCamelCase) _A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Dict = [] _A : Any = 0 for i_map in range(__lowerCamelCase): _A : Union[str, Any] = np.ones((size_map, size_map)) for i in range(0 , __lowerCamelCase , __lowerCamelCase): for j in range(0 , __lowerCamelCase , __lowerCamelCase): _A : List[Any] = pd_pool[ i_pool ] _A : Tuple = i_pool + 1 _A : Optional[Any] = np.multiply( __lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(__lowerCamelCase) return pd_all def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]: # model traning print("----------------------Start Training-------------------------") print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase))) print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase))) _A : Tuple = 0 _A : Dict = [] _A : Optional[Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _A : Union[str, Any] = 0 print(F"-------------Learning Time {rp}--------------") for p in range(len(__lowerCamelCase)): # print('------------Learning Image: %d--------------'%p) _A : str = np.asmatrix(datas_train[p]) _A : Union[str, Any] = np.asarray(datas_teach[p]) _A , _A : Any = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = np.shape(__lowerCamelCase) _A : List[str] = self._expand(__lowerCamelCase) _A : Tuple = data_bp_input _A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa _A : List[Any] = self.sig(__lowerCamelCase) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa _A : List[str] = self.sig(__lowerCamelCase) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _A : int = np.multiply( (data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Optional[Any] = np.multiply( np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji) _A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga) _A : Dict = pd_conva_pooled.T.getA().tolist() _A : Optional[Any] = self._calculate_gradient_from_pool( __lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): _A : int = self._expand_mat(pd_conva_all[k_conv]) _A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase) _A : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) _A : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer _A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight _A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre _A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _A : Optional[int] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _A : Any = rp + 1 _A : Dict = error_count / patterns all_mse.append(__lowerCamelCase) def draw_error(): _A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(__lowerCamelCase , "+-") plt.plot(__lowerCamelCase , "r--") plt.xlabel("Learning Times") plt.ylabel("All_mse") plt.grid(__lowerCamelCase , alpha=0.5) plt.show() print("------------------Training Complished---------------------") print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def _lowerCamelCase ( self , __lowerCamelCase) -> int: # model predict _A : Union[str, Any] = [] print("-------------------Start Testing-------------------------") print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase))) for p in range(len(__lowerCamelCase)): _A : int = np.asmatrix(datas_test[p]) _A , _A : List[Any] = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : str = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = self._expand(__lowerCamelCase) _A : List[Any] = data_bp_input _A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa _A : int = self.sig(__lowerCamelCase) _A : int = bp_outa * self.wkj.T - self.thre_bpa _A : Optional[int] = self.sig(__lowerCamelCase) produce_out.extend(bp_outa.getA().tolist()) _A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out] return np.asarray(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # return the data of image after convoluting process so we can check it out _A : Optional[int] = np.asmatrix(__lowerCamelCase) _A , _A : Tuple = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
11
1
from __future__ import annotations import os from collections.abc import Mapping lowerCAmelCase__ = tuple[int, int] class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> None: _A : set[int] = vertices _A : dict[EdgeT, int] = { (min(__lowerCamelCase), max(__lowerCamelCase)): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None: self.vertices.add(edge[0]) self.vertices.add(edge[1]) _A : int = weight def _lowerCamelCase ( self) -> Graph: _A : Graph = Graph({min(self.vertices)} , {}) _A : EdgeT _A : int _A : EdgeT _A : int while len(subgraph.vertices) < len(self.vertices): _A : Any = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _A : int = edge _A : int = weight subgraph.add_edge(__lowerCamelCase , __lowerCamelCase) return subgraph def _UpperCAmelCase (UpperCamelCase__ : str = "p107_network.txt" ): _A : str = os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) _A : str = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) _A : dict[EdgeT, int] = {} _A : list[str] _A : int _A : int with open(UpperCamelCase__ ) as f: _A : Dict = f.read().strip().split("\n" ) _A : List[str] = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase__ ) ): for edgea in range(UpperCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": _A : List[Any] = int(adjaceny_matrix[edgea][edgea] ) _A : Graph = Graph(set(range(len(UpperCamelCase__ ) ) ) , UpperCamelCase__ ) _A : Graph = graph.prims_algorithm() _A : int = sum(graph.edges.values() ) _A : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
11
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): _A : str = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def _UpperCAmelCase (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : int = _get_partition_rules() _A : Optional[int] = _replacement_rules(UpperCamelCase__ ) _A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
11
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) _A : int = input_str.split("_" ) _A : str = 0 if use_pascal else 1 _A : str = words[start_index:] _A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] _A : Any = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
11
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) lowerCAmelCase__ = logging.getLogger(__name__) def _UpperCAmelCase (UpperCamelCase__ : str ): _A : Dict = git.Repo(search_parent_directories=UpperCamelCase__ ) _A : Optional[Any] = { "repo_id": str(UpperCamelCase__ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(UpperCamelCase__ , "git_log.json" ) , "w" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ , indent=4 ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): if params.n_gpu <= 0: _A : Union[str, Any] = 0 _A : Dict = -1 _A : Dict = True _A : str = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 _A : Any = int(os.environ["WORLD_SIZE"] ) _A : List[Any] = int(os.environ["N_GPU_NODE"] ) _A : Any = int(os.environ["RANK"] ) # number of nodes / node ID _A : int = params.world_size // params.n_gpu_per_node _A : str = params.global_rank // params.n_gpu_per_node _A : Any = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 _A : Dict = 1 _A : List[str] = 0 _A : int = 0 _A : List[Any] = 0 _A : str = 1 _A : Union[str, Any] = 1 _A : Any = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode _A : str = params.node_id == 0 and params.local_rank == 0 _A : Any = params.n_nodes > 1 # summary _A : Optional[Any] = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def _UpperCAmelCase (UpperCamelCase__ : Any ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
11
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase__ = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCAmelCase__ = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCAmelCase__ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCAmelCase__ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCAmelCase__ = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase__ = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCAmelCase__ = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _UpperCAmelCase (): _A , _A : Dict = randrange(len(UpperCamelCase__ ) ), randrange(len(UpperCamelCase__ ) ) _A : Union[str, Any] = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] _A , _A : Union[str, Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _UpperCAmelCase (UpperCamelCase__ : int = 100 ): return (generate_random_hand() for _ in range(UpperCamelCase__ )) @pytest.mark.parametrize("hand, expected" , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ): assert PokerHand(UpperCamelCase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : List[str] ): assert PokerHand(UpperCamelCase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ): _A : Optional[Any] = PokerHand(UpperCamelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ): assert PokerHand(UpperCamelCase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ): assert PokerHand(UpperCamelCase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): assert PokerHand(UpperCamelCase__ ).compare_with(PokerHand(UpperCamelCase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Any ): assert PokerHand(UpperCamelCase__ ).compare_with(PokerHand(UpperCamelCase__ ) ) == expected def _UpperCAmelCase (): _A : Optional[Any] = [PokerHand(UpperCamelCase__ ) for hand in SORTED_HANDS] _A : List[str] = poker_hands.copy() shuffle(UpperCamelCase__ ) _A : Union[str, Any] = chain(sorted(UpperCamelCase__ ) ) for index, hand in enumerate(UpperCamelCase__ ): assert hand == poker_hands[index] def _UpperCAmelCase (): # Test that five high straights are compared correctly. _A : Optional[int] = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=UpperCamelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _UpperCAmelCase (): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _A : List[str] = PokerHand("2C 4S AS 3D 5C" ) _A : List[Any] = True _A : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _UpperCAmelCase (): # Problem number 54 from Project Euler # Testing from poker_hands.txt file _A : str = 0 _A : List[str] = os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) _A : Tuple = os.path.join(UpperCamelCase__ , "poker_hands.txt" ) with open(UpperCamelCase__ ) as file_hand: for line in file_hand: _A : Tuple = line[:14].strip() _A : Dict = line[15:].strip() _A , _A : Any = PokerHand(UpperCamelCase__ ), PokerHand(UpperCamelCase__ ) _A : Union[str, Any] = player.compare_with(UpperCamelCase__ ) if output == "Win": answer += 1 assert answer == 376
11
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase)
11
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Optional[Any]: _A : List[str] = parent _A : Union[str, Any] = batch_size _A : Tuple = seq_length _A : str = is_training _A : Tuple = use_input_mask _A : str = use_token_type_ids _A : int = use_labels _A : List[str] = vocab_size _A : List[str] = hidden_size _A : Union[str, Any] = num_hidden_layers _A : int = num_attention_heads _A : Any = intermediate_size _A : int = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Union[str, Any] = max_position_embeddings _A : Tuple = type_vocab_size _A : Any = type_sequence_label_size _A : int = initializer_range _A : Optional[Any] = num_labels _A : Tuple = num_choices _A : Tuple = scope def _lowerCamelCase ( self) -> List[str]: _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _A : int = None if self.use_input_mask: _A : Dict = random_attention_mask([self.batch_size, self.seq_length]) _A : Tuple = None if self.use_token_type_ids: _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _A : Optional[int] = None _A : Dict = None _A : int = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _A : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) _A : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self) -> List[str]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = BioGptModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase) _A : int = model(__lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Union[str, Any]: _A : List[Any] = BioGptForCausalLM(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Optional[int] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , *__lowerCamelCase) -> Union[str, Any]: _A : Optional[Any] = BioGptModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() # create attention mask _A : int = torch.ones(input_ids.shape , dtype=torch.long , device=__lowerCamelCase) _A : str = self.seq_length // 2 _A : Optional[int] = 0 # first forward pass _A , _A : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase).to_tuple() # create hypothetical next token and extent to next_input_ids _A : Any = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids _A : Any = ids_tensor((1,) , __lowerCamelCase).item() + 1 _A : str = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) _A : Union[str, Any] = random_other_next_tokens # append to next input_ids and attn_mask _A : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) _A : Union[str, Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__lowerCamelCase)] , dim=1 , ) # get two different outputs _A : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase)["last_hidden_state"] _A : int = model(__lowerCamelCase , past_key_values=__lowerCamelCase , attention_mask=__lowerCamelCase)["last_hidden_state"] # select random slice _A : List[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() _A : Any = output_from_no_past[:, -1, random_slice_idx].detach() _A : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , *__lowerCamelCase) -> str: _A : List[Any] = BioGptModel(config=__lowerCamelCase).to(__lowerCamelCase).eval() _A : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__lowerCamelCase) # first forward pass _A : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase) _A , _A : Optional[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _A : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) _A : Union[str, Any] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and _A : Any = torch.cat([input_ids, next_tokens] , dim=-1) _A : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1) _A : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase)["last_hidden_state"] _A : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase)[ "last_hidden_state" ] # select random slice _A : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() _A : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() _A : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase=False) -> Any: _A : Optional[Any] = BioGptForCausalLM(__lowerCamelCase) model.to(__lowerCamelCase) if gradient_checkpointing: model.gradient_checkpointing_enable() _A : str = model(__lowerCamelCase , labels=__lowerCamelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def _lowerCamelCase ( self , __lowerCamelCase , *__lowerCamelCase) -> List[str]: _A : int = BioGptModel(__lowerCamelCase) _A : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , *__lowerCamelCase) -> Union[str, Any]: _A : Tuple = self.num_labels _A : Optional[Any] = BioGptForTokenClassification(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Optional[int] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self) -> Optional[Any]: _A : List[str] = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Optional[int] = config_and_inputs _A : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = (BioGptForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> List[str]: _A : List[str] = BioGptModelTester(self) _A : str = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7) def _lowerCamelCase ( self) -> int: self.config_tester.run_common_tests() def _lowerCamelCase ( self) -> Optional[int]: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Optional[int] = type self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__lowerCamelCase) def _lowerCamelCase ( self) -> Any: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__lowerCamelCase , gradient_checkpointing=__lowerCamelCase) def _lowerCamelCase ( self) -> str: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__lowerCamelCase) @slow def _lowerCamelCase ( self) -> int: _A : Dict = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(__lowerCamelCase) _A : Tuple = BioGptTokenizer.from_pretrained("microsoft/biogpt") _A : Tuple = "left" # Define PAD Token = EOS Token = 50256 _A : Any = tokenizer.eos_token _A : List[Any] = model.config.eos_token_id # use different length sentences to test batching _A : List[str] = [ "Hello, my dog is a little", "Today, I", ] _A : Dict = tokenizer(__lowerCamelCase , return_tensors="pt" , padding=__lowerCamelCase) _A : int = inputs["input_ids"].to(__lowerCamelCase) _A : Dict = model.generate( input_ids=__lowerCamelCase , attention_mask=inputs["attention_mask"].to(__lowerCamelCase) , ) _A : List[Any] = tokenizer(sentences[0] , return_tensors="pt").input_ids.to(__lowerCamelCase) _A : int = model.generate(input_ids=__lowerCamelCase) _A : List[Any] = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() _A : List[str] = tokenizer(sentences[1] , return_tensors="pt").input_ids.to(__lowerCamelCase) _A : List[str] = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings) _A : List[Any] = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase) _A : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase) _A : int = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase) _A : Any = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence]) @slow def _lowerCamelCase ( self) -> Optional[Any]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Dict = BioGptModel.from_pretrained(__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> Any: _A , _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : str = 3 _A : Dict = input_dict["input_ids"] _A : Union[str, Any] = input_ids.ne(1).to(__lowerCamelCase) _A : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _A : str = BioGptForSequenceClassification(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowerCamelCase ( self) -> Dict: _A , _A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _A : Dict = 3 _A : List[str] = "multi_label_classification" _A : Optional[int] = input_dict["input_ids"] _A : Union[str, Any] = input_ids.ne(1).to(__lowerCamelCase) _A : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) _A : str = BioGptForSequenceClassification(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @slow def _lowerCamelCase ( self) -> Dict: _A : str = BioGptForCausalLM.from_pretrained("microsoft/biogpt") _A : Dict = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) _A : List[str] = model(__lowerCamelCase)[0] _A : Union[str, Any] = 4_2_3_8_4 _A : List[str] = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , __lowerCamelCase) _A : str = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4)) @slow def _lowerCamelCase ( self) -> List[str]: _A : Optional[Any] = BioGptTokenizer.from_pretrained("microsoft/biogpt") _A : Tuple = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(__lowerCamelCase) torch.manual_seed(0) _A : int = tokenizer("COVID-19 is" , return_tensors="pt").to(__lowerCamelCase) _A : Union[str, Any] = model.generate( **__lowerCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__lowerCamelCase , ) _A : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=__lowerCamelCase) _A : List[Any] = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(__lowerCamelCase , __lowerCamelCase)
11
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
1
def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: super().__init__() _A : Any = torchvision.models.resnetaaa(pretrained=__lowerCamelCase) _A : Union[str, Any] = list(model.children())[:-2] _A : str = nn.Sequential(*__lowerCamelCase) _A : Any = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def _lowerCamelCase ( self , __lowerCamelCase) -> str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _A : str = self.pool(self.model(__lowerCamelCase)) _A : int = torch.flatten(__lowerCamelCase , start_dim=2) _A : List[Any] = out.transpose(1 , 2).contiguous() return out # BxNx2048 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[str]: _A : Dict = [json.loads(__lowerCamelCase) for l in open(__lowerCamelCase)] _A : Union[str, Any] = os.path.dirname(__lowerCamelCase) _A : Optional[Any] = tokenizer _A : Any = labels _A : str = len(__lowerCamelCase) _A : Optional[int] = max_seq_length _A : int = transforms def __len__( self) -> Optional[Any]: return len(self.data) def __getitem__( self , __lowerCamelCase) -> List[Any]: _A : str = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=__lowerCamelCase)) _A , _A , _A : List[str] = sentence[0], sentence[1:-1], sentence[-1] _A : int = sentence[: self.max_seq_length] _A : Any = torch.zeros(self.n_classes) _A : Tuple = 1 _A : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["img"])).convert("RGB") _A : Optional[Any] = self.transforms(__lowerCamelCase) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = Counter() for row in self.data: label_freqs.update(row["label"]) return label_freqs def _UpperCAmelCase (UpperCamelCase__ : List[Any] ): _A : List[str] = [len(row["sentence"] ) for row in batch] _A , _A : Union[str, Any] = len(UpperCamelCase__ ), max(UpperCamelCase__ ) _A : int = torch.zeros(UpperCamelCase__ , UpperCamelCase__ , dtype=torch.long ) _A : Tuple = torch.zeros(UpperCamelCase__ , UpperCamelCase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(UpperCamelCase__ , UpperCamelCase__ ) ): _A : Tuple = input_row["sentence"] _A : List[Any] = 1 _A : Optional[int] = torch.stack([row["image"] for row in batch] ) _A : Optional[Any] = torch.stack([row["label"] for row in batch] ) _A : List[Any] = torch.stack([row["image_start_token"] for row in batch] ) _A : Dict = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCAmelCase (): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCAmelCase (): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
11
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
1
from __future__ import annotations import numpy as np def _UpperCAmelCase (UpperCamelCase__ : list[float] ): return np.maximum(0 , UpperCamelCase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
11
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = VQModel __SCREAMING_SNAKE_CASE = "sample" @property def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]: _A : Optional[int] = 4 _A : Tuple = 3 _A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase) return {"sample": image} @property def _lowerCamelCase ( self) -> int: return (3, 3_2, 3_2) @property def _lowerCamelCase ( self) -> List[Any]: return (3, 3_2, 3_2) def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[Any] = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _A : int = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> Any: pass def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(__lowerCamelCase) _A : str = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self) -> Union[str, Any]: _A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(__lowerCamelCase).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) _A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) _A : Optional[int] = image.to(__lowerCamelCase) with torch.no_grad(): _A : List[str] = model(__lowerCamelCase).sample _A : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
