code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _A ( lowercase , lowercase="shi-labs/oneformer_demo" ): """simple docstring""" with open(hf_hub_download(lowercase , lowercase , repo_type='''dataset''' ) , '''r''' ) as f: a =json.load(lowercase ) a ={} a =[] a =[] for key, info in class_info.items(): a =info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(lowercase ) ) a =thing_ids a =class_names return metadata class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=3 , __A=30 , __A=400 , __A=None , __A=True , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , __A=10 , __A=False , __A=255 , __A="shi-labs/oneformer_demo" , __A="ade20k_panoptic.json" , __A=10 , ) -> List[Any]: a =parent a =batch_size a =num_channels a =min_resolution a =max_resolution a =do_resize a ={'''shortest_edge''': 32, '''longest_edge''': 1333} if size is None else size a =do_normalize a =image_mean a =image_std a =class_info_file a =prepare_metadata(__A , __A ) a =num_text a =repo_path # for the post_process_functions a =2 a =10 a =10 a =3 a =4 a =num_labels a =do_reduce_labels a =ignore_index def SCREAMING_SNAKE_CASE ( self ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self , __A , __A=False ) -> List[Any]: if not batched: a =image_inputs[0] if isinstance(__A , Image.Image ): a , a =image.size else: a , a =image.shape[1], image.shape[2] if w < h: a =int(self.size['''shortest_edge'''] * h / w ) a =self.size['''shortest_edge'''] elif w > h: a =self.size['''shortest_edge'''] a =int(self.size['''shortest_edge'''] * w / h ) else: a =self.size['''shortest_edge'''] a =self.size['''shortest_edge'''] else: a =[] for image in image_inputs: a , a =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a =max(__A , key=lambda __A : item[0] )[0] a =max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __lowerCAmelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) self.assertTrue(hasattr(__A , '''ignore_index''' ) ) self.assertTrue(hasattr(__A , '''class_info_file''' ) ) self.assertTrue(hasattr(__A , '''num_text''' ) ) self.assertTrue(hasattr(__A , '''repo_path''' ) ) self.assertTrue(hasattr(__A , '''metadata''' ) ) self.assertTrue(hasattr(__A , '''do_reduce_labels''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: pass def SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processor a =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a =prepare_image_inputs(self.image_processing_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input a =image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a , a =self.image_processing_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a , a =self.image_processing_tester.get_expected_values(__A , batched=__A ) a =image_processor( __A , ['''semantic'''] * len(__A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: # Initialize image_processor a =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a =prepare_image_inputs(self.image_processing_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input a =image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a , a =self.image_processing_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a , a =self.image_processing_tester.get_expected_values(__A , batched=__A ) a =image_processor( __A , ['''semantic'''] * len(__A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Initialize image_processor a =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a =prepare_image_inputs(self.image_processing_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input a =image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a , a =self.image_processing_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a , a =self.image_processing_tester.get_expected_values(__A , batched=__A ) a =image_processor( __A , ['''semantic'''] * len(__A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self , __A=False , __A=False , __A="np" ) -> Union[str, Any]: a =self.image_processing_class(**self.image_processor_dict ) # prepare image and target a =self.image_processing_tester.num_labels a =None a =None a =prepare_image_inputs(self.image_processing_tester , equal_resolution=__A ) if with_segmentation_maps: a =num_labels if is_instance_map: a =list(range(__A ) ) * 2 a =dict(enumerate(__A ) ) a =[ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": a =[Image.fromarray(__A ) for annotation in annotations] a =image_processor( __A , ['''semantic'''] * len(__A ) , __A , return_tensors='''pt''' , instance_id_to_semantic_id=__A , pad_and_return_pixel_mask=__A , ) return inputs def SCREAMING_SNAKE_CASE ( self ) -> int: pass def SCREAMING_SNAKE_CASE ( self ) -> Any: def common(__A=False , __A=None ): a =self.comm_get_image_processor_inputs( with_segmentation_maps=__A , is_instance_map=__A , segmentation_type=__A ) a =inputs['''mask_labels'''] a =inputs['''class_labels'''] a =inputs['''pixel_values'''] a =inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__A , __A , __A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__A ) common(is_instance_map=__A , segmentation_type='''pil''' ) common(is_instance_map=__A , segmentation_type='''pil''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =np.zeros((20, 50) ) a =1 a =1 a =1 a =binary_mask_to_rle(__A ) self.assertEqual(len(__A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a =self.image_processing_tester.get_fake_oneformer_outputs() a =fature_extractor.post_process_semantic_segmentation(__A ) self.assertEqual(len(__A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) a =[(1, 4) for i in range(self.image_processing_tester.batch_size )] a =fature_extractor.post_process_semantic_segmentation(__A , target_sizes=__A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a =self.image_processing_tester.get_fake_oneformer_outputs() a =image_processor.post_process_instance_segmentation(__A , threshold=0 ) self.assertTrue(len(__A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a =self.image_processing_tester.get_fake_oneformer_outputs() a =image_processor.post_process_panoptic_segmentation(__A , threshold=0 ) self.assertTrue(len(__A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
81
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''pix2struct_text_model''' __lowerCamelCase = ['''past_key_values'''] __lowerCamelCase = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _snake_case=50244 , _snake_case=768 , _snake_case=64 , _snake_case=2048 , _snake_case=12 , _snake_case=12 , _snake_case=32 , _snake_case=128 , _snake_case=0.1 , _snake_case=1e-6 , _snake_case=1.0 , _snake_case="gelu_new" , _snake_case=0 , _snake_case=False , _snake_case=0 , _snake_case=1 , _snake_case=False , _snake_case=True , **_snake_case , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = d_kv _lowerCAmelCase = d_ff _lowerCAmelCase = num_layers _lowerCAmelCase = num_heads _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = relative_attention_max_distance _lowerCAmelCase = dropout_rate _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_factor _lowerCAmelCase = use_cache _lowerCAmelCase = eos_token_id _lowerCAmelCase = decoder_start_token_id # for backwards compatibility _lowerCAmelCase = dense_act_fn super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , tie_word_embeddings=_snake_case , is_decoder=_snake_case , **_snake_case , ) @classmethod def snake_case ( cls , _snake_case , **_snake_case ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _lowerCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''pix2struct_vision_model''' def __init__( self , _snake_case=768 , _snake_case=768 , _snake_case=2048 , _snake_case=64 , _snake_case=12 , _snake_case=12 , _snake_case="gelu_new" , _snake_case=1e-6 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=1e-10 , _snake_case=1.0 , _snake_case=4096 , _snake_case=32 , _snake_case=128 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) _lowerCAmelCase = hidden_size _lowerCAmelCase = patch_embed_hidden_size _lowerCAmelCase = d_ff _lowerCAmelCase = dropout_rate _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = initializer_range _lowerCAmelCase = initializer_factor _lowerCAmelCase = attention_dropout _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = dense_act_fn _lowerCAmelCase = seq_len _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = relative_attention_max_distance _lowerCAmelCase = d_kv @classmethod def snake_case ( cls , _snake_case , **_snake_case ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _lowerCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''pix2struct''' __lowerCamelCase = True def __init__( self , _snake_case=None , _snake_case=None , _snake_case=1.0 , _snake_case=0.02 , _snake_case=False , _snake_case=False , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(tie_word_embeddings=_snake_case , is_encoder_decoder=_snake_case , **_snake_case ) if text_config is None: _lowerCAmelCase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _lowerCAmelCase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _lowerCAmelCase = PixaStructTextConfig(**_snake_case ) _lowerCAmelCase = PixaStructVisionConfig(**_snake_case ) _lowerCAmelCase = self.text_config.decoder_start_token_id _lowerCAmelCase = self.text_config.pad_token_id _lowerCAmelCase = self.text_config.eos_token_id _lowerCAmelCase = initializer_factor _lowerCAmelCase = initializer_range _lowerCAmelCase = self.initializer_range _lowerCAmelCase = self.initializer_range _lowerCAmelCase = is_vqa @classmethod def snake_case ( cls , _snake_case , _snake_case , **_snake_case ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.text_config.to_dict() _lowerCAmelCase = self.vision_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
82
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
0
'''simple docstring''' class lowercase__ : def __init__( self : Dict ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : Dict = n _UpperCamelCase : Optional[int] = [None] * self.n _UpperCamelCase : List[str] = 0 # index of the first element _UpperCamelCase : Dict = 0 _UpperCamelCase : int = 0 def __len__( self : Optional[int] ): '''simple docstring''' return self.size def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.size == 0 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ): '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _UpperCamelCase : Optional[int] = data _UpperCamelCase : Tuple = (self.rear + 1) % self.n self.size += 1 return self def UpperCamelCase_ ( self : Any ): '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW' ) _UpperCamelCase : List[Any] = self.array[self.front] _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Optional[int] = (self.front + 1) % self.n self.size -= 1 return temp
83
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :int UpperCAmelCase_ :TreeNode | None = None UpperCAmelCase_ :TreeNode | None = None __UpperCAmelCase = namedtuple('CoinsDistribResult', 'moves excess') def _snake_case ( lowercase__ : TreeNode | None ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase__ ) != count_coins(lowercase__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(lowercase__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = get_distrib(node.left ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = get_distrib(node.right ) lowerCAmelCase_ :Optional[Any] = 1 - left_distrib_excess lowerCAmelCase_ :Tuple = 1 - right_distrib_excess lowerCAmelCase_ :Optional[Any] = ( left_distrib_moves + right_distrib_moves + abs(lowercase__ ) + abs(lowercase__ ) ) lowerCAmelCase_ :int = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase__ , lowercase__ ) return get_distrib(lowercase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
84
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger() def UpperCamelCase_( snake_case : Path , snake_case : list ): '''simple docstring''' snake_case_ = "\n".join(snake_case ) Path(snake_case ).open("w" ).writelines(snake_case ) _SCREAMING_SNAKE_CASE : List[str] = "patrickvonplaten/t5-tiny-random" _SCREAMING_SNAKE_CASE : str = "sshleifer/bart-tiny-random" _SCREAMING_SNAKE_CASE : Optional[int] = "sshleifer/tiny-mbart" _SCREAMING_SNAKE_CASE : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" snake_case_ = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() snake_case_ = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(a__ , a__ ) snake_case_ = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) snake_case_ = "translation_en_to_de" if model == T5_TINY else "summarization" snake_case_ = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(a__ , "argv" , a__ ): run_generate() assert Path(a__ ).exists() # os.remove(Path(output_file_name)) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' self.run_eval_tester(a__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' self.run_eval_tester(a__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCAmelCase__ ( self , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" snake_case_ = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() snake_case_ = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } snake_case_ = Path(self.get_auto_remove_tmp_dir() ) snake_case_ = str(tmp_dir / "scores.json" ) snake_case_ = str(tmp_dir / "val.target" ) _dump_articles(a__ , text["en"] ) _dump_articles(a__ , text["de"] ) snake_case_ = "translation_en_to_de" if model == T5_TINY else "summarization" snake_case_ = F'\n run_eval_search.py\n {model}\n {str(a__ )}\n {str(a__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(a__ , "argv" , a__ ): with CaptureStdout() as cs: run_search() snake_case_ = [" num_beams | length_penalty", model, "Best score args"] snake_case_ = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(a__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(a__ ).exists() os.remove(Path(a__ ) )
85