11
1
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): _A : str = [] _A , _A : Dict = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _A : int = result + left + right return input_list def _UpperCAmelCase (UpperCamelCase__ : list ): if len(UpperCamelCase__ ) <= 1: return input_list _A : Optional[Any] = list(UpperCamelCase__ ) # iteration for two-way merging _A : Dict = 2 while p <= len(UpperCamelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ): _A : List[str] = i _A : Dict = i + p - 1 _A : Optional[Any] = (low + high + 1) // 2 _A : Any = merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # final merge of last two parts if p * 2 >= len(UpperCamelCase__ ): _A : int = i _A : Any = merge(UpperCamelCase__ , 0 , UpperCamelCase__ , len(UpperCamelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() if user_input == "": lowerCAmelCase__ = [] else: lowerCAmelCase__ = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase__ ( a): '''simple docstring''' def _lowerCamelCase ( self) -> List[Any]: _A : List[str] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__lowerCamelCase , "width_multiplier")) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=6_4 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase="swish" , __lowerCamelCase=3 , __lowerCamelCase=3_2 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0_2 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=None , __lowerCamelCase=0.2_5 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , ) -> int: _A : Optional[Any] = parent _A : List[str] = batch_size _A : Dict = image_size _A : Dict = patch_size _A : Optional[int] = num_channels _A : List[str] = make_divisible(5_1_2 * width_multiplier , divisor=8) _A : Any = hidden_act _A : Union[str, Any] = conv_kernel_size _A : Tuple = output_stride _A : List[Any] = classifier_dropout_prob _A : Any = use_labels _A : Union[str, Any] = is_training _A : Union[str, Any] = num_labels _A : str = initializer_range _A : Dict = scope _A : List[str] = width_multiplier _A : str = ffn_dropout _A : List[str] = attn_dropout def _lowerCamelCase ( self) -> List[Any]: _A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Union[str, Any] = None _A : List[Any] = None if self.use_labels: _A : List[str] = ids_tensor([self.batch_size] , self.num_labels) _A : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _A : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self) -> int: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Any: _A : Union[str, Any] = MobileViTVaModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : List[str] = model(__lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Any: _A : List[Any] = self.num_labels _A : Union[str, Any] = MobileViTVaForImageClassification(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : List[Any] = model(__lowerCamelCase , labels=__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Any: _A : Tuple = self.num_labels _A : Tuple = MobileViTVaForSemanticSegmentation(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = model(__lowerCamelCase) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _A : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self) -> Tuple: _A : str = self.prepare_config_and_inputs() _A , _A , _A , _A : List[Any] = config_and_inputs _A : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> Dict: _A : int = MobileViTVaModelTester(self) _A : int = MobileViTVaConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase) def _lowerCamelCase ( self) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds") def _lowerCamelCase ( self) -> Dict: pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MobileViTV2 does not output attentions") def _lowerCamelCase ( self) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run.") def _lowerCamelCase ( self) -> int: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> List[Any]: _A , _A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Any = model_class(__lowerCamelCase) _A : Optional[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Optional[Any] = [*signature.parameters.keys()] _A : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: def check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase): _A : str = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Any = outputs.hidden_states _A : str = 5 self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _A : List[Any] = 2 for i in range(len(__lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : str = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : str = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase) @slow def _lowerCamelCase ( self) -> Dict: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[int] = MobileViTVaModel.from_pretrained(__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) def _UpperCAmelCase (): _A : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowerCamelCase ( self) -> Optional[Any]: return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") if is_vision_available() else None ) @slow def _lowerCamelCase ( self) -> Optional[int]: _A : str = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256").to( __lowerCamelCase) _A : int = self.default_image_processor _A : Any = prepare_img() _A : Dict = image_processor(images=__lowerCamelCase , return_tensors="pt").to(__lowerCamelCase) # forward pass with torch.no_grad(): _A : Union[str, Any] = model(**__lowerCamelCase) # verify the logits _A : Dict = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , __lowerCamelCase) _A : str = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01]).to(__lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4)) @slow def _lowerCamelCase ( self) -> Optional[int]: _A : Union[str, Any] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") _A : List[str] = model.to(__lowerCamelCase) _A : int = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") _A : Union[str, Any] = prepare_img() _A : Tuple = image_processor(images=__lowerCamelCase , return_tensors="pt").to(__lowerCamelCase) # forward pass with torch.no_grad(): _A : Any = model(**__lowerCamelCase) _A : Tuple = outputs.logits # verify the logits _A : str = torch.Size((1, 2_1, 3_2, 3_2)) self.assertEqual(logits.shape , __lowerCamelCase) _A : Any = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=__lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCamelCase , atol=1e-4)) @slow def _lowerCamelCase ( self) -> Dict: _A : str = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") _A : Optional[Any] = model.to(__lowerCamelCase) _A : int = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") _A : Dict = prepare_img() _A : int = image_processor(images=__lowerCamelCase , return_tensors="pt").to(__lowerCamelCase) # forward pass with torch.no_grad(): _A : Tuple = model(**__lowerCamelCase) _A : Dict = outputs.logits.detach().cpu() _A : List[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCamelCase , target_sizes=[(5_0, 6_0)]) _A : Dict = torch.Size((5_0, 6_0)) self.assertEqual(segmentation[0].shape , __lowerCamelCase) _A : List[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCamelCase) _A : Optional[Any] = torch.Size((3_2, 3_2)) self.assertEqual(segmentation[0].shape , __lowerCamelCase)
11
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase__ = '</w>' lowerCAmelCase__ = '@@ ' def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Optional[int] = set() _A : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _A : Dict = do_lower_case with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[int] = json.load(__lowerCamelCase) _A : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _A : Optional[Any] = None _A : Tuple = None else: with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Optional[int] = merges_handle.read().split("\n")[:-1] _A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges] _A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : List[Any] = {} @property def _lowerCamelCase ( self) -> int: return len(self.decoder) def _lowerCamelCase ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A : int = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[int] = bigram _A : int = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : str = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : str = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : List[str] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : List[Any] = get_pairs(__lowerCamelCase) _A : Tuple = " ".join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _A : List[str] = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _A : int = word.replace(__lowerCamelCase , "") _A : int = word.replace(" " , __lowerCamelCase) _A : Union[str, Any] = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: _A : List[Any] = text.lower() _A : Optional[int] = text.split() _A : List[str] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : str = " ".join(__lowerCamelCase) # make sure @@ tokens are concatenated _A : int = "".join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : Optional[int] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return (vocab_file, merges_file)
11
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = DistilBertTokenizer __SCREAMING_SNAKE_CASE = DistilBertTokenizerFast __SCREAMING_SNAKE_CASE = True @slow def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") _A : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase) _A : str = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase) _A : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase) _A : List[str] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "vit_mae" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : List[str] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[int] = hidden_act _A : List[Any] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Union[str, Any] = initializer_range _A : str = layer_norm_eps _A : Any = image_size _A : int = patch_size _A : int = num_channels _A : Dict = qkv_bias _A : Tuple = decoder_num_attention_heads _A : Tuple = decoder_hidden_size _A : List[str] = decoder_num_hidden_layers _A : Optional[Any] = decoder_intermediate_size _A : List[str] = mask_ratio _A : Union[str, Any] = norm_pix_loss
11
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ComputeEnvironment.AMAZON_SAGEMAKER __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = "ml.p3.2xlarge" __SCREAMING_SNAKE_CASE = "accelerate_sagemaker_execution_role" __SCREAMING_SNAKE_CASE = "hf-sm" __SCREAMING_SNAKE_CASE = "us-east-1" __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = "accelerate-sagemaker-1" __SCREAMING_SNAKE_CASE = "1.6" __SCREAMING_SNAKE_CASE = "4.4" __SCREAMING_SNAKE_CASE = "train.py" __SCREAMING_SNAKE_CASE = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __SCREAMING_SNAKE_CASE = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. _A : Any = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args["model_name_or_path"] , __lowerCamelCase) assert isinstance(converted_args["do_train"] , __lowerCamelCase) assert isinstance(converted_args["epochs"] , __lowerCamelCase) assert isinstance(converted_args["learning_rate"] , __lowerCamelCase) assert isinstance(converted_args["max_steps"] , __lowerCamelCase) with pytest.raises(__lowerCamelCase): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
11
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[int] = legacy_behaviour super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) _A : int = vocab_file _A : Optional[Any] = False if not self.vocab_file else True _A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "eng_Latn" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Tuple = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : List[Any] = src_lang _A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Tuple = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding: _A : Tuple = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : List[str] = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] else: _A : Tuple = [self.cur_lang_code] _A : Optional[Any] = [self.eos_token_id] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : Tuple = [] _A : Any = [self.eos_token_id, self.cur_lang_code] else: _A : Union[str, Any] = [self.cur_lang_code] _A : str = [self.eos_token_id] _A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase__ = float('nan') class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: _A : List[Any] = sys.stdout _A : str = open(__lowerCamelCase , "a") def __getattr__( self , __lowerCamelCase) -> List[str]: return getattr(self.stdout , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: self.stdout.write(__lowerCamelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M)) def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ): _A : Tuple = [] # deal with critical env vars _A : Dict = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _A : Tuple = [] _A : Dict = "" while len(UpperCamelCase__ ) > 0: current_line += f"{cmd.pop(0 )} " if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) _A : Union[str, Any] = "" return "\\\n".join(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): # unwrap multi-line input _A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own _A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) _A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams _A : Tuple = variation.replace(" " , "-" ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f: _A : List[str] = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): _A : Union[str, Any] = [] _A : Optional[int] = [] _A : Any = f"{id}: {variation:<{longest_variation_len}}" _A : Dict = f"{preamble}: " _A : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): _A : Optional[Any] = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" _A : str = f"\33[2K\r{outcome}" if len(UpperCamelCase__ ) > 0: _A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _A : Any = round(mean_metrics[target_metric_key] , 2 ) _A : Tuple = f"{outcome} {mean_target}" if len(UpperCamelCase__ ) > 1: results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}" print(UpperCamelCase__ ) _A : Optional[int] = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def _UpperCAmelCase (): _A : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = pd.DataFrame(UpperCamelCase__ ) _A : List[str] = "variation" _A : List[Any] = "diff_%" _A : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel _A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): _A : Optional[Any] = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns _A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols # capitalize _A : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible _A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" ) _A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" ) _A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] print("\n\n".join(UpperCamelCase__ ) ) def _UpperCAmelCase (): _A : int = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , ) parser.add_argument( "--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) _A : int = parser.parse_args() _A : Union[str, Any] = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) _A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations _A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) ) _A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys _A : str = args.report_metric_keys.split() # capture prints into a log file for convenience _A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _A : Tuple = Tee(UpperCamelCase__ ) print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" ) print(f"Base command: {' '.join(UpperCamelCase__ )}" ) _A : str = "variation" _A : Union[str, Any] = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ): _A : Dict = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
11
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Overwrite the cached training and evaluation sets"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "The number of processes to use for the preprocessing."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCamelCase ( self) -> int: if self.train_file is not None: _A : Optional[int] = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _A : Dict = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , __lowerCamelCase) -> str: _A : List[Any] = "label" if "label" in features[0].keys() else "labels" _A : Any = [feature.pop(__lowerCamelCase) for feature in features] _A : Optional[int] = len(__lowerCamelCase) _A : int = len(features[0]["input_ids"]) _A : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features ] _A : str = list(chain(*__lowerCamelCase)) _A : Tuple = self.tokenizer.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()} # Add back labels _A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa) return batch def _UpperCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A : int = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _A : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _A : List[str] = {} if data_args.train_file is not None: _A : Optional[int] = data_args.train_file if data_args.validation_file is not None: _A : Tuple = data_args.validation_file _A : Union[str, Any] = data_args.train_file.split("." )[-1] _A : List[str] = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _A : Union[str, Any] = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _A : str = [f"ending{i}" for i in range(4 )] _A : Union[str, Any] = "sent1" _A : str = "sent2" if data_args.max_seq_length is None: _A : Any = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _A : Optional[Any] = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _A : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ : List[Any] ): _A : List[Any] = [[context] * 4 for context in examples[context_name]] _A : Any = examples[question_header_name] _A : Union[str, Any] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out _A : Dict = list(chain(*UpperCamelCase__ ) ) _A : List[Any] = list(chain(*UpperCamelCase__ ) ) # Tokenize _A : str = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _A : Optional[int] = raw_datasets["train"] if data_args.max_train_samples is not None: _A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) _A : Any = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _A : Optional[int] = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _A : Optional[int] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) _A : Dict = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _A : List[str] = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _A : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ : Tuple ): _A , _A : List[str] = eval_predictions _A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _A : List[str] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: _A : Any = None if training_args.resume_from_checkpoint is not None: _A : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A : int = last_checkpoint _A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _A : Optional[int] = train_result.metrics _A : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) _A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("train" , UpperCamelCase__ ) trainer.save_metrics("train" , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _A : List[Any] = trainer.evaluate() _A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) _A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("eval" , UpperCamelCase__ ) trainer.save_metrics("eval" , UpperCamelCase__ ) _A : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
11
1
import socket def _UpperCAmelCase (): _A : Optional[Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _A : Optional[int] = socket.gethostname() _A : str = 12312 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: _A : Any = sock.recv(1024 ) if not data: break out_file.write(UpperCamelCase__ ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
11
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env") def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: # create estimator _A : Union[str, Any] = self.create_estimator(__lowerCamelCase) # run training estimator.fit() # result dataframe _A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
11
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLTokenizer __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A : Optional[int] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] _A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : str = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] _A : str = {"unk_token": "<unk>"} _A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) _A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__lowerCamelCase) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(__lowerCamelCase)) def _lowerCamelCase ( self , **__lowerCamelCase) -> Dict: kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A : List[Any] = "adapt react readapt apt" _A : Any = "adapt react readapt apt" return input_text, output_text def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _A : str = "adapt react readapt apt" _A : List[Any] = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() _A : List[str] = tokenizer.tokenize(__lowerCamelCase) self.assertListEqual(__lowerCamelCase , __lowerCamelCase) _A : List[Any] = tokens + [tokenizer.unk_token] _A : List[Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase) , __lowerCamelCase)