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """vocab.txt"""} lowerCamelCase__ = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowerCamelCase__ = { """openbmb/cpm-ant-10b""": 1_024, } def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(_UpperCamelCase , 'r' , encoding='utf-8' ) as reader: __lowerCAmelCase : Dict = reader.readlines() for index, token in enumerate(_UpperCamelCase ): __lowerCAmelCase : int = token.rstrip('\n' ) __lowerCAmelCase : str = index return vocab class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE=2_00 ): __lowerCAmelCase : Optional[Any] = vocab __lowerCAmelCase : Optional[int] = unk_token __lowerCAmelCase : List[Any] = max_input_chars_per_word def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = list(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : List[str] = [] while start < len(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = None while start < end: __lowerCAmelCase : List[str] = ''.join(chars[start:end] ) if substr in self.vocab: __lowerCAmelCase : str = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = end return sub_tokens class A__ ( _lowerCamelCase): A_ : Any = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[int] = ['input_ids', 'attention_mask'] A_ : int = False def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<d>" , _SCREAMING_SNAKE_CASE="</d>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="</n>" , _SCREAMING_SNAKE_CASE="</_>" , _SCREAMING_SNAKE_CASE="left" , **_SCREAMING_SNAKE_CASE , ): requires_backends(self , ['jieba'] ) super().__init__( bod_token=_SCREAMING_SNAKE_CASE , eod_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , line_token=_SCREAMING_SNAKE_CASE , space_token=_SCREAMING_SNAKE_CASE , padding_side=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[Any] = bod_token __lowerCAmelCase : List[Any] = eod_token __lowerCAmelCase : Dict = load_vocab(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = self.encoder[space_token] __lowerCAmelCase : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowerCAmelCase : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) __lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} __lowerCAmelCase : List[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __lowerCamelCase ( self ): return self.encoder[self.bod_token] @property def __lowerCamelCase ( self ): return self.encoder[self.eod_token] @property def __lowerCamelCase ( self ): return self.encoder["\n"] @property def __lowerCamelCase ( self ): return len(self.encoder ) def __lowerCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = [] for x in jieba.cut(_SCREAMING_SNAKE_CASE , cut_all=_SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) ) return output_tokens def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = [i for i in token_ids if i >= 0] __lowerCAmelCase : Tuple = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return token in self.encoder def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return "".join(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if os.path.isdir(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __lowerCAmelCase : int = (filename_prefix + '-' if filename_prefix else '') + save_directory __lowerCAmelCase : int = 0 if " " in self.encoder: __lowerCAmelCase : Optional[int] = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: __lowerCAmelCase : Optional[int] = self.encoder['\n'] del self.encoder["\n"] __lowerCAmelCase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) __lowerCAmelCase : Optional[int] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(_SCREAMING_SNAKE_CASE ))
86
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowercase_ ( _lowerCamelCase : str = "laptop"): lowercase__ : Optional[Any] = f'''https://www.amazon.in/laptop/s?k={product}''' lowercase__ : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } lowercase__ : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase).text) # Initialize a Pandas dataframe with the column titles lowercase__ : Dict = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"}) , ): try: lowercase__ : List[str] = item.ha.text lowercase__ : List[str] = "https://www.amazon.in/" + item.ha.a["href"] lowercase__ : Optional[Any] = item.find("span" , attrs={"class": "a-offscreen"}).text try: lowercase__ : Tuple = item.find("span" , attrs={"class": "a-icon-alt"}).text except AttributeError: lowercase__ : List[Any] = "Not available" try: lowercase__ : int = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"}).text.split("₹")[1] ) except AttributeError: lowercase__ : Any = "" try: lowercase__ : Optional[Any] = float( ( ( float(product_mrp.strip("₹").replace("," , "")) - float(product_price.strip("₹").replace("," , "")) ) / float(product_mrp.strip("₹").replace("," , "")) ) * 100) except ValueError: lowercase__ : Dict = float("nan") except AttributeError: pass lowercase__ : Tuple = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowercase__ : str = " " lowercase__ : Dict = " " data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase = '''headphones''' get_amazon_product_data(product).to_csv(f"Amazon Product Data for {product}.csv")
87
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
0
def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = int(A_ ) # Initialize Result __magic_name__ = [] # Traverse through all denomination for denomination in reversed(A_ ): # Find denominations while int(A_ ) >= int(A_ ): total_value -= int(A_ ) answer.append(A_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : List[Any] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): __lowerCAmelCase : Any = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __lowerCAmelCase : Union[str, Any] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter __lowerCAmelCase : Optional[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __lowerCAmelCase : Optional[Any] = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F'''Following is minimal change for {value}: ''') __lowerCAmelCase : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
88
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Tuple = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowerCAmelCase : List[str] = 'CIDAS/clipseg-rd64-refined' lowerCAmelCase : Optional[int] = 'image_segmenter' lowerCAmelCase : Union[str, Any] = CLIPSegForImageSegmentation lowerCAmelCase : str = ['image', 'text'] lowerCAmelCase : int = ['image'] def __init__( self : Tuple ,*_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Any ): requires_backends(self ,['vision'] ) super().__init__(*_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : "Image" ,_UpperCAmelCase : str ): return self.pre_processor(text=[label] ,images=[image] ,padding=_UpperCAmelCase ,return_tensors='pt' ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Optional[Any] ): with torch.no_grad(): _a : int = self.model(**_UpperCAmelCase ).logits return logits def __lowercase ( self : List[Any] ,_UpperCAmelCase : Optional[int] ): _a : Dict = outputs.cpu().detach().numpy() _a : List[str] = 0 _a : int = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
89
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
0
from math import pi, sqrt def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('math domain error' ) if num > 1_71.5: raise OverflowError('math range error' ) elif num - int(UpperCamelCase__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(UpperCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase_ ( ) -> None: """simple docstring""" assert gamma(0.5 ) == sqrt(UpperCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __A = 1.0 while num: __A = float(input("Gamma of: ")) print(f'''gamma({num}) = {gamma(num)}''') print("\nEnter 0 to exit...")
90
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
0
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = checkpoints.load_tax_checkpoint(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = flatten_dict(__a ) return flax_params def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } SCREAMING_SNAKE_CASE_ : Any = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key SCREAMING_SNAKE_CASE_ : str = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): SCREAMING_SNAKE_CASE_ : str = new_key.replace(__a , __a ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): SCREAMING_SNAKE_CASE_ : Any = new_key.replace(__a , __a ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number SCREAMING_SNAKE_CASE_ : int = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __a ) SCREAMING_SNAKE_CASE_ : Tuple = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number SCREAMING_SNAKE_CASE_ : Any = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __a ) SCREAMING_SNAKE_CASE_ : str = flax_dict[key] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): SCREAMING_SNAKE_CASE_ : List[Any] = torch.from_numpy(converted_dict[key].T ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _A (__a , __a , __a=False , __a=False ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_flax_param(__a ) if not use_large: SCREAMING_SNAKE_CASE_ : Optional[int] = PixaStructVisionConfig() SCREAMING_SNAKE_CASE_ : int = PixaStructTextConfig() else: SCREAMING_SNAKE_CASE_ : Dict = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) SCREAMING_SNAKE_CASE_ : Tuple = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__a ) SCREAMING_SNAKE_CASE_ : Dict = PixaStructForConditionalGeneration(__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = rename_and_convert_flax_params(__a ) model.load_state_dict(__a ) SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) SCREAMING_SNAKE_CASE_ : List[str] = PixaStructImageProcessor() SCREAMING_SNAKE_CASE_ : str = PixaStructProcessor(image_processor=__a , tokenizer=__a ) if use_large: SCREAMING_SNAKE_CASE_ : int = 40_96 SCREAMING_SNAKE_CASE_ : int = True # mkdir if needed os.makedirs(__a , exist_ok=__a ) model.save_pretrained(__a ) processor.save_pretrained(__a ) print('''Model saved in {}'''.format(__a ) ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") UpperCAmelCase_ : str = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
91
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
UpperCamelCase__ = """Input must be a string of 8 numbers plus letter""" UpperCamelCase__ = """TRWAGMYFPDXBNJZSQVHLCKE""" def _a ( SCREAMING_SNAKE_CASE_ : str ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = F"""Expected string as input, found {type(SCREAMING_SNAKE_CASE_ ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = spanish_id.replace("-" , "" ).upper() if len(SCREAMING_SNAKE_CASE_ ) != 9: raise ValueError(SCREAMING_SNAKE_CASE_ ) try: __lowerCAmelCase = int(spanish_id_clean[0:8] ) __lowerCAmelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(SCREAMING_SNAKE_CASE_ ) from ex if letter.isdigit(): raise ValueError(SCREAMING_SNAKE_CASE_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
92
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = ShapEImgaImgPipeline lowerCAmelCase_ = ['''image'''] lowerCAmelCase_ = ['''image'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def _snake_case ( self ): """simple docstring""" return 32 @property def _snake_case ( self ): """simple docstring""" return 32 @property def _snake_case ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _snake_case ( self ): """simple docstring""" return 8 @property def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase_ : Tuple = CLIPVisionModel(__SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = CLIPImageProcessor( crop_size=2_24 , do_center_crop=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , do_resize=__SCREAMING_SNAKE_CASE , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_24 , ) return image_processor @property def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : List[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase_ : Any = PriorTransformer(**__SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : Union[str, Any] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase_ : Optional[Any] = ShapERenderer(**__SCREAMING_SNAKE_CASE ) return model def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.dummy_prior lowercase_ : Union[str, Any] = self.dummy_image_encoder lowercase_ : Tuple = self.dummy_image_processor lowercase_ : Optional[Any] = self.dummy_renderer lowercase_ : Tuple = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=__SCREAMING_SNAKE_CASE , clip_sample=__SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) lowercase_ : Dict = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" lowercase_ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowercase_ : int = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowercase_ : List[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = '''cpu''' lowercase_ : List[str] = self.get_dummy_components() lowercase_ : Optional[int] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[Any] = output.images[0] lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase_ : Optional[Any] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = torch_device == '''cpu''' lowercase_ : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__SCREAMING_SNAKE_CASE , relax_max_difference=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.get_dummy_components() lowercase_ : Optional[Any] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : str = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = 1 lowercase_ : Any = 2 lowercase_ : str = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: lowercase_ : Optional[int] = batch_size * [inputs[key]] lowercase_ : Any = pipe(**__SCREAMING_SNAKE_CASE , num_images_per_prompt=__SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase_ : Optional[Any] = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase_ : List[str] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) lowercase_ : Union[str, Any] = pipe( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
93
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
0
from math import pow def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count a :List[Any] = int(pow(UpperCAmelCase_ , UpperCAmelCase_ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n a , a :List[Any] = backtrack( UpperCAmelCase_ , UpperCAmelCase_ , current_number + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. a , a :List[str] = backtrack( UpperCAmelCase_ , UpperCAmelCase_ , current_number + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) return current_sum, solutions_count def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(UpperCAmelCase_ , UpperCAmelCase_ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
94
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
0
def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : int =len(SCREAMING_SNAKE_CASE ) a__ : int =len(SCREAMING_SNAKE_CASE ) a__ : int =( first_str_length if first_str_length > second_str_length else second_str_length ) a__ : list =[] for char_count in range(SCREAMING_SNAKE_CASE ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
95
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """ViTImageProcessor""" lowerCamelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , lowercase=None , lowercase=None , **lowercase ): _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) _lowerCamelCase : Any = kwargs.pop('feature_extractor' ) _lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase , lowercase ) def __call__( self , lowercase=None , lowercase=None , lowercase=None , lowercase=None , **lowercase ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _lowerCamelCase : Union[str, Any] = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if visual_prompt is not None: _lowerCamelCase : Optional[int] = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: _lowerCamelCase : Tuple = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if visual_prompt is not None and images is not None: _lowerCamelCase : Optional[Any] = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _lowerCamelCase : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _lowerCamelCase : List[Any] = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase , ) return self.image_processor_class @property def A_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase , ) return self.image_processor
96
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
97
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class snake_case : """simple docstring""" snake_case__ = 42 snake_case__ = None snake_case__ = None def a_ ( ): UpperCAmelCase__ = Node(1 ) UpperCAmelCase__ = Node(2 ) UpperCAmelCase__ = Node(3 ) UpperCAmelCase__ = Node(4 ) UpperCAmelCase__ = Node(5 ) return tree def a_ ( lowerCamelCase ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a_ ( lowerCamelCase ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a_ ( lowerCamelCase ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a_ ( lowerCamelCase ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a_ ( lowerCamelCase ): UpperCAmelCase__ = [] if root is None: return output UpperCAmelCase__ = deque([root] ) while process_queue: UpperCAmelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [] def populate_output(lowerCamelCase , lowerCamelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase , lowerCamelCase ) return output def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [] def populate_output(lowerCamelCase , lowerCamelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase , lowerCamelCase ) return output def a_ ( lowerCamelCase ): if root is None: return [] UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = height(lowerCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = 0 return output def a_ ( ): # Main function for testing. UpperCAmelCase__ = make_tree() print(f'''In-order Traversal: {inorder(lowerCamelCase )}''' ) print(f'''Pre-order Traversal: {preorder(lowerCamelCase )}''' ) print(f'''Post-order Traversal: {postorder(lowerCamelCase )}''' , '\n' ) print(f'''Height of Tree: {height(lowerCamelCase )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(lowerCamelCase ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(lowerCamelCase ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(lowerCamelCase , level=lowerCamelCase ) ) print('\nZigZag order Traversal: ' ) print(zigzag(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