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : int=None ): _A : Dict = None if token is not None: _A : List[str] = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} _A : Union[str, Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _A : str = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json() _A : int = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _A : str = math.ceil((result["total_count"] - 100) / 100 ) for i in range(UpperCamelCase__ ): _A : Optional[int] = requests.get(url + f"&page={i + 2}" , headers=UpperCamelCase__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=None ): _A : int = None if token is not None: _A : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} _A : Optional[int] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" _A : Dict = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json() _A : str = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _A : List[str] = math.ceil((result["total_count"] - 100) / 100 ) for i in range(UpperCamelCase__ ): _A : List[Any] = requests.get(url + f"&page={i + 2}" , headers=UpperCamelCase__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ): _A : str = None if token is not None: _A : Tuple = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} _A : str = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ , allow_redirects=UpperCamelCase__ ) _A : str = result.headers["Location"] _A : Any = requests.get(UpperCamelCase__ , allow_redirects=UpperCamelCase__ ) _A : List[str] = os.path.join(UpperCamelCase__ , f"{artifact_name}.zip" ) with open(UpperCamelCase__ , "wb" ) as fp: fp.write(response.content ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None ): _A : List[Any] = [] _A : Optional[int] = [] _A : Optional[Any] = None with zipfile.ZipFile(UpperCamelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCamelCase__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(UpperCamelCase__ ) as f: for line in f: _A : Dict = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Optional[int] = line[: line.index(": " )] _A : Union[str, Any] = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _A : str = line[len("FAILED " ) :] failed_tests.append(UpperCamelCase__ ) elif filename == "job_name.txt": _A : Any = line if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCamelCase__ )} for `errors` " f"and {len(UpperCamelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) _A : List[str] = None if job_name and job_links: _A : Optional[Any] = job_links.get(UpperCamelCase__ , UpperCamelCase__ ) # A list with elements of the form (line of error, error, failed test) _A : Tuple = [x + [y] + [job_link] for x, y in zip(UpperCamelCase__ , UpperCamelCase__ )] return result def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): _A : int = [] _A : Optional[Any] = [os.path.join(UpperCamelCase__ , UpperCamelCase__ ) for p in os.listdir(UpperCamelCase__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(UpperCamelCase__ , job_links=UpperCamelCase__ ) ) return errors def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Dict=None ): _A : Tuple = Counter() counter.update([x[1] for x in logs] ) _A : int = counter.most_common() _A : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : Dict = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Tuple = dict(sorted(r.items() , key=lambda UpperCamelCase__ : item[1]["count"] , reverse=UpperCamelCase__ ) ) return r def _UpperCAmelCase (UpperCamelCase__ : Dict ): _A : Dict = test.split("::" )[0] if test.startswith("tests/models/" ): _A : int = test.split("/" )[2] else: _A : List[str] = None return test def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None ): _A : Union[str, Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Any = [x for x in logs if x[2] is not None] _A : List[str] = {x[2] for x in logs} _A : int = {} for test in tests: _A : int = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Optional[Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : Optional[Any] = sum(error_counts.values() ) if n_errors > 0: _A : Dict = {"count": n_errors, "errors": error_counts} _A : Optional[int] = dict(sorted(r.items() , key=lambda UpperCamelCase__ : item[1]["count"] , reverse=UpperCamelCase__ ) ) return r def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A : Dict = "| no. | error | status |" _A : int = "|-:|:-|:-|" _A : Tuple = [header, sep] for error in reduced_by_error: _A : Tuple = reduced_by_error[error]["count"] _A : Dict = f"| {count} | {error[:100]} | |" lines.append(UpperCamelCase__ ) return "\n".join(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Tuple = "| model | no. of errors | major error | count |" _A : Tuple = "|-:|-:|-:|-:|" _A : Optional[Any] = [header, sep] for model in reduced_by_model: _A : List[Any] = reduced_by_model[model]["count"] _A , _A : Dict = list(reduced_by_model[model]["errors"].items() )[0] _A : List[Any] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(UpperCamelCase__ ) return "\n".join(UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase__ = get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase__ = k.find(' / ') lowerCAmelCase__ = k[index + len(' / ') :] lowerCAmelCase__ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase__ = reduce_by_error(errors) lowerCAmelCase__ = reduce_by_model(errors) lowerCAmelCase__ = make_github_table(reduced_by_error) lowerCAmelCase__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
11
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def _UpperCAmelCase (): _A : List[str] = Node(1 ) _A : Optional[Any] = Node(2 ) _A : Dict = Node(3 ) _A : Optional[Any] = Node(4 ) _A : str = Node(5 ) return tree def _UpperCAmelCase (UpperCamelCase__ : Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _UpperCAmelCase (UpperCamelCase__ : Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _UpperCAmelCase (UpperCamelCase__ : Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _UpperCAmelCase (UpperCamelCase__ : Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _UpperCAmelCase (UpperCamelCase__ : Node | None ): _A : list[Any] = [] if root is None: return output _A : Union[str, Any] = deque([root] ) while process_queue: _A : str = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _UpperCAmelCase (UpperCamelCase__ : Node | None , UpperCamelCase__ : int ): _A : list[Any] = [] def populate_output(UpperCamelCase__ : Node | None , UpperCamelCase__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def _UpperCAmelCase (UpperCamelCase__ : Node | None , UpperCamelCase__ : int ): _A : list[Any] = [] def populate_output(UpperCamelCase__ : Node | None , UpperCamelCase__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def _UpperCAmelCase (UpperCamelCase__ : Node | None ): if root is None: return [] _A : list[Sequence[Node | None]] = [] _A : Dict = 0 _A : str = height(UpperCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCamelCase__ , UpperCamelCase__ ) ) _A : Optional[int] = 1 else: output.append(get_nodes_from_right_to_left(UpperCamelCase__ , UpperCamelCase__ ) ) _A : Tuple = 0 return output def _UpperCAmelCase (): # Main function for testing. _A : str = make_tree() print(f"In-order Traversal: {inorder(UpperCamelCase__ )}" ) print(f"Pre-order Traversal: {preorder(UpperCamelCase__ )}" ) print(f"Post-order Traversal: {postorder(UpperCamelCase__ )}" , "\n" ) print(f"Height of Tree: {height(UpperCamelCase__ )}" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(UpperCamelCase__ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(UpperCamelCase__ ) + 1 ): print(f"Level {level}:" , get_nodes_from_left_to_right(UpperCamelCase__ , level=UpperCamelCase__ ) ) print("\nZigZag order Traversal: " ) print(zigzag(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[int] = legacy_behaviour super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) _A : int = vocab_file _A : Optional[Any] = False if not self.vocab_file else True _A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "eng_Latn" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Tuple = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : List[Any] = src_lang _A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Tuple = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding: _A : Tuple = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : List[str] = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] else: _A : Tuple = [self.cur_lang_code] _A : Optional[Any] = [self.eos_token_id] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : Tuple = [] _A : Any = [self.eos_token_id, self.cur_lang_code] else: _A : Union[str, Any] = [self.cur_lang_code] _A : str = [self.eos_token_id] _A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "deit" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , **__lowerCamelCase , ) -> List[Any]: super().__init__(**__lowerCamelCase) _A : Dict = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : int = intermediate_size _A : Optional[int] = hidden_act _A : List[str] = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : int = initializer_range _A : Any = layer_norm_eps _A : Tuple = image_size _A : Union[str, Any] = patch_size _A : str = num_channels _A : Dict = qkv_bias _A : Dict = encoder_stride class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("1.11") @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def _lowerCamelCase ( self) -> float: return 1e-4
11
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
1
import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str: _A : Optional[int] = bp_numa _A : Dict = bp_numa _A : Tuple = bp_numa _A : List[str] = conva_get[:2] _A : Tuple = conva_get[2] _A : Optional[int] = size_pa _A : Optional[Any] = rate_w _A : Optional[Any] = rate_t _A : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] _A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Any = -2 * np.random.rand(self.conva[1]) + 1 _A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1 _A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1 def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # save model dict with pickle _A : Dict = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__lowerCamelCase , "wb") as f: pickle.dump(__lowerCamelCase , __lowerCamelCase) print(F"Model saved: {save_path}") @classmethod def _lowerCamelCase ( cls , __lowerCamelCase) -> Any: # read saved model with open(__lowerCamelCase , "rb") as f: _A : Any = pickle.load(__lowerCamelCase) # noqa: S301 _A : Optional[int] = model_dic.get("conv1") conv_get.append(model_dic.get("step_conv1")) _A : str = model_dic.get("size_pooling1") _A : List[str] = model_dic.get("num_bp1") _A : Union[str, Any] = model_dic.get("num_bp2") _A : List[Any] = model_dic.get("num_bp3") _A : Dict = model_dic.get("rate_weight") _A : List[Any] = model_dic.get("rate_thre") # create model instance _A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # modify model parameter _A : List[Any] = model_dic.get("w_conv1") _A : Union[str, Any] = model_dic.get("wkj") _A : str = model_dic.get("vji") _A : List[str] = model_dic.get("thre_conv1") _A : Optional[Any] = model_dic.get("thre_bp2") _A : Dict = model_dic.get("thre_bp3") return conv_ins def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return 1 / (1 + np.exp(-1 * x)) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: return round(__lowerCamelCase , 3) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # convolution process _A : Tuple = convs[0] _A : Union[str, Any] = convs[1] _A : List[Any] = np.shape(__lowerCamelCase)[0] # get the data slice of original image data, data_focus _A : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): _A : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__lowerCamelCase) # calculate the feature map of every single kernel, and saved as list of matrix _A : Optional[Any] = [] _A : Optional[int] = int((size_data - size_conv) / conv_step + 1) for i_map in range(__lowerCamelCase): _A : Optional[int] = [] for i_focus in range(len(__lowerCamelCase)): _A : Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(__lowerCamelCase)) _A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape( __lowerCamelCase , __lowerCamelCase) data_featuremap.append(__lowerCamelCase) # expanding the data slice to One dimenssion _A : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__lowerCamelCase)) _A : Dict = np.asarray(__lowerCamelCase) return focus_list, data_featuremap def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict: # pooling process _A : Optional[Any] = len(featuremaps[0]) _A : str = int(size_map / size_pooling) _A : Optional[int] = [] for i_map in range(len(__lowerCamelCase)): _A : int = featuremaps[i_map] _A : Optional[int] = [] for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase): for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase): _A : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__lowerCamelCase)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__lowerCamelCase)) _A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase) featuremap_pooled.append(__lowerCamelCase) return featuremap_pooled def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: # expanding three dimension data to one dimension list _A : Tuple = [] for i in range(len(__lowerCamelCase)): _A : Union[str, Any] = np.shape(data[i]) _A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1]) _A : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__lowerCamelCase) _A : Optional[Any] = np.asarray(__lowerCamelCase) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: # expanding matrix to one dimension list _A : List[Any] = np.asarray(__lowerCamelCase) _A : Union[str, Any] = np.shape(__lowerCamelCase) _A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Dict = [] _A : Any = 0 for i_map in range(__lowerCamelCase): _A : Union[str, Any] = np.ones((size_map, size_map)) for i in range(0 , __lowerCamelCase , __lowerCamelCase): for j in range(0 , __lowerCamelCase , __lowerCamelCase): _A : List[Any] = pd_pool[ i_pool ] _A : Tuple = i_pool + 1 _A : Optional[Any] = np.multiply( __lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(__lowerCamelCase) return pd_all def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]: # model traning print("----------------------Start Training-------------------------") print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase))) print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase))) _A : Tuple = 0 _A : Dict = [] _A : Optional[Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _A : Union[str, Any] = 0 print(F"-------------Learning Time {rp}--------------") for p in range(len(__lowerCamelCase)): # print('------------Learning Image: %d--------------'%p) _A : str = np.asmatrix(datas_train[p]) _A : Union[str, Any] = np.asarray(datas_teach[p]) _A , _A : Any = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = np.shape(__lowerCamelCase) _A : List[str] = self._expand(__lowerCamelCase) _A : Tuple = data_bp_input _A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa _A : List[Any] = self.sig(__lowerCamelCase) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa _A : List[str] = self.sig(__lowerCamelCase) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _A : int = np.multiply( (data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Optional[Any] = np.multiply( np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji) _A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga) _A : Dict = pd_conva_pooled.T.getA().tolist() _A : Optional[Any] = self._calculate_gradient_from_pool( __lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): _A : int = self._expand_mat(pd_conva_all[k_conv]) _A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase) _A : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) _A : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer _A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight _A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre _A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _A : Optional[int] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _A : Any = rp + 1 _A : Dict = error_count / patterns all_mse.append(__lowerCamelCase) def draw_error(): _A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(__lowerCamelCase , "+-") plt.plot(__lowerCamelCase , "r--") plt.xlabel("Learning Times") plt.ylabel("All_mse") plt.grid(__lowerCamelCase , alpha=0.5) plt.show() print("------------------Training Complished---------------------") print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def _lowerCamelCase ( self , __lowerCamelCase) -> int: # model predict _A : Union[str, Any] = [] print("-------------------Start Testing-------------------------") print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase))) for p in range(len(__lowerCamelCase)): _A : int = np.asmatrix(datas_test[p]) _A , _A : List[Any] = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : str = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = self._expand(__lowerCamelCase) _A : List[Any] = data_bp_input _A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa _A : int = self.sig(__lowerCamelCase) _A : int = bp_outa * self.wkj.T - self.thre_bpa _A : Optional[int] = self.sig(__lowerCamelCase) produce_out.extend(bp_outa.getA().tolist()) _A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out] return np.asarray(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # return the data of image after convoluting process so we can check it out _A : Optional[int] = np.asmatrix(__lowerCamelCase) _A , _A : Tuple = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
11
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase__ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = load_tool("text-question-answering") self.tool.setup() _A : List[Any] = load_tool("text-question-answering" , remote=__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Union[str, Any] = self.tool(__lowerCamelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__lowerCamelCase , "launched the BigScience Research Workshop") def _lowerCamelCase ( self) -> Dict: _A : List[Any] = self.remote_tool(__lowerCamelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__lowerCamelCase , "launched the BigScience Research Workshop") def _lowerCamelCase ( self) -> str: _A : int = self.tool(text=__lowerCamelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__lowerCamelCase , "launched the BigScience Research Workshop") def _lowerCamelCase ( self) -> List[Any]: _A : Union[str, Any] = self.remote_tool(text=__lowerCamelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__lowerCamelCase , "launched the BigScience Research Workshop")
11
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) _A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = AutoConfig.from_pretrained("gpt2") _A : int = GenerationConfig.from_model_config(__lowerCamelCase) _A : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = GenerationConfig() _A : List[Any] = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _A : List[str] = copy.deepcopy(__lowerCamelCase) _A : int = generation_config.update(**__lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"}) def _lowerCamelCase ( self) -> Any: _A : int = GenerationConfig() _A : int = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__lowerCamelCase) _A : Any = GenerationConfig.from_pretrained(__lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") _A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase) assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config def _lowerCamelCase ( self) -> List[str]: _A : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCamelCase) self.assertEqual(default_config.num_beams , 1) _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase) _A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[int]: _A : Dict = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _lowerCamelCase ( self) -> Any: _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) _A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Union[str, Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) _A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
11
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str: _A : Optional[int] = bp_numa _A : Dict = bp_numa _A : Tuple = bp_numa _A : List[str] = conva_get[:2] _A : Tuple = conva_get[2] _A : Optional[int] = size_pa _A : Optional[Any] = rate_w _A : Optional[Any] = rate_t _A : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] _A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Any = -2 * np.random.rand(self.conva[1]) + 1 _A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1 _A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1 def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # save model dict with pickle _A : Dict = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__lowerCamelCase , "wb") as f: pickle.dump(__lowerCamelCase , __lowerCamelCase) print(F"Model saved: {save_path}") @classmethod def _lowerCamelCase ( cls , __lowerCamelCase) -> Any: # read saved model with open(__lowerCamelCase , "rb") as f: _A : Any = pickle.load(__lowerCamelCase) # noqa: S301 _A : Optional[int] = model_dic.get("conv1") conv_get.append(model_dic.get("step_conv1")) _A : str = model_dic.get("size_pooling1") _A : List[str] = model_dic.get("num_bp1") _A : Union[str, Any] = model_dic.get("num_bp2") _A : List[Any] = model_dic.get("num_bp3") _A : Dict = model_dic.get("rate_weight") _A : List[Any] = model_dic.get("rate_thre") # create model instance _A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # modify model parameter _A : List[Any] = model_dic.get("w_conv1") _A : Union[str, Any] = model_dic.get("wkj") _A : str = model_dic.get("vji") _A : List[str] = model_dic.get("thre_conv1") _A : Optional[Any] = model_dic.get("thre_bp2") _A : Dict = model_dic.get("thre_bp3") return conv_ins def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return 1 / (1 + np.exp(-1 * x)) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: return round(__lowerCamelCase , 3) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # convolution process _A : Tuple = convs[0] _A : Union[str, Any] = convs[1] _A : List[Any] = np.shape(__lowerCamelCase)[0] # get the data slice of original image data, data_focus _A : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): _A : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__lowerCamelCase) # calculate the feature map of every single kernel, and saved as list of matrix _A : Optional[Any] = [] _A : Optional[int] = int((size_data - size_conv) / conv_step + 1) for i_map in range(__lowerCamelCase): _A : Optional[int] = [] for i_focus in range(len(__lowerCamelCase)): _A : Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(__lowerCamelCase)) _A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape( __lowerCamelCase , __lowerCamelCase) data_featuremap.append(__lowerCamelCase) # expanding the data slice to One dimenssion _A : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__lowerCamelCase)) _A : Dict = np.asarray(__lowerCamelCase) return focus_list, data_featuremap def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict: # pooling process _A : Optional[Any] = len(featuremaps[0]) _A : str = int(size_map / size_pooling) _A : Optional[int] = [] for i_map in range(len(__lowerCamelCase)): _A : int = featuremaps[i_map] _A : Optional[int] = [] for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase): for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase): _A : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__lowerCamelCase)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__lowerCamelCase)) _A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase) featuremap_pooled.append(__lowerCamelCase) return featuremap_pooled def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: # expanding three dimension data to one dimension list _A : Tuple = [] for i in range(len(__lowerCamelCase)): _A : Union[str, Any] = np.shape(data[i]) _A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1]) _A : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__lowerCamelCase) _A : Optional[Any] = np.asarray(__lowerCamelCase) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: # expanding matrix to one dimension list _A : List[Any] = np.asarray(__lowerCamelCase) _A : Union[str, Any] = np.shape(__lowerCamelCase) _A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Dict = [] _A : Any = 0 for i_map in range(__lowerCamelCase): _A : Union[str, Any] = np.ones((size_map, size_map)) for i in range(0 , __lowerCamelCase , __lowerCamelCase): for j in range(0 , __lowerCamelCase , __lowerCamelCase): _A : List[Any] = pd_pool[ i_pool ] _A : Tuple = i_pool + 1 _A : Optional[Any] = np.multiply( __lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(__lowerCamelCase) return pd_all def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]: # model traning print("----------------------Start Training-------------------------") print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase))) print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase))) _A : Tuple = 0 _A : Dict = [] _A : Optional[Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _A : Union[str, Any] = 0 print(F"-------------Learning Time {rp}--------------") for p in range(len(__lowerCamelCase)): # print('------------Learning Image: %d--------------'%p) _A : str = np.asmatrix(datas_train[p]) _A : Union[str, Any] = np.asarray(datas_teach[p]) _A , _A : Any = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = np.shape(__lowerCamelCase) _A : List[str] = self._expand(__lowerCamelCase) _A : Tuple = data_bp_input _A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa _A : List[Any] = self.sig(__lowerCamelCase) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa _A : List[str] = self.sig(__lowerCamelCase) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _A : int = np.multiply( (data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Optional[Any] = np.multiply( np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji) _A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga) _A : Dict = pd_conva_pooled.T.getA().tolist() _A : Optional[Any] = self._calculate_gradient_from_pool( __lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): _A : int = self._expand_mat(pd_conva_all[k_conv]) _A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase) _A : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) _A : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer _A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight _A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre _A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _A : Optional[int] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _A : Any = rp + 1 _A : Dict = error_count / patterns all_mse.append(__lowerCamelCase) def draw_error(): _A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(__lowerCamelCase , "+-") plt.plot(__lowerCamelCase , "r--") plt.xlabel("Learning Times") plt.ylabel("All_mse") plt.grid(__lowerCamelCase , alpha=0.5) plt.show() print("------------------Training Complished---------------------") print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def _lowerCamelCase ( self , __lowerCamelCase) -> int: # model predict _A : Union[str, Any] = [] print("-------------------Start Testing-------------------------") print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase))) for p in range(len(__lowerCamelCase)): _A : int = np.asmatrix(datas_test[p]) _A , _A : List[Any] = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : str = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = self._expand(__lowerCamelCase) _A : List[Any] = data_bp_input _A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa _A : int = self.sig(__lowerCamelCase) _A : int = bp_outa * self.wkj.T - self.thre_bpa _A : Optional[int] = self.sig(__lowerCamelCase) produce_out.extend(bp_outa.getA().tolist()) _A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out] return np.asarray(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # return the data of image after convoluting process so we can check it out _A : Optional[int] = np.asmatrix(__lowerCamelCase) _A , _A : Tuple = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
11
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
11
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): _A : str = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def _UpperCAmelCase (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : int = _get_partition_rules() _A : Optional[int] = _replacement_rules(UpperCamelCase__ ) _A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
11
1
lowerCAmelCase__ = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) lowerCAmelCase__ = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : str , UpperCamelCase__ : str ): _A : Dict = from_type.lower().strip("s" ) _A : str = to_type.lower().strip("s" ) _A : Optional[Any] = UNIT_SYMBOL.get(UpperCamelCase__ , UpperCamelCase__ ) _A : int = UNIT_SYMBOL.get(UpperCamelCase__ , UpperCamelCase__ ) if from_sanitized not in METRIC_CONVERSION: _A : List[str] = ( f"Invalid 'from_type' value: {from_type!r}.\n" f"Conversion abbreviations are: {', '.join(UpperCamelCase__ )}" ) raise ValueError(UpperCamelCase__ ) if to_sanitized not in METRIC_CONVERSION: _A : Optional[Any] = ( f"Invalid 'to_type' value: {to_type!r}.\n" f"Conversion abbreviations are: {', '.join(UpperCamelCase__ )}" ) raise ValueError(UpperCamelCase__ ) _A : str = METRIC_CONVERSION[from_sanitized] _A : Union[str, Any] = METRIC_CONVERSION[to_sanitized] _A : str = 1 if from_exponent > to_exponent: _A : Union[str, Any] = from_exponent - to_exponent else: _A : Any = -(to_exponent - from_exponent) return value * pow(10 , UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
11
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) _A : int = input_str.split("_" ) _A : str = 0 if use_pascal else 1 _A : str = words[start_index:] _A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] _A : Any = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
11
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '▁' lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase__ = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase__ = {'vinai/bartpho-syllable': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _A : Tuple = vocab_file _A : Tuple = monolingual_vocab_file _A : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__lowerCamelCase)) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A : List[Any] = {} _A : Optional[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase) not in self.fairseq_tokens_to_ids: _A : Union[str, Any] = cnt cnt += 1 with open(__lowerCamelCase , "r" , encoding="utf-8") as f: for line in f.readlines(): _A : int = line.strip().split()[0] _A : str = len(self.fairseq_tokens_to_ids) if str(__lowerCamelCase) not in self.fairseq_tokens_to_ids: _A : Optional[int] = len(self.fairseq_tokens_to_ids) _A : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self) -> List[Any]: _A : Dict = self.__dict__.copy() _A : int = None _A : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowerCamelCase) -> List[Any]: _A : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): _A : Optional[int] = {} _A : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A : int = [self.cls_token_id] _A : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase)) + [1] return [1] + ([0] * len(__lowerCamelCase)) + [1, 1] + ([0] * len(__lowerCamelCase)) + [1] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : str = [self.sep_token_id] _A : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def _lowerCamelCase ( self) -> int: return len(self.fairseq_ids_to_tokens) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Optional[Any] = {self.convert_ids_to_tokens(__lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[int]: return self.fairseq_ids_to_tokens[index] def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A : Optional[Any] = "".join(__lowerCamelCase).replace(__lowerCamelCase , " ").strip() return out_string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Optional[int] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(__lowerCamelCase , "wb") as fi: _A : int = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase) if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath( __lowerCamelCase) and os.path.isfile(self.monolingual_vocab_file): copyfile(self.monolingual_vocab_file , __lowerCamelCase) elif not os.path.isfile(self.monolingual_vocab_file): with open(__lowerCamelCase , "w" , encoding="utf-8") as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"{str(__lowerCamelCase)} \n") return out_vocab_file, out_monolingual_vocab_file
11
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
1
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase)
11
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('T') def _UpperCAmelCase (UpperCamelCase__ : int ): return (position - 1) // 2 def _UpperCAmelCase (UpperCamelCase__ : int ): return (2 * position) + 1 def _UpperCAmelCase (UpperCamelCase__ : int ): return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T]): '''simple docstring''' def __init__( self) -> None: _A : list[tuple[T, int]] = [] _A : dict[T, int] = {} _A : int = 0 def __len__( self) -> int: return self.elements def __repr__( self) -> str: return str(self.heap) def _lowerCamelCase ( self) -> bool: # Check if the priority queue is empty return self.elements == 0 def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight)) _A : int = self.elements self.elements += 1 self._bubble_up(__lowerCamelCase) def _lowerCamelCase ( self) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1) _A , _A : Optional[Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _A , _A : str = self.heap[0] self._bubble_down(__lowerCamelCase) return elem def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None: # Update the weight of the given key _A : Optional[Any] = self.position_map[elem] _A : Any = (elem, weight) if position > 0: _A : Any = get_parent_position(__lowerCamelCase) _A , _A : Tuple = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__lowerCamelCase) else: self._bubble_down(__lowerCamelCase) else: self._bubble_down(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _A : Optional[int] = self.position_map[elem] if curr_pos == 0: return None _A : Optional[Any] = get_parent_position(__lowerCamelCase) _A , _A : Any = self.heap[curr_pos] _A , _A : str = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__lowerCamelCase , __lowerCamelCase) return self._bubble_up(__lowerCamelCase) return None def _lowerCamelCase ( self , __lowerCamelCase) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _A : Any = self.position_map[elem] _A , _A : Optional[int] = self.heap[curr_pos] _A : Optional[int] = get_child_left_position(__lowerCamelCase) _A : List[str] = get_child_right_position(__lowerCamelCase) if child_left_position < self.elements and child_right_position < self.elements: _A , _A : str = self.heap[child_left_position] _A , _A : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__lowerCamelCase , __lowerCamelCase) return self._bubble_down(__lowerCamelCase) if child_left_position < self.elements: _A , _A : int = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__lowerCamelCase , __lowerCamelCase) return self._bubble_down(__lowerCamelCase) else: return None if child_right_position < self.elements: _A , _A : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__lowerCamelCase , __lowerCamelCase) return self._bubble_down(__lowerCamelCase) return None def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None: # Swap the nodes at the given positions _A : str = self.heap[nodea_pos][0] _A : List[Any] = self.heap[nodea_pos][0] _A , _A : Dict = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _A : Tuple = nodea_pos _A : int = nodea_pos class lowerCAmelCase__ ( Generic[T]): '''simple docstring''' def __init__( self) -> None: _A : dict[T, dict[T, int]] = {} _A : int = 0 def __repr__( self) -> str: return str(self.connections) def __len__( self) -> int: return self.nodes def _lowerCamelCase ( self , __lowerCamelCase) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _A : Optional[int] = {} self.nodes += 1 def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> None: # Add an edge between 2 nodes in the graph self.add_node(__lowerCamelCase) self.add_node(__lowerCamelCase) _A : Optional[int] = weight _A : str = weight def _UpperCAmelCase (UpperCamelCase__ : GraphUndirectedWeighted[T] , ): _A : dict[T, int] = {node: maxsize for node in graph.connections} _A : dict[T, T | None] = {node: None for node in graph.connections} _A : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(UpperCamelCase__ , UpperCamelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization _A : List[str] = priority_queue.extract_min() _A : Tuple = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase__ , dist[neighbour] ) _A : int = node # running prim's algorithm while not priority_queue.is_empty(): _A : Optional[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _A : Optional[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase__ , dist[neighbour] ) _A : Any = node return dist, parent
11
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
1
lowerCAmelCase__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase__ = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): assert len(str(UpperCamelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _A : List[Any] = year // 100 _A : List[str] = (5 * (century % 4) + 2) % 7 _A : str = year % 100 _A : List[Any] = centurian % 12 _A : Tuple = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _A : Optional[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _A : Tuple = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase)
11
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.0 , __lowerCamelCase = None , __lowerCamelCase = "geglu" , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = "layer_norm" , __lowerCamelCase = False , ) -> Optional[int]: super().__init__() _A : Optional[Any] = only_cross_attention _A : int = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _A : List[Any] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.") # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _A : Any = AdaLayerNorm(__lowerCamelCase , __lowerCamelCase) elif self.use_ada_layer_norm_zero: _A : Optional[int] = AdaLayerNormZero(__lowerCamelCase , __lowerCamelCase) else: _A : str = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) _A : int = Attention( query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowerCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _A : int = ( AdaLayerNorm(__lowerCamelCase , __lowerCamelCase) if self.use_ada_layer_norm else nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) ) _A : Optional[int] = Attention( query_dim=__lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , upcast_attention=__lowerCamelCase , ) # is self-attn if encoder_hidden_states is none else: _A : Tuple = None _A : List[Any] = None # 3. Feed-forward _A : Any = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) _A : Any = FeedForward(__lowerCamelCase , dropout=__lowerCamelCase , activation_fn=__lowerCamelCase , final_dropout=__lowerCamelCase) # let chunk size default to None _A : Optional[int] = None _A : List[Any] = 0 def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # Sets chunk feed-forward _A : Optional[int] = chunk_size _A : str = dim def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , ) -> int: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _A : Union[str, Any] = self.norma(__lowerCamelCase , __lowerCamelCase) elif self.use_ada_layer_norm_zero: _A , _A , _A , _A , _A : Tuple = self.norma( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hidden_dtype=hidden_states.dtype) else: _A : Tuple = self.norma(__lowerCamelCase) _A : Dict = cross_attention_kwargs if cross_attention_kwargs is not None else {} _A : Optional[Any] = self.attna( __lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowerCamelCase , **__lowerCamelCase , ) if self.use_ada_layer_norm_zero: _A : int = gate_msa.unsqueeze(1) * attn_output _A : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _A : Any = ( self.norma(__lowerCamelCase , __lowerCamelCase) if self.use_ada_layer_norm else self.norma(__lowerCamelCase) ) _A : Union[str, Any] = self.attna( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=__lowerCamelCase , **__lowerCamelCase , ) _A : Any = attn_output + hidden_states # 3. Feed-forward _A : str = self.norma(__lowerCamelCase) if self.use_ada_layer_norm_zero: _A : Optional[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.") _A : Optional[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _A : int = torch.cat( [self.ff(__lowerCamelCase) for hid_slice in norm_hidden_states.chunk(__lowerCamelCase , dim=self._chunk_dim)] , dim=self._chunk_dim , ) else: _A : List[str] = self.ff(__lowerCamelCase) if self.use_ada_layer_norm_zero: _A : Optional[int] = gate_mlp.unsqueeze(1) * ff_output _A : Optional[int] = ff_output + hidden_states return hidden_states class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = 4 , __lowerCamelCase = 0.0 , __lowerCamelCase = "geglu" , __lowerCamelCase = False , ) -> Tuple: super().__init__() _A : List[Any] = int(dim * mult) _A : Any = dim_out if dim_out is not None else dim if activation_fn == "gelu": _A : Tuple = GELU(__lowerCamelCase , __lowerCamelCase) if activation_fn == "gelu-approximate": _A : List[Any] = GELU(__lowerCamelCase , __lowerCamelCase , approximate="tanh") elif activation_fn == "geglu": _A : Optional[Any] = GEGLU(__lowerCamelCase , __lowerCamelCase) elif activation_fn == "geglu-approximate": _A : Any = ApproximateGELU(__lowerCamelCase , __lowerCamelCase) _A : List[str] = nn.ModuleList([]) # project in self.net.append(__lowerCamelCase) # project dropout self.net.append(nn.Dropout(__lowerCamelCase)) # project out self.net.append(nn.Linear(__lowerCamelCase , __lowerCamelCase)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowerCamelCase)) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: for module in self.net: _A : List[Any] = module(__lowerCamelCase) return hidden_states class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = "none") -> Any: super().__init__() _A : str = nn.Linear(__lowerCamelCase , __lowerCamelCase) _A : int = approximate def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[int]: if gate.device.type != "mps": return F.gelu(__lowerCamelCase , approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) , approximate=self.approximate).to(dtype=gate.dtype) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A : Dict = self.proj(__lowerCamelCase) _A : int = self.gelu(__lowerCamelCase) return hidden_states class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: super().__init__() _A : int = nn.Linear(__lowerCamelCase , dim_out * 2) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[int]: if gate.device.type != "mps": return F.gelu(__lowerCamelCase) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A , _A : List[Any] = self.proj(__lowerCamelCase).chunk(2 , dim=-1) return hidden_states * self.gelu(__lowerCamelCase) class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: super().__init__() _A : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: _A : Any = self.proj(__lowerCamelCase) return x * torch.sigmoid(1.7_0_2 * x) class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> List[str]: super().__init__() _A : Optional[int] = nn.Embedding(__lowerCamelCase , __lowerCamelCase) _A : Tuple = nn.SiLU() _A : Union[str, Any] = nn.Linear(__lowerCamelCase , embedding_dim * 2) _A : int = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = self.linear(self.silu(self.emb(__lowerCamelCase))) _A , _A : Optional[Any] = torch.chunk(__lowerCamelCase , 2) _A : Any = self.norm(__lowerCamelCase) * (1 + scale) + shift return x class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: super().__init__() _A : str = CombinedTimestepLabelEmbeddings(__lowerCamelCase , __lowerCamelCase) _A : Optional[int] = nn.SiLU() _A : Dict = nn.Linear(__lowerCamelCase , 6 * embedding_dim , bias=__lowerCamelCase) _A : int = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase , eps=1e-6) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None) -> Union[str, Any]: _A : List[Any] = self.linear(self.silu(self.emb(__lowerCamelCase , __lowerCamelCase , hidden_dtype=__lowerCamelCase))) _A , _A , _A , _A , _A , _A : Optional[int] = emb.chunk(6 , dim=1) _A : int = self.norm(__lowerCamelCase) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = 1e-5) -> int: super().__init__() _A : Any = num_groups _A : Any = eps if act_fn is None: _A : Tuple = None else: _A : str = get_activation(__lowerCamelCase) _A : List[Any] = nn.Linear(__lowerCamelCase , out_dim * 2) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: if self.act: _A : Tuple = self.act(__lowerCamelCase) _A : Optional[Any] = self.linear(__lowerCamelCase) _A : Tuple = emb[:, :, None, None] _A , _A : Union[str, Any] = emb.chunk(2 , dim=1) _A : List[str] = F.group_norm(__lowerCamelCase , self.num_groups , eps=self.eps) _A : int = x * (1 + scale) + shift return x
11
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = VQModel __SCREAMING_SNAKE_CASE = "sample" @property def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]: _A : Optional[int] = 4 _A : Tuple = 3 _A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase) return {"sample": image} @property def _lowerCamelCase ( self) -> int: return (3, 3_2, 3_2) @property def _lowerCamelCase ( self) -> List[Any]: return (3, 3_2, 3_2) def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[Any] = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _A : int = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> Any: pass def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(__lowerCamelCase) _A : str = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self) -> Union[str, Any]: _A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(__lowerCamelCase).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) _A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) _A : Optional[int] = image.to(__lowerCamelCase) with torch.no_grad(): _A : List[str] = model(__lowerCamelCase).sample _A : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
11
1