98
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowercase : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase : Optional[Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowercase : Optional[Any] = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A_ ( A__ ) -> Optional[Any]: a__ : List[str] = None # source code of `config_class` a__ : Tuple = inspect.getsource(A__ ) a__ : Any = _re_checkpoint.findall(A__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): a__ : Union[str, Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link a__ : str = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: a__ : Optional[int] = ckpt_name break return checkpoint def A_ ( ) -> List[str]: a__ : Tuple = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue a__ : Dict = get_checkpoint_from_config_class(A__ ) a__ : List[str] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(A__ ) if len(A__ ) > 0: a__ : Dict = '\n'.join(sorted(A__ ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
99
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
"""simple docstring""" import numpy as np def _lowerCAmelCase ( UpperCamelCase_ ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
100
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
101
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='owlvit_text_model' def __init__(self , a_=4_94_08 , a_=5_12 , a_=20_48 , a_=12 , a_=8 , a_=16 , a_="quick_gelu" , a_=1E-5 , a_=0.0 , a_=0.02 , a_=1.0 , a_=0 , a_=4_94_06 , a_=4_94_07 , **a_ , ): '''simple docstring''' super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case : Any = vocab_size __snake_case : Dict = hidden_size __snake_case : Any = intermediate_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : Any = max_position_embeddings __snake_case : Any = hidden_act __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = attention_dropout __snake_case : Tuple = initializer_range __snake_case : Tuple = initializer_factor @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ): '''simple docstring''' cls._set_token_in_kwargs(a_ ) __snake_case , __snake_case : Optional[Any] = cls.get_config_dict(a_ , **a_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __snake_case : Any = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ , **a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='owlvit_vision_model' def __init__(self , a_=7_68 , a_=30_72 , a_=12 , a_=12 , a_=3 , a_=7_68 , a_=32 , a_="quick_gelu" , a_=1E-5 , a_=0.0 , a_=0.02 , a_=1.0 , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : str = hidden_size __snake_case : List[str] = intermediate_size __snake_case : Dict = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : int = num_channels __snake_case : Union[str, Any] = image_size __snake_case : List[str] = patch_size __snake_case : Dict = hidden_act __snake_case : Optional[Any] = layer_norm_eps __snake_case : str = attention_dropout __snake_case : List[str] = initializer_range __snake_case : str = initializer_factor @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ): '''simple docstring''' cls._set_token_in_kwargs(a_ ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(a_ , **a_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __snake_case : Dict = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ , **a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='owlvit' lowerCamelCase__ =True def __init__(self , a_=None , a_=None , a_=5_12 , a_=2.6592 , a_=True , **a_ , ): '''simple docstring''' super().__init__(**a_ ) if text_config is None: __snake_case : Union[str, Any] = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: __snake_case : Optional[int] = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) __snake_case : str = OwlViTTextConfig(**a_ ) __snake_case : Union[str, Any] = OwlViTVisionConfig(**a_ ) __snake_case : List[str] = projection_dim __snake_case : Optional[int] = logit_scale_init_value __snake_case : List[str] = return_dict __snake_case : List[Any] = 1.0 @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , **a_ ): '''simple docstring''' cls._set_token_in_kwargs(a_ ) __snake_case , __snake_case : int = cls.get_config_dict(a_ , **a_ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a_ , **a_ ) @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , a_ , **a_ ): '''simple docstring''' __snake_case : str = {} __snake_case : Dict = text_config __snake_case : Optional[Any] = vision_config return cls.from_dict(a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = copy.deepcopy(self.__dict__ ) __snake_case : Dict = self.text_config.to_dict() __snake_case : Optional[int] = self.vision_config.to_dict() __snake_case : Tuple = self.__class__.model_type return output class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-4 def SCREAMING_SNAKE_CASE (self , a_ , a_ = -1 , a_ = -1 , a_ = None , ): '''simple docstring''' __snake_case : Union[str, Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=a_ , seq_length=a_ , framework=a_ ) __snake_case : Any = super().generate_dummy_inputs( processor.image_processor , batch_size=a_ , framework=a_ ) return {**text_input_dict, **image_input_dict} @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 14
102
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
0
def UpperCamelCase( __UpperCamelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
103
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'canine' def __init__( self : str ,lowercase__ : Any=7_6_8 ,lowercase__ : List[str]=1_2 ,lowercase__ : Tuple=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : List[str]="gelu" ,lowercase__ : Optional[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : Dict=1_6_3_8_4 ,lowercase__ : Tuple=1_6 ,lowercase__ : Any=0.0_2 ,lowercase__ : str=1e-1_2 ,lowercase__ : str=0 ,lowercase__ : Tuple=0xe_000 ,lowercase__ : Optional[int]=0xe_001 ,lowercase__ : List[str]=4 ,lowercase__ : List[str]=4 ,lowercase__ : List[Any]=8 ,lowercase__ : Optional[int]=1_6_3_8_4 ,lowercase__ : Union[str, Any]=1_2_8 ,**lowercase__ : List[str] ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps # Character config: __lowercase = downsampling_rate __lowercase = upsampling_kernel_size __lowercase = num_hash_functions __lowercase = num_hash_buckets __lowercase = local_transformer_stride
104
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
0
"""simple docstring""" import torch def _SCREAMING_SNAKE_CASE ( ) ->Optional[Any]: '''simple docstring''' if torch.cuda.is_available(): a : List[Any] = torch.cuda.device_count() else: a : Any = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
105
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
0
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Dict = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
106
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class snake_case__ : """simple docstring""" def __UpperCAmelCase ( self : str , __lowerCamelCase : Dict ) -> List[Any]: raise NotImplementedError() def __UpperCAmelCase ( self : List[str] ) -> List[Any]: raise NotImplementedError() class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : "AutoTokenizer" , __lowerCamelCase : bool = False , **__lowerCamelCase : str ) -> Any: a = tokenizer a = skip_prompt a = decode_kwargs # variables used in the streaming process a = [] a = 0 a = True def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str ) -> List[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: a = value[0] if self.skip_prompt and self.next_tokens_are_prompt: a = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) a = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): a = text[self.print_len :] a = [] a = 0 # If the last token is a CJK character, we print the characters. elif len(__lowerCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): a = text[self.print_len :] self.print_len += len(__lowerCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: a = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(__lowerCamelCase ) self.on_finalized_text(__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> int: # Flush the cache, if it exists if len(self.token_cache ) > 0: a = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) a = text[self.print_len :] a = [] a = 0 else: a = "" a = True self.on_finalized_text(__lowerCamelCase , stream_end=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : bool = False ) -> Dict: print(__lowerCamelCase , flush=__lowerCamelCase , end="" if not stream_end else None ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[Any] ) -> Any: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : "AutoTokenizer" , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[float] = None , **__lowerCamelCase : Any ) -> int: super().__init__(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) a = Queue() a = None a = timeout def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : bool = False ) -> Tuple: self.text_queue.put(__lowerCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Dict ) -> str: return self def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: a = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
107
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = int(SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Any = divmod(SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE ) + str(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Optional[int] = str(SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) lowerCAmelCase : Tuple = "-" if number.startswith("-" ) else "" lowerCAmelCase : Union[str, Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f"""{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
108
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Optional[int] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Any = num_choices UpperCAmelCase : str = scope UpperCAmelCase : str = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCAmelCase : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = OpenAIGPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = OpenAIGPTLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple = OpenAIGPTDoubleHeadsModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : str = self.num_labels UpperCAmelCase : Optional[int] = OpenAIGPTForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Any = config_and_inputs UpperCAmelCase : Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowerCAmelCase : int = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = inputs_dict["""labels"""] UpperCAmelCase : List[Any] = inputs_dict["""labels"""] UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = OpenAIGPTModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = OpenAIGPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president is UpperCAmelCase : Optional[int] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase : List[Any] = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , _SCREAMING_SNAKE_CASE )
109
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: lowercase__ = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowercase__ = '''''' lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase__ = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__ = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase__ = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
110
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
0
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __UpperCAmelCase = """.""" if __name__ == "__main__": __UpperCAmelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __UpperCAmelCase = [] __UpperCAmelCase = [] with open(doctest_file_path) as fp: for line in fp: __UpperCAmelCase = line.strip() __UpperCAmelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __UpperCAmelCase = """\n""".join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
323
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _UpperCamelCase = 12_8022 _UpperCamelCase = 12_8028 @require_sentencepiece class _lowerCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : int =MaMaaaTokenizer UpperCAmelCase_ : int =False UpperCAmelCase_ : Union[str, Any] =False UpperCAmelCase_ : str =True def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().setUp() __snake_case : List[Any] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __snake_case : Optional[Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) __snake_case : int = Path(self.tmpdirname ) save_json(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __snake_case : List[Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return ( "This is a test", "This is a test", ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Dict = "</s>" __snake_case : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Any = self.get_tokenizer() __snake_case : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(UpperCAmelCase_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Any = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [2, 3, 4, 5, 6] , ) __snake_case : List[Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) __snake_case : int = tokenizer.convert_tokens_to_string(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , "This is a test" ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = {"input_ids": [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="facebook/m2m100_418M" UpperCAmelCase_ : List[Any] =[ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] UpperCAmelCase_ : List[str] =[ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off UpperCAmelCase_ : str =[EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def UpperCAmelCase ( cls ) -> Dict: '''simple docstring''' __snake_case : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __snake_case : List[Any] = 1 return cls def UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128063 ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = self.tokenizer.get_vocab() self.assertEqual(len(UpperCAmelCase_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , UpperCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : str = "en" __snake_case : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) # fmt: off __snake_case : Dict = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on __snake_case : int = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) __snake_case : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : int = tempfile.mkdtemp() __snake_case : Any = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCAmelCase_ ) __snake_case : Tuple = MaMaaaTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCAmelCase_ ) @require_torch def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = "en" __snake_case : Any = "fr" __snake_case : Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors="pt" ) __snake_case : List[str] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __snake_case : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __snake_case : List[Any] = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Any = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __snake_case : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # en_XX, A, test, EOS "input_ids": [[128022, 58, 4183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128006, } , )
326
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
0
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = BioGptTokenizer lowercase = False def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] A_ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) A_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = "lower newer" A_ = "lower newer" return input_text, output_text def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = BioGptTokenizer(self.vocab_file , self.merges_file ) A_ = "lower" A_ = ["low", "er</w>"] A_ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) A_ = tokens + ["<unk>"] A_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A_ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCAmelCase_ ) A_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCAmelCase_ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
162
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase : str = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCamelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase : Tuple = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowerCamelCase : Optional[Any] = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def _SCREAMING_SNAKE_CASE ( lowercase : Any ): '''simple docstring''' lowerCamelCase_ = None # source code of `config_class` lowerCamelCase_ = inspect.getsource(__a ) lowerCamelCase_ = _re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): lowerCamelCase_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase_ = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCamelCase_ = ckpt_name break return checkpoint def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCamelCase_ = get_checkpoint_from_config_class(__a ) lowerCamelCase_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: lowerCamelCase_ = "\n".join(sorted(__a ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
204