def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : int ): return int(input_a == input_a == 0 ) def _UpperCAmelCase (): print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(f"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(f"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(f"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(f"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=a) class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True}) __SCREAMING_SNAKE_CASE = Features({"audio": Audio()}) __SCREAMING_SNAKE_CASE = Features({"transcription": Value("string")}) __SCREAMING_SNAKE_CASE = "audio" __SCREAMING_SNAKE_CASE = "transcription" def _lowerCamelCase ( self , __lowerCamelCase) -> Any: if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , __lowerCamelCase): raise ValueError(F"Column {self.audio_column} is not an Audio type.") _A : Optional[int] = copy.deepcopy(self) _A : List[str] = self.input_schema.copy() _A : Any = features[self.audio_column] _A : Tuple = input_schema return task_template @property def _lowerCamelCase ( self) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
11
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase__ = '</w>' lowerCAmelCase__ = '@@ ' def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Optional[int] = set() _A : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _A : Dict = do_lower_case with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[int] = json.load(__lowerCamelCase) _A : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _A : Optional[Any] = None _A : Tuple = None else: with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Optional[int] = merges_handle.read().split("\n")[:-1] _A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges] _A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : List[Any] = {} @property def _lowerCamelCase ( self) -> int: return len(self.decoder) def _lowerCamelCase ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A : int = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[int] = bigram _A : int = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : str = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : str = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : List[str] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : List[Any] = get_pairs(__lowerCamelCase) _A : Tuple = " ".join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _A : List[str] = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _A : int = word.replace(__lowerCamelCase , "") _A : int = word.replace(" " , __lowerCamelCase) _A : Union[str, Any] = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: _A : List[Any] = text.lower() _A : Optional[int] = text.split() _A : List[str] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : str = " ".join(__lowerCamelCase) # make sure @@ tokens are concatenated _A : int = "".join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : Optional[int] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return (vocab_file, merges_file)
11
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCAmelCase (UpperCamelCase__ : int ): _A : Optional[int] = prime_factors(UpperCamelCase__ ) if is_square_free(UpperCamelCase__ ): return -1 if len(UpperCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
11
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "vit_mae" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : List[str] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[int] = hidden_act _A : List[Any] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Union[str, Any] = initializer_range _A : str = layer_norm_eps _A : Any = image_size _A : int = patch_size _A : int = num_channels _A : Dict = qkv_bias _A : Tuple = decoder_num_attention_heads _A : Tuple = decoder_hidden_size _A : List[str] = decoder_num_hidden_layers _A : Optional[Any] = decoder_intermediate_size _A : List[str] = mask_ratio _A : Union[str, Any] = norm_pix_loss
11
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase__ = 5_00_00 lowerCAmelCase__ = 50_00 lowerCAmelCase__ ,lowerCAmelCase__ = os.path.split(__file__) lowerCAmelCase__ = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _UpperCAmelCase (UpperCamelCase__ : datasets.Dataset , UpperCamelCase__ : Optional[Any] ): for i in range(UpperCamelCase__ ): _A : Optional[int] = dataset[i] @get_duration def _UpperCAmelCase (UpperCamelCase__ : datasets.Dataset , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ): for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ): _A : int = dataset[i : i + batch_size] @get_duration def _UpperCAmelCase (UpperCamelCase__ : datasets.Dataset , UpperCamelCase__ : List[str] , UpperCamelCase__ : int ): with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(UpperCamelCase__ ): _A : Optional[int] = dataset[i] @get_duration def _UpperCAmelCase (UpperCamelCase__ : datasets.Dataset , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] ): with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(0 , UpperCamelCase__ , UpperCamelCase__ ): _A : Dict = dataset[i : i + batch_size] def _UpperCAmelCase (): _A : Optional[int] = {"num examples": SPEED_TEST_N_EXAMPLES} _A : List[Any] = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] _A : str = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) _A : List[Any] = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) _A : Dict = generate_example_dataset( os.path.join(UpperCamelCase__ , "dataset.arrow" ) , UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(UpperCamelCase__ ) ) _A : List[str] = func(UpperCamelCase__ , **UpperCamelCase__ ) print("shuffling dataset" ) _A : Union[str, Any] = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(UpperCamelCase__ ) ) _A : Dict = func( UpperCamelCase__ , **UpperCamelCase__ ) with open(UpperCamelCase__ , "wb" ) as f: f.write(json.dumps(UpperCamelCase__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
11
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a) , "Tatoeba directory does not exist.") class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowerCamelCase ( self) -> str: _A : List[str] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCamelCase) @slow def _lowerCamelCase ( self) -> Tuple: self.resolver.convert_models(["heb-eng"]) @slow def _lowerCamelCase ( self) -> str: _A , _A : Any = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__lowerCamelCase) assert mmeta["long_pair"] == "heb-eng"
11
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase__ = float('nan') class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: _A : List[Any] = sys.stdout _A : str = open(__lowerCamelCase , "a") def __getattr__( self , __lowerCamelCase) -> List[str]: return getattr(self.stdout , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: self.stdout.write(__lowerCamelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M)) def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ): _A : Tuple = [] # deal with critical env vars _A : Dict = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _A : Tuple = [] _A : Dict = "" while len(UpperCamelCase__ ) > 0: current_line += f"{cmd.pop(0 )} " if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) _A : Union[str, Any] = "" return "\\\n".join(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): # unwrap multi-line input _A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own _A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) _A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams _A : Tuple = variation.replace(" " , "-" ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f: _A : List[str] = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): _A : Union[str, Any] = [] _A : Optional[int] = [] _A : Any = f"{id}: {variation:<{longest_variation_len}}" _A : Dict = f"{preamble}: " _A : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): _A : Optional[Any] = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" _A : str = f"\33[2K\r{outcome}" if len(UpperCamelCase__ ) > 0: _A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _A : Any = round(mean_metrics[target_metric_key] , 2 ) _A : Tuple = f"{outcome} {mean_target}" if len(UpperCamelCase__ ) > 1: results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}" print(UpperCamelCase__ ) _A : Optional[int] = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def _UpperCAmelCase (): _A : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = pd.DataFrame(UpperCamelCase__ ) _A : List[str] = "variation" _A : List[Any] = "diff_%" _A : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel _A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): _A : Optional[Any] = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns _A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols # capitalize _A : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible _A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" ) _A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" ) _A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] print("\n\n".join(UpperCamelCase__ ) ) def _UpperCAmelCase (): _A : int = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , ) parser.add_argument( "--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) _A : int = parser.parse_args() _A : Union[str, Any] = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) _A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations _A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) ) _A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys _A : str = args.report_metric_keys.split() # capture prints into a log file for convenience _A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _A : Tuple = Tee(UpperCamelCase__ ) print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" ) print(f"Base command: {' '.join(UpperCamelCase__ )}" ) _A : str = "variation" _A : Union[str, Any] = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ): _A : Dict = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
11
1
from math import factorial, radians def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : int = 18 , UpperCamelCase__ : int = 10 ): _A : str = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians _A : List[Any] = radians(UpperCamelCase__ ) _A : str = angle_in_radians _A : List[str] = 3 _A : Tuple = -1 for _ in range(UpperCamelCase__ ): result += (b * (angle_in_radians**a)) / factorial(UpperCamelCase__ ) _A : str = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": __import__('doctest').testmod()
11
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Overwrite the cached training and evaluation sets"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "The number of processes to use for the preprocessing."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCamelCase ( self) -> int: if self.train_file is not None: _A : Optional[int] = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _A : Dict = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , __lowerCamelCase) -> str: _A : List[Any] = "label" if "label" in features[0].keys() else "labels" _A : Any = [feature.pop(__lowerCamelCase) for feature in features] _A : Optional[int] = len(__lowerCamelCase) _A : int = len(features[0]["input_ids"]) _A : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features ] _A : str = list(chain(*__lowerCamelCase)) _A : Tuple = self.tokenizer.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()} # Add back labels _A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa) return batch def _UpperCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A : int = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _A : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _A : List[str] = {} if data_args.train_file is not None: _A : Optional[int] = data_args.train_file if data_args.validation_file is not None: _A : Tuple = data_args.validation_file _A : Union[str, Any] = data_args.train_file.split("." )[-1] _A : List[str] = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _A : Union[str, Any] = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _A : str = [f"ending{i}" for i in range(4 )] _A : Union[str, Any] = "sent1" _A : str = "sent2" if data_args.max_seq_length is None: _A : Any = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _A : Optional[Any] = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _A : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ : List[Any] ): _A : List[Any] = [[context] * 4 for context in examples[context_name]] _A : Any = examples[question_header_name] _A : Union[str, Any] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out _A : Dict = list(chain(*UpperCamelCase__ ) ) _A : List[Any] = list(chain(*UpperCamelCase__ ) ) # Tokenize _A : str = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _A : Optional[int] = raw_datasets["train"] if data_args.max_train_samples is not None: _A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) _A : Any = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _A : Optional[int] = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _A : Optional[int] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) _A : Dict = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _A : List[str] = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _A : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ : Tuple ): _A , _A : List[str] = eval_predictions _A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _A : List[str] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: _A : Any = None if training_args.resume_from_checkpoint is not None: _A : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A : int = last_checkpoint _A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _A : Optional[int] = train_result.metrics _A : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) _A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("train" , UpperCamelCase__ ) trainer.save_metrics("train" , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _A : List[Any] = trainer.evaluate() _A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) _A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("eval" , UpperCamelCase__ ) trainer.save_metrics("eval" , UpperCamelCase__ ) _A : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
11
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'spiece.model'} lowerCAmelCase__ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } lowerCAmelCase__ = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } lowerCAmelCase__ = '▁' class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A : Tuple = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token ) _A : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _A : Union[str, Any] = do_lower_case _A : List[str] = remove_space _A : str = keep_accents _A : List[str] = vocab_file _A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__lowerCamelCase) @property def _lowerCamelCase ( self) -> Tuple: return len(self.sp_model) def _lowerCamelCase ( self) -> List[Any]: _A : Optional[Any] = {self.convert_ids_to_tokens(__lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Union[str, Any]: _A : int = self.__dict__.copy() _A : Optional[int] = None return state def __setstate__( self , __lowerCamelCase) -> int: _A : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): _A : Tuple = {} _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self , __lowerCamelCase) -> int: if self.remove_space: _A : Optional[Any] = " ".join(inputs.strip().split()) else: _A : List[str] = inputs _A : int = outputs.replace("``" , "\"").replace("''" , "\"") if not self.keep_accents: _A : Dict = unicodedata.normalize("NFKD" , __lowerCamelCase) _A : Union[str, Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase)]) if self.do_lower_case: _A : Optional[Any] = outputs.lower() return outputs def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : Union[str, Any] = self.preprocess_text(__lowerCamelCase) _A : int = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase) _A : Any = [] for piece in pieces: if len(__lowerCamelCase) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): _A : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _A : List[str] = cur_pieces[1:] else: _A : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__lowerCamelCase) else: new_pieces.append(__lowerCamelCase) return new_pieces def _lowerCamelCase ( self , __lowerCamelCase) -> Any: return self.sp_model.PieceToId(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return self.sp_model.IdToPiece(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : int = [] _A : str = "" _A : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase) + token _A : Any = True _A : List[str] = [] else: current_sub_tokens.append(__lowerCamelCase) _A : Union[str, Any] = False out_string += self.sp_model.decode(__lowerCamelCase) return out_string.strip() def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase)) + [1] + ([0] * len(__lowerCamelCase)) + [1] return [1] + ([0] * len(__lowerCamelCase)) + [1] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(__lowerCamelCase , "wb") as fi: _A : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase) return (out_vocab_file,)
11
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env") def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: # create estimator _A : Union[str, Any] = self.create_estimator(__lowerCamelCase) # run training estimator.fit() # result dataframe _A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
11
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'gpt2': 10_24, 'gpt2-medium': 10_24, 'gpt2-large': 10_24, 'gpt2-xl': 10_24, 'distilgpt2': 10_24, } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = GPTaTokenizer def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase="<|endoftext|>" , __lowerCamelCase=False , **__lowerCamelCase , ) -> List[str]: super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = kwargs.pop("add_bos_token" , __lowerCamelCase) _A : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , __lowerCamelCase) != add_prefix_space: _A : int = getattr(__lowerCamelCase , pre_tok_state.pop("type")) _A : Union[str, Any] = add_prefix_space _A : Union[str, Any] = pre_tok_class(**__lowerCamelCase) _A : int = add_prefix_space def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> BatchEncoding: _A : Any = kwargs.get("is_split_into_words" , __lowerCamelCase) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> BatchEncoding: _A : Dict = kwargs.get("is_split_into_words" , __lowerCamelCase) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: _A : Optional[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase) return tuple(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> List[int]: _A : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase) + [self.eos_token_id]) if len(__lowerCamelCase) > self.model_max_length: _A : Any = input_ids[-self.model_max_length :] return input_ids
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: self.assertEqual(len(__lowerCamelCase) , len(__lowerCamelCase)) for a, b in zip(__lowerCamelCase , __lowerCamelCase): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Dict = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(__lowerCamelCase): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step , 3) self.assertEqual(len(accumulator.gradients) , 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step , 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2) def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = None ops.enable_eager_execution_internal() _A : Dict = tf.config.list_physical_devices("CPU") if len(__lowerCamelCase) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()]) _A : int = tf.config.list_logical_devices(device_type="CPU") _A : Tuple = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): _A : Any = GradientAccumulator() _A : Optional[Any] = tf.Variable([4.0, 3.0]) _A , _A : Optional[int] = create_optimizer(5e-5 , 1_0 , 5) _A : List[Any] = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase) def accumulate_on_replica(__lowerCamelCase): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable]))) @tf.function def accumulate(__lowerCamelCase , __lowerCamelCase): with strategy.scope(): _A : Optional[int] = strategy.experimental_local_results(__lowerCamelCase) local_variables[0].assign(__lowerCamelCase) local_variables[1].assign(__lowerCamelCase) strategy.run(__lowerCamelCase , args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__lowerCamelCase) def _check_local_values(__lowerCamelCase , __lowerCamelCase): _A : Optional[Any] = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1e-2) self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1e-2) accumulate([1.0, 2.0] , [-1.0, 1.0]) accumulate([3.0, -1.0] , [-1.0, -1.0]) accumulate([-2.0, 2.0] , [3.0, -2.0]) self.assertEqual(accumulator.step , 3) _check_local_values([2.0, 3.0] , [1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step , 0) _check_local_values([0.0, 0.0] , [0.0, 0.0])
11
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[int] = legacy_behaviour super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) _A : int = vocab_file _A : Optional[Any] = False if not self.vocab_file else True _A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "eng_Latn" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Tuple = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : List[Any] = src_lang _A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Tuple = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding: _A : Tuple = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : List[str] = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] else: _A : Tuple = [self.cur_lang_code] _A : Optional[Any] = [self.eos_token_id] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : Tuple = [] _A : Any = [self.eos_token_id, self.cur_lang_code] else: _A : Union[str, Any] = [self.cur_lang_code] _A : str = [self.eos_token_id] _A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
from collections import namedtuple lowerCAmelCase__ = namedtuple('from_to', 'from_ to') lowerCAmelCase__ = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_01, 10_00), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_04_54, 2_64.1_72), 'cubicyard': from_to(0.7_64_55, 1.3_07_95), 'cubicfoot': from_to(0.0_28, 35.31_47), 'cup': from_to(0.0_00_23_65_88, 42_26.75), } def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : str , UpperCamelCase__ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ", ".join(UpperCamelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ", ".join(UpperCamelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
11
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "data2vec-text" def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase) _A : Union[str, Any] = vocab_size _A : List[str] = hidden_size _A : Optional[Any] = num_hidden_layers _A : str = num_attention_heads _A : Union[str, Any] = hidden_act _A : List[Any] = intermediate_size _A : Any = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Union[str, Any] = type_vocab_size _A : Union[str, Any] = initializer_range _A : Tuple = layer_norm_eps _A : List[Any] = position_embedding_type _A : Tuple = use_cache _A : Optional[int] = classifier_dropout class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _A : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