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class UpperCamelCase__ (__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase_ : int = """pix2struct_text_model""" lowerCamelCase_ : Any = ["""past_key_values"""] lowerCamelCase_ : str = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , UpperCamelCase__=5_0244 , UpperCamelCase__=768 , UpperCamelCase__=64 , UpperCamelCase__=2048 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=32 , UpperCamelCase__=128 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-6 , UpperCamelCase__=1.0 , UpperCamelCase__="gelu_new" , UpperCamelCase__=0 , UpperCamelCase__=False , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Optional[Any]: lowerCamelCase : Any = vocab_size lowerCamelCase : Union[str, Any] = hidden_size lowerCamelCase : Tuple = d_kv lowerCamelCase : Optional[int] = d_ff lowerCamelCase : Any = num_layers lowerCamelCase : int = num_heads lowerCamelCase : Any = relative_attention_num_buckets lowerCamelCase : List[str] = relative_attention_max_distance lowerCamelCase : Optional[int] = dropout_rate lowerCamelCase : Optional[int] = layer_norm_epsilon lowerCamelCase : Dict = initializer_factor lowerCamelCase : List[Any] = use_cache lowerCamelCase : Union[str, Any] = eos_token_id lowerCamelCase : List[Any] = decoder_start_token_id # for backwards compatibility lowerCamelCase : int = dense_act_fn super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , **UpperCAmelCase_ , ) @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase_ ) lowerCamelCase : List[Any] = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": lowerCamelCase : Optional[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class UpperCamelCase__ (__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase_ : List[Any] = """pix2struct_vision_model""" def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=768 , UpperCamelCase__=2048 , UpperCamelCase__=64 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__="gelu_new" , UpperCamelCase__=1e-6 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-10 , UpperCamelCase__=1.0 , UpperCamelCase__=4096 , UpperCamelCase__=32 , UpperCamelCase__=128 , **UpperCamelCase__ , ) -> Optional[Any]: super().__init__(**UpperCAmelCase_ ) lowerCamelCase : str = hidden_size lowerCamelCase : Union[str, Any] = patch_embed_hidden_size lowerCamelCase : str = d_ff lowerCamelCase : Any = dropout_rate lowerCamelCase : int = num_hidden_layers lowerCamelCase : int = num_attention_heads lowerCamelCase : str = initializer_range lowerCamelCase : Any = initializer_factor lowerCamelCase : Union[str, Any] = attention_dropout lowerCamelCase : Tuple = layer_norm_eps lowerCamelCase : int = dense_act_fn lowerCamelCase : Tuple = seq_len lowerCamelCase : Optional[Any] = relative_attention_num_buckets lowerCamelCase : int = relative_attention_max_distance lowerCamelCase : Dict = d_kv @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase_ ) lowerCamelCase : str = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": lowerCamelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class UpperCamelCase__ (__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase_ : Optional[int] = """pix2struct""" lowerCamelCase_ : List[str] = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=1.0 , UpperCamelCase__=0.02 , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ) -> List[str]: super().__init__(tie_word_embeddings=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ ) if text_config is None: lowerCamelCase : List[str] = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: lowerCamelCase : str = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) lowerCamelCase : int = PixaStructTextConfig(**UpperCAmelCase_ ) lowerCamelCase : int = PixaStructVisionConfig(**UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = self.text_config.decoder_start_token_id lowerCamelCase : Tuple = self.text_config.pad_token_id lowerCamelCase : List[str] = self.text_config.eos_token_id lowerCamelCase : Union[str, Any] = initializer_factor lowerCamelCase : str = initializer_range lowerCamelCase : Optional[int] = self.initializer_range lowerCamelCase : Dict = self.initializer_range lowerCamelCase : str = is_vqa @classmethod def _lowercase ( cls , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : int = copy.deepcopy(self.__dict__ ) lowerCamelCase : List[Any] = self.text_config.to_dict() lowerCamelCase : List[str] = self.vision_config.to_dict() lowerCamelCase : Dict = self.__class__.model_type return output
48
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :List[Any] = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
159
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_6 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=6 , UpperCAmelCase=6 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , UpperCAmelCase=1_0_0_0 , ) -> Tuple: _lowercase =parent _lowercase =batch_size _lowercase =num_channels _lowercase =image_size _lowercase =patch_size _lowercase =text_seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =coordinate_size _lowercase =shape_size _lowercase =num_labels _lowercase =num_choices _lowercase =scope _lowercase =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowercase =text_seq_length _lowercase =(image_size // patch_size) ** 2 + 1 _lowercase =self.text_seq_length + self.image_seq_length def __A (self ) -> Any: _lowercase =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowercase =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase =bbox[i, j, 3] _lowercase =bbox[i, j, 1] _lowercase =t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase =bbox[i, j, 2] _lowercase =bbox[i, j, 0] _lowercase =t _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.text_seq_length] ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowercase =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =LayoutLMvaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() # text + image _lowercase =model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_ ) _lowercase =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowercase =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowercase =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowercase =model(UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowercase =model(pixel_values=UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _lowercase =self.num_labels _lowercase =LayoutLMvaForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =self.num_labels _lowercase =LayoutLMvaForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self ) -> Optional[Any]: _lowercase =self.prepare_config_and_inputs() ( _lowercase ) =config_and_inputs _lowercase ={ "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: return True def __A (self ) -> Dict: _lowercase =LayoutLMvaModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7 ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _lowercase =copy.deepcopy(UpperCAmelCase_ ) if model_class in get_values(UpperCAmelCase_ ): _lowercase ={ k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_ ): _lowercase =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in get_values(UpperCAmelCase_ ): _lowercase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) _lowercase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in [ *get_values(UpperCAmelCase_ ), ]: _lowercase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in [ *get_values(UpperCAmelCase_ ), ]: _lowercase =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) return inputs_dict def __A (self ) -> int: self.config_tester.run_common_tests() def __A (self ) -> List[str]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase =type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def __A (self ) -> Optional[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def __A (self ) -> Optional[int]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def __A (self ) -> Union[str, Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =LayoutLMvaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCAmelCase_ ( ) -> Dict: """simple docstring""" _lowercase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowerCamelCase__ ( unittest.TestCase): @cached_property def __A (self ) -> str: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_ ) if is_vision_available() else None @slow def __A (self ) -> Optional[Any]: _lowercase =LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(UpperCAmelCase_ ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values.to(UpperCAmelCase_ ) _lowercase =torch.tensor([[1, 2]] ) _lowercase =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowercase =model( input_ids=input_ids.to(UpperCAmelCase_ ) , bbox=bbox.to(UpperCAmelCase_ ) , pixel_values=pixel_values.to(UpperCAmelCase_ ) , ) # verify the logits _lowercase =torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_ ) _lowercase =torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) )
5
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple = 10**-10 ): __UpperCAmelCase : str = a while True: __UpperCAmelCase : Optional[Any] = Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
114
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''▁''' lowerCAmelCase_ = {'''vocab_file''': '''prophetnet.tokenizer'''} lowerCAmelCase_ = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } lowerCAmelCase_ = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } lowerCAmelCase_ = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_1_2, } def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : Optional[Any] = collections.OrderedDict() with open(__a , '''r''' , encoding='''utf-8''' ) as reader: snake_case_ : int = reader.readlines() for index, token in enumerate(__a ): snake_case_ : List[str] = token.rstrip('''\n''' ) snake_case_ : List[Any] = index return vocab class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowerCamelCase_ : Tuple = VOCAB_FILES_NAMES lowerCamelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__(self , __magic_name__ , __magic_name__="[SEP]" , __magic_name__="[SEP]" , __magic_name__="[SEP]" , __magic_name__="[UNK]" , __magic_name__="[PAD]" , __magic_name__="[CLS]" , __magic_name__="[MASK]" , __magic_name__ = None , **__magic_name__ , ) -> None: '''simple docstring''' snake_case_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise snake_case_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) snake_case_ : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case_ : Optional[int] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case_ : Optional[int] = F'''[unused{i}]''' snake_case_ : int = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case_ : int = 12 snake_case_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_ ) def __getstate__(self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = self.__dict__.copy() snake_case_ : Dict = None return state def __setstate__(self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Tuple = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ : Dict = {} snake_case_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = None , __magic_name__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return ([0] * len(UpperCAmelCase_ )) + [1] return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : Any = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase (self ) -> Dict: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : str = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ : str = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase (self , __magic_name__ ) -> Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase (self , __magic_name__ ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = "".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , '''wb''' ) as fi: snake_case_ : Dict = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case_ : Union[str, Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