11
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCAmelCase__ = random.Random() def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int]=1.0 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ): if rng is None: _A : Dict = global_rng _A : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=4_0_0 , __lowerCamelCase=2_0_0_0 , __lowerCamelCase=2_4 , __lowerCamelCase=2_4 , __lowerCamelCase=0.0 , __lowerCamelCase=1_6_0_0_0 , __lowerCamelCase=True , __lowerCamelCase=True , ) -> Tuple: _A : Tuple = parent _A : Any = batch_size _A : List[Any] = min_seq_length _A : List[Any] = max_seq_length _A : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Optional[Any] = feature_size _A : List[Any] = num_mel_bins _A : Optional[int] = padding_value _A : List[Any] = sampling_rate _A : List[Any] = return_attention_mask _A : List[str] = do_normalize def _lowerCamelCase ( self) -> List[Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self , __lowerCamelCase=False , __lowerCamelCase=False) -> Union[str, Any]: def _flatten(__lowerCamelCase): return list(itertools.chain(*__lowerCamelCase)) if equal_length: _A : List[Any] = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size _A : List[Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _A : str = [np.asarray(__lowerCamelCase) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = SpeechaTextFeatureExtractor if is_speech_available() else None def _lowerCamelCase ( self) -> Any: _A : Dict = SpeechaTextFeatureExtractionTester(self) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: self.assertTrue(np.all(np.mean(__lowerCamelCase , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(__lowerCamelCase , axis=0) - 1) < 1e-3)) def _lowerCamelCase ( self) -> Dict: # Tests that all call wrap to encode_plus and batch_encode_plus _A : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _A : List[str] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _A : Any = [np.asarray(__lowerCamelCase) for speech_input in speech_inputs] # Test feature size _A : List[Any] = feature_extractor(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input _A : Optional[int] = feature_extractor(speech_inputs[0] , return_tensors="np").input_features _A : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3)) # Test batched _A : Optional[int] = feature_extractor(__lowerCamelCase , return_tensors="np").input_features _A : Optional[int] = feature_extractor(__lowerCamelCase , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3)) # Test 2-D numpy arrays are batched. _A : int = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] _A : Optional[Any] = np.asarray(__lowerCamelCase) _A : Dict = feature_extractor(__lowerCamelCase , return_tensors="np").input_features _A : Union[str, Any] = feature_extractor(__lowerCamelCase , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3)) def _lowerCamelCase ( self) -> Dict: _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _A : int = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _A : int = ["longest", "max_length", "do_not_pad"] _A : int = [None, 1_6, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase): _A : Optional[Any] = feature_extractor( __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_attention_mask=__lowerCamelCase) _A : Union[str, Any] = inputs.input_features _A : int = inputs.attention_mask _A : List[str] = [np.sum(__lowerCamelCase) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _lowerCamelCase ( self) -> Optional[int]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _A : int = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _A : Any = ["longest", "max_length", "do_not_pad"] _A : str = [None, 1_6, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase): _A : Any = feature_extractor( __lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase) _A : Dict = inputs.input_features _A : str = inputs.attention_mask _A : int = [np.sum(__lowerCamelCase) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _lowerCamelCase ( self) -> Dict: _A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _A : Optional[int] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _A : Tuple = feature_extractor( __lowerCamelCase , padding="max_length" , max_length=4 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , ) _A : Tuple = inputs.input_features _A : Optional[int] = inputs.attention_mask _A : Optional[Any] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def _lowerCamelCase ( self) -> Dict: _A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _A : Union[str, Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _A : Optional[int] = feature_extractor( __lowerCamelCase , padding="longest" , max_length=4 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , ) _A : List[Any] = inputs.input_features _A : int = inputs.attention_mask _A : Tuple = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4)) _A : List[str] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _A : List[Any] = feature_extractor( __lowerCamelCase , padding="longest" , max_length=1_6 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , ) _A : Optional[int] = inputs.input_features _A : Tuple = inputs.attention_mask _A : List[str] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4)) def _lowerCamelCase ( self) -> str: import torch _A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _A : str = np.random.rand(1_0_0 , 3_2).astype(np.floataa) _A : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.floataa) _A : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _lowerCamelCase ( self , __lowerCamelCase) -> str: from datasets import load_dataset _A : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech _A : Dict = ds.sort("id").select(range(__lowerCamelCase))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self) -> Any: # fmt: off _A : Dict = np.array([ -1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1, -1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8, -1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5, ]) # fmt: on _A : Union[str, Any] = self._load_datasamples(1) _A : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _A : Tuple = feature_extractor(__lowerCamelCase , return_tensors="pt").input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4)) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , __lowerCamelCase , atol=1e-4))
11
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) _A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = AutoConfig.from_pretrained("gpt2") _A : int = GenerationConfig.from_model_config(__lowerCamelCase) _A : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = GenerationConfig() _A : List[Any] = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _A : List[str] = copy.deepcopy(__lowerCamelCase) _A : int = generation_config.update(**__lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"}) def _lowerCamelCase ( self) -> Any: _A : int = GenerationConfig() _A : int = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__lowerCamelCase) _A : Any = GenerationConfig.from_pretrained(__lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") _A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase) assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config def _lowerCamelCase ( self) -> List[str]: _A : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCamelCase) self.assertEqual(default_config.num_beams , 1) _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase) _A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[int]: _A : Dict = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _lowerCamelCase ( self) -> Any: _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) _A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Union[str, Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) _A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
11
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase__ = get_tests_dir('fixtures') class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down _A : str = mock.Mock() _A : int = 5_0_0 _A : Union[str, Any] = {} _A : Any = HTTPError _A : List[Any] = {} # Download this model to make sure it's in the cache. _A : Any = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__lowerCamelCase) as mock_head: _A : Tuple = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self) -> List[str]: # This test is for deprecated behavior and can be removed in v5 _A : List[Any] = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json") def _lowerCamelCase ( self) -> List[Any]: with self.assertRaises(__lowerCamelCase): # config is in subfolder, the following should not work without specifying the subfolder _A : Any = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") _A : Optional[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor") self.assertIsNotNone(__lowerCamelCase) @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Tuple: _A : Union[str, Any] = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor") except HTTPError: pass def _lowerCamelCase ( self) -> int: _A : Any = ViTImageProcessor.from_pretrained(__lowerCamelCase) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token) _A : Tuple = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __lowerCamelCase , repo_id="test-image-processor" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Union[str, Any] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> List[Any]: _A : int = ViTImageProcessor.from_pretrained(__lowerCamelCase) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token) _A : int = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : List[Any] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Any: CustomImageProcessor.register_for_auto_class() _A : str = CustomImageProcessor.from_pretrained(__lowerCamelCase) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _A : int = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor" , trust_remote_code=__lowerCamelCase) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor")
11
import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.2 , __lowerCamelCase=0.2) -> str: _A : Optional[int] = bp_numa _A : Dict = bp_numa _A : Tuple = bp_numa _A : List[str] = conva_get[:2] _A : Tuple = conva_get[2] _A : Optional[int] = size_pa _A : Optional[Any] = rate_w _A : Optional[Any] = rate_t _A : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] _A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) _A : Any = -2 * np.random.rand(self.conva[1]) + 1 _A : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1 _A : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1 def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # save model dict with pickle _A : Dict = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__lowerCamelCase , "wb") as f: pickle.dump(__lowerCamelCase , __lowerCamelCase) print(F"Model saved: {save_path}") @classmethod def _lowerCamelCase ( cls , __lowerCamelCase) -> Any: # read saved model with open(__lowerCamelCase , "rb") as f: _A : Any = pickle.load(__lowerCamelCase) # noqa: S301 _A : Optional[int] = model_dic.get("conv1") conv_get.append(model_dic.get("step_conv1")) _A : str = model_dic.get("size_pooling1") _A : List[str] = model_dic.get("num_bp1") _A : Union[str, Any] = model_dic.get("num_bp2") _A : List[Any] = model_dic.get("num_bp3") _A : Dict = model_dic.get("rate_weight") _A : List[Any] = model_dic.get("rate_thre") # create model instance _A : str = CNN(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # modify model parameter _A : List[Any] = model_dic.get("w_conv1") _A : Union[str, Any] = model_dic.get("wkj") _A : str = model_dic.get("vji") _A : List[str] = model_dic.get("thre_conv1") _A : Optional[Any] = model_dic.get("thre_bp2") _A : Dict = model_dic.get("thre_bp3") return conv_ins def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return 1 / (1 + np.exp(-1 * x)) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: return round(__lowerCamelCase , 3) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # convolution process _A : Tuple = convs[0] _A : Union[str, Any] = convs[1] _A : List[Any] = np.shape(__lowerCamelCase)[0] # get the data slice of original image data, data_focus _A : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): for j_focus in range(0 , size_data - size_conv + 1 , __lowerCamelCase): _A : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__lowerCamelCase) # calculate the feature map of every single kernel, and saved as list of matrix _A : Optional[Any] = [] _A : Optional[int] = int((size_data - size_conv) / conv_step + 1) for i_map in range(__lowerCamelCase): _A : Optional[int] = [] for i_focus in range(len(__lowerCamelCase)): _A : Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(__lowerCamelCase)) _A : Optional[Any] = np.asmatrix(__lowerCamelCase).reshape( __lowerCamelCase , __lowerCamelCase) data_featuremap.append(__lowerCamelCase) # expanding the data slice to One dimenssion _A : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__lowerCamelCase)) _A : Dict = np.asarray(__lowerCamelCase) return focus_list, data_featuremap def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="average_pool") -> Dict: # pooling process _A : Optional[Any] = len(featuremaps[0]) _A : str = int(size_map / size_pooling) _A : Optional[int] = [] for i_map in range(len(__lowerCamelCase)): _A : int = featuremaps[i_map] _A : Optional[int] = [] for i_focus in range(0 , __lowerCamelCase , __lowerCamelCase): for j_focus in range(0 , __lowerCamelCase , __lowerCamelCase): _A : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__lowerCamelCase)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__lowerCamelCase)) _A : Tuple = np.asmatrix(__lowerCamelCase).reshape(__lowerCamelCase , __lowerCamelCase) featuremap_pooled.append(__lowerCamelCase) return featuremap_pooled def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: # expanding three dimension data to one dimension list _A : Tuple = [] for i in range(len(__lowerCamelCase)): _A : Union[str, Any] = np.shape(data[i]) _A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1]) _A : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__lowerCamelCase) _A : Optional[Any] = np.asarray(__lowerCamelCase) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: # expanding matrix to one dimension list _A : List[Any] = np.asarray(__lowerCamelCase) _A : Union[str, Any] = np.shape(__lowerCamelCase) _A : Dict = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Dict = [] _A : Any = 0 for i_map in range(__lowerCamelCase): _A : Union[str, Any] = np.ones((size_map, size_map)) for i in range(0 , __lowerCamelCase , __lowerCamelCase): for j in range(0 , __lowerCamelCase , __lowerCamelCase): _A : List[Any] = pd_pool[ i_pool ] _A : Tuple = i_pool + 1 _A : Optional[Any] = np.multiply( __lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(__lowerCamelCase) return pd_all def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=bool) -> Union[str, Any]: # model traning print("----------------------Start Training-------------------------") print((" - - Shape: Train_Data ", np.shape(__lowerCamelCase))) print((" - - Shape: Teach_Data ", np.shape(__lowerCamelCase))) _A : Tuple = 0 _A : Dict = [] _A : Optional[Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _A : Union[str, Any] = 0 print(F"-------------Learning Time {rp}--------------") for p in range(len(__lowerCamelCase)): # print('------------Learning Image: %d--------------'%p) _A : str = np.asmatrix(datas_train[p]) _A : Union[str, Any] = np.asarray(datas_teach[p]) _A , _A : Any = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Optional[Any] = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = np.shape(__lowerCamelCase) _A : List[str] = self._expand(__lowerCamelCase) _A : Tuple = data_bp_input _A : int = np.dot(__lowerCamelCase , self.vji.T) - self.thre_bpa _A : List[Any] = self.sig(__lowerCamelCase) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.wkj.T) - self.thre_bpa _A : List[str] = self.sig(__lowerCamelCase) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _A : int = np.multiply( (data_teach - bp_outa) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Optional[Any] = np.multiply( np.dot(__lowerCamelCase , self.wkj) , np.multiply(__lowerCamelCase , (1 - bp_outa))) _A : Union[str, Any] = np.dot(__lowerCamelCase , self.vji) _A : Any = pd_i_all / (self.size_poolinga * self.size_poolinga) _A : Dict = pd_conva_pooled.T.getA().tolist() _A : Optional[Any] = self._calculate_gradient_from_pool( __lowerCamelCase , __lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): _A : int = self._expand_mat(pd_conva_all[k_conv]) _A : Optional[int] = self.rate_weight * np.dot(__lowerCamelCase , __lowerCamelCase) _A : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) _A : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer _A : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _A : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight _A : Tuple = self.thre_bpa - pd_k_all * self.rate_thre _A : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _A : Optional[int] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _A : Any = rp + 1 _A : Dict = error_count / patterns all_mse.append(__lowerCamelCase) def draw_error(): _A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(__lowerCamelCase , "+-") plt.plot(__lowerCamelCase , "r--") plt.xlabel("Learning Times") plt.ylabel("All_mse") plt.grid(__lowerCamelCase , alpha=0.5) plt.show() print("------------------Training Complished---------------------") print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def _lowerCamelCase ( self , __lowerCamelCase) -> int: # model predict _A : Union[str, Any] = [] print("-------------------Start Testing-------------------------") print((" - - Shape: Test_Data ", np.shape(__lowerCamelCase))) for p in range(len(__lowerCamelCase)): _A : int = np.asmatrix(datas_test[p]) _A , _A : List[Any] = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : str = self.pooling(__lowerCamelCase , self.size_poolinga) _A : Optional[int] = self._expand(__lowerCamelCase) _A : List[Any] = data_bp_input _A : Optional[int] = bp_outa * self.vji.T - self.thre_bpa _A : int = self.sig(__lowerCamelCase) _A : int = bp_outa * self.wkj.T - self.thre_bpa _A : Optional[int] = self.sig(__lowerCamelCase) produce_out.extend(bp_outa.getA().tolist()) _A : int = [list(map(self.do_round , __lowerCamelCase)) for each in produce_out] return np.asarray(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: # return the data of image after convoluting process so we can check it out _A : Optional[int] = np.asmatrix(__lowerCamelCase) _A , _A : Tuple = self.convolute( __lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _A : Union[str, Any] = self.pooling(__lowerCamelCase , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
11
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "time_series_transformer" __SCREAMING_SNAKE_CASE = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = "student_t" , __lowerCamelCase = "nll" , __lowerCamelCase = 1 , __lowerCamelCase = [1, 2, 3, 4, 5, 6, 7] , __lowerCamelCase = "mean" , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 3_2 , __lowerCamelCase = 3_2 , __lowerCamelCase = 2 , __lowerCamelCase = 2 , __lowerCamelCase = 2 , __lowerCamelCase = 2 , __lowerCamelCase = True , __lowerCamelCase = "gelu" , __lowerCamelCase = 6_4 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0_2 , __lowerCamelCase=True , **__lowerCamelCase , ) -> List[str]: # time series specific configuration _A : Optional[int] = prediction_length _A : Tuple = context_length or prediction_length _A : str = distribution_output _A : Optional[int] = loss _A : Optional[int] = input_size _A : str = num_time_features _A : str = lags_sequence _A : Optional[Any] = scaling _A : Union[str, Any] = num_dynamic_real_features _A : int = num_static_real_features _A : List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowerCamelCase) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`") _A : List[Any] = cardinality else: _A : int = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCamelCase) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`") _A : Dict = embedding_dimension else: _A : List[str] = [min(5_0 , (cat + 1) // 2) for cat in self.cardinality] _A : Optional[int] = num_parallel_samples # Transformer architecture configuration _A : int = input_size * len(__lowerCamelCase) + self._number_of_features _A : List[str] = d_model _A : Union[str, Any] = encoder_attention_heads _A : str = decoder_attention_heads _A : Any = encoder_ffn_dim _A : Optional[Any] = decoder_ffn_dim _A : Optional[int] = encoder_layers _A : Optional[Any] = decoder_layers _A : Tuple = dropout _A : Tuple = attention_dropout _A : str = activation_dropout _A : List[Any] = encoder_layerdrop _A : List[Any] = decoder_layerdrop _A : Optional[Any] = activation_function _A : Any = init_std _A : List[Any] = use_cache super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
11
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): _A : str = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def _UpperCAmelCase (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : int = _get_partition_rules() _A : Optional[int] = _replacement_rules(UpperCamelCase__ ) _A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
11
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) _A : int = input_str.split("_" ) _A : str = 0 if use_pascal else 1 _A : str = words[start_index:] _A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] _A : Any = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
11
1
class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> str: # we need a list not a string, so do something to change the type _A : Any = arr.split(",") def _lowerCamelCase ( self) -> List[str]: _A : List[Any] = [int(self.array[0])] * len(self.array) _A : List[Any] = [int(self.array[0])] * len(self.array) for i in range(1 , len(self.array)): _A : Tuple = max( int(self.array[i]) + sum_value[i - 1] , int(self.array[i])) _A : Any = max(sum_value[i] , rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": lowerCAmelCase__ = input('please input some numbers:') lowerCAmelCase__ = SubArray(whole_array) lowerCAmelCase__ = array.solve_sub_array() print(('the results is:', re))
11
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
1
import requests from bsa import BeautifulSoup def _UpperCAmelCase (UpperCamelCase__ : str = "https://www.worldometers.info/coronavirus" ): _A : str = BeautifulSoup(requests.get(UpperCamelCase__ ).text , "html.parser" ) _A : str = soup.findAll("h1" ) _A : Optional[Any] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(UpperCamelCase__ , UpperCamelCase__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"{key}\n{value}\n")
11
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase)
11
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(a) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: super().__init__(*__lowerCamelCase , **__lowerCamelCase) requires_backends(self , "vision") self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING) def _lowerCamelCase ( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None) -> Dict: _A : Optional[int] = {} _A : Tuple = {} if prompt is not None: _A : Dict = prompt if generate_kwargs is not None: _A : Union[str, Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A : int = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one") _A : Dict = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return super().__call__(__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=None) -> Optional[Any]: _A : List[Any] = load_image(__lowerCamelCase) if prompt is not None: if not isinstance(__lowerCamelCase , __lowerCamelCase): raise ValueError( F"Received an invalid text input, got - {type(__lowerCamelCase)} - but expected a single string. " "Note also that one single text can be provided for conditional image to text generation.") _A : Optional[Any] = self.model.config.model_type if model_type == "git": _A : List[Any] = self.image_processor(images=__lowerCamelCase , return_tensors=self.framework) _A : Optional[int] = self.tokenizer(text=__lowerCamelCase , add_special_tokens=__lowerCamelCase).input_ids _A : Any = [self.tokenizer.cls_token_id] + input_ids _A : Any = torch.tensor(__lowerCamelCase).unsqueeze(0) model_inputs.update({"input_ids": input_ids}) elif model_type == "pix2struct": _A : List[str] = self.image_processor(images=__lowerCamelCase , header_text=__lowerCamelCase , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A : Optional[int] = self.image_processor(images=__lowerCamelCase , return_tensors=self.framework) _A : Dict = self.tokenizer(__lowerCamelCase , return_tensors=self.framework) model_inputs.update(__lowerCamelCase) else: raise ValueError(F"Model type {model_type} does not support conditional text generation") else: _A : Any = self.image_processor(images=__lowerCamelCase , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: _A : List[Any] = None return model_inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=None) -> Dict: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , __lowerCamelCase) and all(x is None for x in model_inputs["input_ids"]) ): _A : Tuple = None if generate_kwargs is None: _A : List[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A : List[str] = model_inputs.pop(self.model.main_input_name) _A : int = self.model.generate(__lowerCamelCase , **__lowerCamelCase , **__lowerCamelCase) return model_outputs def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A : List[str] = [] for output_ids in model_outputs: _A : Any = { "generated_text": self.tokenizer.decode( __lowerCamelCase , skip_special_tokens=__lowerCamelCase , ) } records.append(__lowerCamelCase) return records
11
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> int: _A : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _A : Optional[int] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(__lowerCamelCase) _A : str = -1 _A : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(__lowerCamelCase) _A : str = model.generate(__lowerCamelCase , max_new_tokens=1_0 , do_sample=__lowerCamelCase) _A : List[Any] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: _A : int = TextStreamer(__lowerCamelCase) model.generate(__lowerCamelCase , max_new_tokens=1_0 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _A : Optional[int] = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _A : Any = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(__lowerCamelCase) _A : Optional[int] = -1 _A : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(__lowerCamelCase) _A : str = model.generate(__lowerCamelCase , max_new_tokens=1_0 , do_sample=__lowerCamelCase) _A : Tuple = tokenizer.decode(greedy_ids[0]) _A : Any = TextIteratorStreamer(__lowerCamelCase) _A : Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} _A : Optional[Any] = Thread(target=model.generate , kwargs=__lowerCamelCase) thread.start() _A : Union[str, Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: _A : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _A : Dict = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(__lowerCamelCase) _A : Union[str, Any] = -1 _A : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(__lowerCamelCase) _A : Optional[int] = model.generate(__lowerCamelCase , max_new_tokens=1_0 , do_sample=__lowerCamelCase) _A : List[str] = greedy_ids[:, input_ids.shape[1] :] _A : Dict = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: _A : List[str] = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase) model.generate(__lowerCamelCase , max_new_tokens=1_0 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _A : Any = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Any: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _A : List[str] = AutoTokenizer.from_pretrained("distilgpt2") _A : Any = AutoModelForCausalLM.from_pretrained("distilgpt2").to(__lowerCamelCase) _A : Any = -1 _A : str = torch.ones((1, 5) , device=__lowerCamelCase).long() * model.config.bos_token_id with CaptureStdout() as cs: _A : List[Any] = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _A : Union[str, Any] = cs.out[:-1] # Remove the final "\n" _A : Optional[Any] = tokenizer(__lowerCamelCase , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _lowerCamelCase ( self) -> int: _A : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _A : Optional[int] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(__lowerCamelCase) _A : List[str] = -1 _A : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(__lowerCamelCase) _A : Any = TextIteratorStreamer(__lowerCamelCase , timeout=0.0_0_1) _A : List[Any] = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} _A : str = Thread(target=model.generate , kwargs=__lowerCamelCase) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase): _A : Optional[Any] = "" for new_text in streamer: streamer_text += new_text
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) _A : int = input_str.split("_" ) _A : str = 0 if use_pascal else 1 _A : str = words[start_index:] _A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] _A : Any = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
11
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , __lowerCamelCase=1_0_0_0 , ) -> Optional[int]: _A : Tuple = parent _A : Optional[int] = batch_size _A : List[Any] = seq_length _A : Any = is_training _A : Any = use_input_mask _A : Optional[Any] = use_token_type_ids _A : int = use_labels _A : Tuple = vocab_size _A : Union[str, Any] = hidden_size _A : Any = num_hidden_layers _A : Tuple = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Union[str, Any] = attention_probs_dropout_prob _A : Any = max_position_embeddings _A : Union[str, Any] = type_vocab_size _A : str = type_sequence_label_size _A : Tuple = initializer_range _A : List[str] = num_labels _A : int = num_choices _A : List[str] = scope _A : int = range_bbox def _lowerCamelCase ( self) -> Optional[int]: _A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # convert bbox to numpy since TF does not support item assignment _A : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _A : Optional[int] = bbox[i, j, 3] _A : Any = bbox[i, j, 1] _A : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: _A : List[Any] = bbox[i, j, 2] _A : List[str] = bbox[i, j, 0] _A : Union[str, Any] = t _A : int = tf.convert_to_tensor(__lowerCamelCase) _A : List[str] = None if self.use_input_mask: _A : int = random_attention_mask([self.batch_size, self.seq_length]) _A : Tuple = None if self.use_token_type_ids: _A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _A : Any = None _A : List[str] = None _A : Optional[Any] = None if self.use_labels: _A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _A : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) _A : Tuple = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> int: _A : Optional[int] = TFLayoutLMModel(config=__lowerCamelCase) _A : List[Any] = model(__lowerCamelCase , __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase) _A : int = model(__lowerCamelCase , __lowerCamelCase , token_type_ids=__lowerCamelCase) _A : Any = model(__lowerCamelCase , __lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: _A : Any = TFLayoutLMForMaskedLM(config=__lowerCamelCase) _A : Optional[int] = model(__lowerCamelCase , __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> str: _A : Tuple = self.num_labels _A : List[str] = TFLayoutLMForSequenceClassification(config=__lowerCamelCase) _A : List[str] = model(__lowerCamelCase , __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Union[str, Any] = self.num_labels _A : Tuple = TFLayoutLMForTokenClassification(config=__lowerCamelCase) _A : Tuple = model(__lowerCamelCase , __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Tuple: _A : Optional[int] = TFLayoutLMForQuestionAnswering(config=__lowerCamelCase) _A : Dict = model(__lowerCamelCase , __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Optional[Any] = config_and_inputs _A : str = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = 10 def _lowerCamelCase ( self) -> int: _A : Dict = TFLayoutLMModelTester(self) _A : Any = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7) def _lowerCamelCase ( self) -> Any: self.config_tester.run_common_tests() def _lowerCamelCase ( self) -> Tuple: _A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase) def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase) def _lowerCamelCase ( self) -> str: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase) @slow def _lowerCamelCase ( self) -> Tuple: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Dict = TFLayoutLMModel.from_pretrained(__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) @unittest.skip("Onnx compliancy broke with TF 2.10") def _lowerCamelCase ( self) -> Tuple: pass def _UpperCAmelCase (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _A : List[Any] = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 _A : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _A : Tuple = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 _A : Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _A : int = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @slow def _lowerCamelCase ( self) -> str: _A : Any = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") _A , _A , _A , _A , _A : str = prepare_layoutlm_batch_inputs() # forward pass _A : Dict = model(input_ids=__lowerCamelCase , bbox=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase) # test the sequence output on [0, :3, :3] _A : Tuple = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1e-3)) # test the pooled output on [1, :3] _A : int = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __lowerCamelCase , atol=1e-3)) @slow def _lowerCamelCase ( self) -> Union[str, Any]: # initialize model with randomly initialized sequence classification head _A : str = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2) _A , _A , _A , _A , _A : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass _A : List[Any] = model( input_ids=__lowerCamelCase , bbox=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=tf.convert_to_tensor([1, 1]) , ) # test whether we get a loss as a scalar _A : List[Any] = outputs.loss _A : Dict = (2,) self.assertEqual(loss.shape , __lowerCamelCase) # test the shape of the logits _A : Any = outputs.logits _A : Tuple = (2, 2) self.assertEqual(logits.shape , __lowerCamelCase) @slow def _lowerCamelCase ( self) -> Any: # initialize model with randomly initialized token classification head _A : Dict = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=1_3) _A , _A , _A , _A , _A : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass _A : Optional[Any] = model( input_ids=__lowerCamelCase , bbox=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase) # test the shape of the logits _A : Any = outputs.logits _A : Optional[int] = tf.convert_to_tensor((2, 2_5, 1_3)) self.assertEqual(logits.shape , __lowerCamelCase) @slow def _lowerCamelCase ( self) -> List[Any]: # initialize model with randomly initialized token classification head _A : str = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased") _A , _A , _A , _A , _A : List[str] = prepare_layoutlm_batch_inputs() # forward pass _A : Union[str, Any] = model(input_ids=__lowerCamelCase , bbox=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase) # test the shape of the logits _A : int = tf.convert_to_tensor((2, 2_5)) self.assertEqual(outputs.start_logits.shape , __lowerCamelCase) self.assertEqual(outputs.end_logits.shape , __lowerCamelCase)
11
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = VQModel __SCREAMING_SNAKE_CASE = "sample" @property def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]: _A : Optional[int] = 4 _A : Tuple = 3 _A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase) return {"sample": image} @property def _lowerCamelCase ( self) -> int: return (3, 3_2, 3_2) @property def _lowerCamelCase ( self) -> List[Any]: return (3, 3_2, 3_2) def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[Any] = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _A : int = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> Any: pass def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(__lowerCamelCase) _A : str = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self) -> Union[str, Any]: _A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(__lowerCamelCase).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) _A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) _A : Optional[int] = image.to(__lowerCamelCase) with torch.no_grad(): _A : List[str] = model(__lowerCamelCase).sample _A : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
11
1
def _UpperCAmelCase (UpperCamelCase__ : int = 1000 ): return sum(e for e in range(3 , UpperCamelCase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"{solution() = }")
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
import sys from collections import defaultdict class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> Optional[int]: _A : Any = [] def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[int]: return self.node_position[vertex] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> int: _A : Tuple = pos def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Tuple: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _A : List[str] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _A : Dict = 2 * start + 1 else: _A : Optional[int] = 2 * start + 2 if heap[smallest_child] < heap[start]: _A , _A : List[str] = heap[smallest_child], positions[smallest_child] _A , _A : Optional[int] = ( heap[start], positions[start], ) _A , _A : List[Any] = temp, tempa _A : Optional[Any] = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , __lowerCamelCase) self.top_to_bottom(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: _A : Union[str, Any] = position[index] while index != 0: _A : List[str] = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: _A : Union[str, Any] = heap[parent] _A : str = position[parent] self.set_position(position[parent] , __lowerCamelCase) else: _A : Tuple = val _A : Any = temp self.set_position(__lowerCamelCase , __lowerCamelCase) break _A : Dict = parent else: _A : str = val _A : str = temp self.set_position(__lowerCamelCase , 0) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[str]: _A : str = len(__lowerCamelCase) // 2 - 1 for i in range(__lowerCamelCase , -1 , -1): self.top_to_bottom(__lowerCamelCase , __lowerCamelCase , len(__lowerCamelCase) , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Tuple = positions[0] _A : List[str] = sys.maxsize self.top_to_bottom(__lowerCamelCase , 0 , len(__lowerCamelCase) , __lowerCamelCase) return temp def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : int = Heap() _A : Dict = [0] * len(UpperCamelCase__ ) _A : Union[str, Any] = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _A : int = [] # Heap of Distance of vertices from their neighboring vertex _A : Dict = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) _A : Any = [] _A : Dict = 1 _A : int = sys.maxsize for neighbor, distance in adjacency_list[0]: _A : Union[str, Any] = 0 _A : Optional[Any] = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): _A : Optional[Any] = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _A : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): _A : Optional[Any] = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[int] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCAmelCase__ = int(input('Enter number of edges: ').strip()) lowerCAmelCase__ = defaultdict(list) for _ in range(edges_number): lowerCAmelCase__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
11
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase__ = '</w>' lowerCAmelCase__ = '@@ ' def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Optional[int] = set() _A : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _A : Dict = do_lower_case with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[int] = json.load(__lowerCamelCase) _A : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _A : Optional[Any] = None _A : Tuple = None else: with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Optional[int] = merges_handle.read().split("\n")[:-1] _A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges] _A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : List[Any] = {} @property def _lowerCamelCase ( self) -> int: return len(self.decoder) def _lowerCamelCase ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A : int = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[int] = bigram _A : int = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : str = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : str = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : List[str] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : List[Any] = get_pairs(__lowerCamelCase) _A : Tuple = " ".join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _A : List[str] = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _A : int = word.replace(__lowerCamelCase , "") _A : int = word.replace(" " , __lowerCamelCase) _A : Union[str, Any] = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: _A : List[Any] = text.lower() _A : Optional[int] = text.split() _A : List[str] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : str = " ".join(__lowerCamelCase) # make sure @@ tokens are concatenated _A : int = "".join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : Optional[int] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return (vocab_file, merges_file)
11
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "LayoutLMv3ImageProcessor" __SCREAMING_SNAKE_CASE = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Any: _A : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[str] = kwargs.pop("feature_extractor") _A : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.") if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True.") # first, apply the image processor _A : List[Any] = self.image_processor(images=__lowerCamelCase , return_tensors=__lowerCamelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__lowerCamelCase , __lowerCamelCase): _A : Dict = [text] # add batch dimension (as the image processor always adds a batch dimension) _A : Tuple = features["words"] _A : List[str] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) # add pixel values _A : Dict = features.pop("pixel_values") if return_overflowing_tokens is True: _A : int = self.get_overflowing_images(__lowerCamelCase , encoded_inputs["overflow_to_sample_mapping"]) _A : int = images return encoded_inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _A : Optional[Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(__lowerCamelCase) != len(__lowerCamelCase): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__lowerCamelCase)} and {len(__lowerCamelCase)}") return images_with_overflow def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> Optional[Any]: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _lowerCamelCase ( self) -> str: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "vit_mae" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : List[str] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[int] = hidden_act _A : List[Any] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Union[str, Any] = initializer_range _A : str = layer_norm_eps _A : Any = image_size _A : int = patch_size _A : int = num_channels _A : Dict = qkv_bias _A : Tuple = decoder_num_attention_heads _A : Tuple = decoder_hidden_size _A : List[str] = decoder_num_hidden_layers _A : Optional[Any] = decoder_intermediate_size _A : List[str] = mask_ratio _A : Union[str, Any] = norm_pix_loss
11
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "roformer" def __init__( self , __lowerCamelCase=5_0_0_0_0 , __lowerCamelCase=None , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1_5_3_6 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=0 , __lowerCamelCase=False , __lowerCamelCase=True , **__lowerCamelCase , ) -> List[Any]: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase) _A : List[str] = vocab_size _A : Union[str, Any] = hidden_size if embedding_size is None else embedding_size _A : int = hidden_size _A : Optional[int] = num_hidden_layers _A : str = num_attention_heads _A : str = hidden_act _A : str = intermediate_size _A : Tuple = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : Optional[int] = max_position_embeddings _A : int = type_vocab_size _A : Union[str, Any] = initializer_range _A : Any = layer_norm_eps _A : str = rotary_value _A : int = use_cache class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _A : Optional[int] = {0: "batch", 1: "sequence"} _A : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
11
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = None , **__lowerCamelCase , ) -> Any: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) _A : Optional[Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase) else {self.split: path_or_paths} _A : str = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self) -> Any: # Build iterable dataset if self.streaming: _A : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _A : Tuple = None _A : Tuple = None _A : Tuple = None _A : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) _A : List[str] = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory) return dataset
11
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase__ = float('nan') class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: _A : List[Any] = sys.stdout _A : str = open(__lowerCamelCase , "a") def __getattr__( self , __lowerCamelCase) -> List[str]: return getattr(self.stdout , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: self.stdout.write(__lowerCamelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M)) def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ): _A : Tuple = [] # deal with critical env vars _A : Dict = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _A : Tuple = [] _A : Dict = "" while len(UpperCamelCase__ ) > 0: current_line += f"{cmd.pop(0 )} " if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) _A : Union[str, Any] = "" return "\\\n".join(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): # unwrap multi-line input _A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own _A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) _A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams _A : Tuple = variation.replace(" " , "-" ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f: _A : List[str] = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): _A : Union[str, Any] = [] _A : Optional[int] = [] _A : Any = f"{id}: {variation:<{longest_variation_len}}" _A : Dict = f"{preamble}: " _A : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): _A : Optional[Any] = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" _A : str = f"\33[2K\r{outcome}" if len(UpperCamelCase__ ) > 0: _A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _A : Any = round(mean_metrics[target_metric_key] , 2 ) _A : Tuple = f"{outcome} {mean_target}" if len(UpperCamelCase__ ) > 1: results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}" print(UpperCamelCase__ ) _A : Optional[int] = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def _UpperCAmelCase (): _A : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = pd.DataFrame(UpperCamelCase__ ) _A : List[str] = "variation" _A : List[Any] = "diff_%" _A : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel _A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): _A : Optional[Any] = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns _A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols # capitalize _A : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible _A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" ) _A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" ) _A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] print("\n\n".join(UpperCamelCase__ ) ) def _UpperCAmelCase (): _A : int = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , ) parser.add_argument( "--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) _A : int = parser.parse_args() _A : Union[str, Any] = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) _A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations _A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) ) _A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys _A : str = args.report_metric_keys.split() # capture prints into a log file for convenience _A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _A : Tuple = Tee(UpperCamelCase__ ) print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" ) print(f"Base command: {' '.join(UpperCamelCase__ )}" ) _A : str = "variation" _A : Union[str, Any] = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ): _A : Dict = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
11
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase__ = get_logger(__name__) lowerCAmelCase__ = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class lowerCAmelCase__ : '''simple docstring''' @add_start_docstrings(__lowerCamelCase) def __call__( self , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.") class lowerCAmelCase__ : '''simple docstring''' @add_start_docstrings(__lowerCamelCase) def __call__( self , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.") class lowerCAmelCase__ ( a): '''simple docstring''' @add_start_docstrings(__lowerCamelCase) def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> jnp.ndarray: for processor in self: _A : Optional[int] = inspect.signature(processor.__call__).parameters if len(__lowerCamelCase) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F"Make sure that all the required parameters: {list(function_args.keys())} for " F"{processor.__class__} are passed to the logits processor.") _A : Optional[Any] = processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) else: _A : Dict = processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) return scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase) or not (temperature > 0): raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}") _A : Union[str, Any] = temperature def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: _A : Union[str, Any] = scores / self.temperature return scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = -float("Inf") , __lowerCamelCase = 1) -> int: if not isinstance(__lowerCamelCase , __lowerCamelCase) or (top_p < 0 or top_p > 1.0): raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}") if not isinstance(__lowerCamelCase , __lowerCamelCase) or (min_tokens_to_keep < 1): raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") _A : Dict = top_p _A : Any = filter_value _A : Any = min_tokens_to_keep def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: _A , _A : Tuple = lax.top_k(__lowerCamelCase , scores.shape[-1]) _A : Union[str, Any] = jnp.full_like(__lowerCamelCase , self.filter_value) _A : Union[str, Any] = jax.nn.softmax(__lowerCamelCase , axis=-1).cumsum(axis=-1) _A : Union[str, Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _A : Tuple = jnp.roll(__lowerCamelCase , 1) score_mask |= score_mask.at[:, 0].set(__lowerCamelCase) # min tokens to keep _A : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCamelCase) _A : List[Any] = jnp.where(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Optional[int] = jax.lax.sort_key_val(__lowerCamelCase , __lowerCamelCase)[-1] return next_scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = -float("Inf") , __lowerCamelCase = 1) -> Optional[int]: if not isinstance(__lowerCamelCase , __lowerCamelCase) or top_k <= 0: raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}") _A : List[str] = max(__lowerCamelCase , __lowerCamelCase) _A : List[str] = filter_value def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: _A , _A : Any = scores.shape _A : str = jnp.full(batch_size * vocab_size , self.filter_value) _A : Union[str, Any] = min(self.top_k , scores.shape[-1]) # Safety check _A , _A : Optional[Any] = lax.top_k(__lowerCamelCase , __lowerCamelCase) _A : str = jnp.broadcast_to((jnp.arange(__lowerCamelCase) * vocab_size)[:, None] , (batch_size, topk)).flatten() _A : Any = topk_scores.flatten() _A : List[str] = topk_indices.flatten() + shift _A : int = next_scores_flat.at[topk_indices_flat].set(__lowerCamelCase) _A : Union[str, Any] = next_scores_flat.reshape(__lowerCamelCase , __lowerCamelCase) return next_scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: _A : List[str] = bos_token_id def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: _A : int = jnp.full(scores.shape , -float("inf")) _A : Tuple = 1 - jnp.bool_(cur_len - 1) _A : Dict = jnp.where(__lowerCamelCase , new_scores.at[:, self.bos_token_id].set(0) , __lowerCamelCase) return scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: _A : Dict = max_length _A : Dict = eos_token_id def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: _A : Tuple = jnp.full(scores.shape , -float("inf")) _A : Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1) _A : Union[str, Any] = jnp.where(__lowerCamelCase , new_scores.at[:, self.eos_token_id].set(0) , __lowerCamelCase) return scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: if not isinstance(__lowerCamelCase , __lowerCamelCase) or min_length < 0: raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(__lowerCamelCase , __lowerCamelCase) or eos_token_id < 0: raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}") _A : List[Any] = min_length _A : str = eos_token_id def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied _A : Union[str, Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1) _A : Union[str, Any] = jnp.where(__lowerCamelCase , scores.at[:, self.eos_token_id].set(-float("inf")) , __lowerCamelCase) return scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Tuple = list(__lowerCamelCase) _A : str = begin_index def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index) _A : Any = jnp.where(__lowerCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf")) , __lowerCamelCase) return scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase) -> str: _A : Dict = list(__lowerCamelCase) def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: _A : List[Any] = scores.at[..., self.suppress_tokens].set(-float("inf")) return scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase) -> str: _A : Union[str, Any] = dict(__lowerCamelCase) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _A : List[str] = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: _A : Optional[Any] = force_token_array.at[index].set(__lowerCamelCase) _A : List[str] = jnp.intaa(__lowerCamelCase) def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> jnp.ndarray: def _force_token(__lowerCamelCase): _A : int = scores.shape[0] _A : int = self.force_token_array[generation_idx] _A : Optional[int] = jnp.ones_like(__lowerCamelCase , dtype=scores.dtype) * -float("inf") _A : Union[str, Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype) _A : List[Any] = lax.dynamic_update_slice(__lowerCamelCase , __lowerCamelCase , (0, current_token)) return new_scores _A : Tuple = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowerCamelCase) , lambda: scores , ) , ) return scores class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Any = generate_config.eos_token_id _A : Optional[int] = generate_config.no_timestamps_token_id _A : Dict = generate_config.no_timestamps_token_id + 1 _A : List[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__lowerCamelCase , "max_initial_timestamp_index"): _A : Any = generate_config.max_initial_timestamp_index else: _A : Union[str, Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: _A : Any = model_config.vocab_size def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> int: # suppress <|notimestamps|> which is handled by without_timestamps _A : List[Any] = scores.at[:, self.no_timestamps_token_id].set(-float("inf")) def handle_pairs(__lowerCamelCase , __lowerCamelCase): _A : List[str] = jnp.where((cur_len - self.begin_index) >= 1 , __lowerCamelCase , __lowerCamelCase) _A : Union[str, Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowerCamelCase , ) _A : Tuple = jnp.where((cur_len - self.begin_index) < 2 , __lowerCamelCase , __lowerCamelCase) _A : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowerCamelCase , __lowerCamelCase , ) return jnp.where( __lowerCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf")) , scores_k.at[: self.eos_token_id].set(-float("inf")) , ) , __lowerCamelCase , ) _A : int = jax.vmap(__lowerCamelCase)(__lowerCamelCase , __lowerCamelCase) _A : Optional[Any] = jnp.where(cur_len == self.begin_index , __lowerCamelCase , __lowerCamelCase) _A : str = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowerCamelCase , ) _A : Tuple = self.timestamp_begin + self.max_initial_timestamp_index _A : Union[str, Any] = jnp.where( __lowerCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf")) , __lowerCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp _A : Tuple = jax.nn.log_softmax(__lowerCamelCase , axis=-1) def handle_cumulative_probs(__lowerCamelCase , __lowerCamelCase): _A : Optional[int] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1) _A : str = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf")) , __lowerCamelCase , ) _A : List[Any] = jax.vmap(__lowerCamelCase)(__lowerCamelCase , __lowerCamelCase) return scores
11
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Overwrite the cached training and evaluation sets"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "The number of processes to use for the preprocessing."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCamelCase ( self) -> int: if self.train_file is not None: _A : Optional[int] = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _A : Dict = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , __lowerCamelCase) -> str: _A : List[Any] = "label" if "label" in features[0].keys() else "labels" _A : Any = [feature.pop(__lowerCamelCase) for feature in features] _A : Optional[int] = len(__lowerCamelCase) _A : int = len(features[0]["input_ids"]) _A : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features ] _A : str = list(chain(*__lowerCamelCase)) _A : Tuple = self.tokenizer.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()} # Add back labels _A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa) return batch def _UpperCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A : int = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _A : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _A : List[str] = {} if data_args.train_file is not None: _A : Optional[int] = data_args.train_file if data_args.validation_file is not None: _A : Tuple = data_args.validation_file _A : Union[str, Any] = data_args.train_file.split("." )[-1] _A : List[str] = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _A : Union[str, Any] = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _A : str = [f"ending{i}" for i in range(4 )] _A : Union[str, Any] = "sent1" _A : str = "sent2" if data_args.max_seq_length is None: _A : Any = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _A : Optional[Any] = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _A : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ : List[Any] ): _A : List[Any] = [[context] * 4 for context in examples[context_name]] _A : Any = examples[question_header_name] _A : Union[str, Any] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out _A : Dict = list(chain(*UpperCamelCase__ ) ) _A : List[Any] = list(chain(*UpperCamelCase__ ) ) # Tokenize _A : str = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _A : Optional[int] = raw_datasets["train"] if data_args.max_train_samples is not None: _A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) _A : Any = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _A : Optional[int] = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _A : Optional[int] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) _A : Dict = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _A : List[str] = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _A : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ : Tuple ): _A , _A : List[str] = eval_predictions _A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _A : List[str] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: _A : Any = None if training_args.resume_from_checkpoint is not None: _A : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A : int = last_checkpoint _A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _A : Optional[int] = train_result.metrics _A : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) _A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("train" , UpperCamelCase__ ) trainer.save_metrics("train" , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _A : List[Any] = trainer.evaluate() _A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) _A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("eval" , UpperCamelCase__ ) trainer.save_metrics("eval" , UpperCamelCase__ ) _A : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
11
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset") and scheduler.config.steps_offset != 1: _A : int = ( F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , __lowerCamelCase , standard_warn=__lowerCamelCase) _A : List[str] = dict(scheduler.config) _A : Union[str, Any] = 1 _A : List[Any] = FrozenDict(__lowerCamelCase) if hasattr(scheduler.config , "skip_prk_steps") and scheduler.config.skip_prk_steps is False: _A : Optional[int] = ( F"The configuration file of this scheduler: {scheduler} has not set the configuration" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , __lowerCamelCase , standard_warn=__lowerCamelCase) _A : Optional[Any] = dict(scheduler.config) _A : List[str] = True _A : Tuple = FrozenDict(__lowerCamelCase) if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 .") self.register_modules( segmentation_model=__lowerCamelCase , segmentation_processor=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , ) def _lowerCamelCase ( self , __lowerCamelCase = "auto") -> Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _A : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: self.enable_attention_slicing(__lowerCamelCase) def _lowerCamelCase ( self) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") _A : str = torch.device("cuda") for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase , __lowerCamelCase) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCamelCase ( self) -> List[Any]: if self.device != torch.device("meta") or not hasattr(self.unet , "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCamelCase , "_hf_hook") and hasattr(module._hf_hook , "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 5_1_2 , __lowerCamelCase = 5_1_2 , __lowerCamelCase = 5_0 , __lowerCamelCase = 7.5 , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = 1 , **__lowerCamelCase , ) -> Dict: _A : Union[str, Any] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt").to(self.device) _A : Optional[Any] = self.segmentation_model(**__lowerCamelCase) _A : Union[str, Any] = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() _A : int = self.numpy_to_pil(__lowerCamelCase)[0].resize(image.size) # Run inpainting pipeline with the generated mask _A : str = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , )
11
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env") def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: # create estimator _A : Union[str, Any] = self.create_estimator(__lowerCamelCase) # run training estimator.fit() # result dataframe _A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
11
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' lowerCAmelCase__ = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' lowerCAmelCase__ = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' lowerCAmelCase__ = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCAmelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').") _A : Tuple = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: _A : Tuple = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _A : str = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer _A : str = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) _A : Dict = score.BleurtScorer(os.path.join(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = self.scorer.score(references=__lowerCamelCase , candidates=__lowerCamelCase) return {"scores": scores}
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase__ = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "albert" def __init__( self , __lowerCamelCase=3_0_0_0_0 , __lowerCamelCase=1_2_8 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=1_2 , __lowerCamelCase=1 , __lowerCamelCase=6_4 , __lowerCamelCase=1_6_3_8_4 , __lowerCamelCase=1 , __lowerCamelCase="gelu_new" , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=0.1 , __lowerCamelCase="absolute" , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase=3 , **__lowerCamelCase , ) -> Tuple: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase) _A : Optional[Any] = vocab_size _A : int = embedding_size _A : int = hidden_size _A : List[Any] = num_hidden_layers _A : Dict = num_hidden_groups _A : Optional[int] = num_attention_heads _A : int = inner_group_num _A : List[Any] = hidden_act _A : List[Any] = intermediate_size _A : Tuple = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : Optional[Any] = max_position_embeddings _A : List[Any] = type_vocab_size _A : List[str] = initializer_range _A : List[Any] = layer_norm_eps _A : str = classifier_dropout_prob _A : Optional[Any] = position_embedding_type class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : int = {0: "batch", 1: "choice", 2: "sequence"} else: _A : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
11
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ): # Load checkpoint _A : Optional[Any] = torch.load(UpperCamelCase__ , map_location="cpu" ) _A : Tuple = chkpt["model"] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Dict = v else: _A : List[str] = v _A : int = chkpt["params"] _A : Optional[Any] = {n: v for n, v in config.items() if not isinstance(UpperCamelCase__ , (torch.FloatTensor, numpy.ndarray) )} _A : Optional[int] = chkpt["dico_word2id"] _A : int = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model _A : Any = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _A : int = pytorch_dump_folder_path + "/" + CONFIG_NAME _A : Tuple = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCamelCase__ , indent=2 ) + "\n" ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCamelCase__ , indent=2 ) + "\n" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase__ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=False , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _A : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : Optional[int] = legacy_behaviour super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) _A : int = vocab_file _A : Optional[Any] = False if not self.vocab_file else True _A : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "eng_Latn" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Tuple = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : List[Any] = src_lang _A : Optional[int] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Tuple = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "eng_Latn" , __lowerCamelCase = None , __lowerCamelCase = "fra_Latn" , **__lowerCamelCase , ) -> BatchEncoding: _A : Tuple = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : List[str] = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] else: _A : Tuple = [self.cur_lang_code] _A : Optional[Any] = [self.eos_token_id] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase) if self.legacy_behaviour: _A : Tuple = [] _A : Any = [self.eos_token_id, self.cur_lang_code] else: _A : Union[str, Any] = [self.cur_lang_code] _A : str = [self.eos_token_id] _A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1