279
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
0
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = torch.exp(__a ) UpperCAmelCase : List[Any] = torch.sum(__a , dim=1 ) # sum of exp(x_i) UpperCAmelCase : Union[str, Any] = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__a ) - B / A class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : Dict = config.output_attentions UpperCAmelCase : Dict = config.output_hidden_states UpperCAmelCase : List[Any] = nn.ModuleList([BertLayer(UpperCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) UpperCAmelCase : str = nn.ModuleList([BertHighway(UpperCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) UpperCAmelCase : int = [-1 for _ in range(config.num_hidden_layers )] def A_ ( self , snake_case ): '''simple docstring''' if (type(UpperCAmelCase_ ) is float) or (type(UpperCAmelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): UpperCAmelCase : Optional[int] = x else: UpperCAmelCase : int = x def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def A_ ( self , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ): '''simple docstring''' UpperCAmelCase : Any = () UpperCAmelCase : Optional[int] = () UpperCAmelCase : Optional[int] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: UpperCAmelCase : List[str] = all_hidden_states + (hidden_states,) UpperCAmelCase : List[Any] = layer_module( UpperCAmelCase_ , UpperCAmelCase_ , head_mask[i] , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = layer_outputs[0] if self.output_attentions: UpperCAmelCase : Any = all_attentions + (layer_outputs[1],) UpperCAmelCase : str = (hidden_states,) if self.output_hidden_states: UpperCAmelCase : int = current_outputs + (all_hidden_states,) if self.output_attentions: UpperCAmelCase : List[Any] = current_outputs + (all_attentions,) UpperCAmelCase : List[str] = self.highway[i](UpperCAmelCase_ ) # logits, pooled_output if not self.training: UpperCAmelCase : List[Any] = highway_exit[0] UpperCAmelCase : List[str] = entropy(UpperCAmelCase_ ) UpperCAmelCase : str = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy UpperCAmelCase : int = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: UpperCAmelCase : Dict = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase_ , i + 1 ) else: UpperCAmelCase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: UpperCAmelCase : Union[str, Any] = all_hidden_states + (hidden_states,) UpperCAmelCase : List[str] = (hidden_states,) if self.output_hidden_states: UpperCAmelCase : str = outputs + (all_hidden_states,) if self.output_attentions: UpperCAmelCase : Dict = outputs + (all_attentions,) UpperCAmelCase : Any = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , __SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) UpperCAmelCase : Any = config UpperCAmelCase : Tuple = BertEmbeddings(UpperCAmelCase_ ) UpperCAmelCase : str = DeeBertEncoder(UpperCAmelCase_ ) UpperCAmelCase : int = BertPooler(UpperCAmelCase_ ) self.init_weights() def A_ ( self ): '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def A_ ( self ): '''simple docstring''' return self.embeddings.word_embeddings def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : str = value def A_ ( self , snake_case ): '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def A_ ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: UpperCAmelCase : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase : Optional[int] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase : int = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if encoder_attention_mask is None: UpperCAmelCase : List[Any] = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: UpperCAmelCase : Dict = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: UpperCAmelCase : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: UpperCAmelCase : Optional[int] = encoder_attention_mask[:, None, None, :] UpperCAmelCase : List[str] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility UpperCAmelCase : List[str] = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) UpperCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) UpperCAmelCase : List[Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = encoder_outputs[0] UpperCAmelCase : Optional[Any] = self.pooler(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Any = message UpperCAmelCase : int = exit_layer # start from 1! class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = BertPooler(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : int = nn.Linear(config.hidden_size , config.num_labels ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Tuple = encoder_outputs[0] UpperCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) # "return" pooler_output # BertModel UpperCAmelCase : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification UpperCAmelCase : int = bmodel_output[1] UpperCAmelCase : Union[str, Any] = self.dropout(UpperCAmelCase_ ) UpperCAmelCase : int = self.classifier(UpperCAmelCase_ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , __SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = config.num_labels UpperCAmelCase : Tuple = config.num_hidden_layers UpperCAmelCase : Dict = DeeBertModel(UpperCAmelCase_ ) UpperCAmelCase : Any = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : List[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def A_ ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=-1 , snake_case=False , ): '''simple docstring''' UpperCAmelCase : Dict = self.num_layers try: UpperCAmelCase : str = self.bert( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits UpperCAmelCase : Union[str, Any] = outputs[1] UpperCAmelCase : List[Any] = self.dropout(UpperCAmelCase_ ) UpperCAmelCase : Dict = self.classifier(UpperCAmelCase_ ) UpperCAmelCase : int = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase : Any = e.message UpperCAmelCase : Dict = e.exit_layer UpperCAmelCase : List[str] = outputs[0] if not self.training: UpperCAmelCase : Optional[Any] = entropy(UpperCAmelCase_ ) UpperCAmelCase : str = [] UpperCAmelCase : List[str] = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase : Optional[Any] = MSELoss() UpperCAmelCase : Any = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : str = CrossEntropyLoss() UpperCAmelCase : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase : Tuple = [] for highway_exit in outputs[-1]: UpperCAmelCase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase : int = MSELoss() UpperCAmelCase : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : List[str] = CrossEntropyLoss() UpperCAmelCase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase_ ) if train_highway: UpperCAmelCase : Optional[int] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase : Any = (loss,) + outputs if not self.training: UpperCAmelCase : List[str] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
311
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCamelCase : Optional[int] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
336
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
'''simple docstring''' from __future__ import annotations def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = list(range(len(__a ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = [v / w for v, w in zip(__a , __a )] index.sort(key=lambda lowerCamelCase_ : ratio[i] , reverse=__a ) SCREAMING_SNAKE_CASE : float = 0 SCREAMING_SNAKE_CASE : list[float] = [0] * len(__a ) for i in index: if weight[i] <= capacity: SCREAMING_SNAKE_CASE : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: SCREAMING_SNAKE_CASE : Optional[int] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
323
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : List[str] =["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = 8 , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase_ ) __snake_case : Dict = do_rescale __snake_case : Any = rescale_factor __snake_case : List[str] = do_pad __snake_case : List[Any] = pad_size def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> str: '''simple docstring''' __snake_case : Tuple = get_image_size(UpperCAmelCase_ ) __snake_case : Any = (old_height // size + 1) * size - old_height __snake_case : Optional[int] = (old_width // size + 1) * size - old_width return pad(UpperCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> Any: '''simple docstring''' __snake_case : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : int = do_pad if do_pad is not None else self.do_pad __snake_case : Dict = pad_size if pad_size is not None else self.pad_size __snake_case : Any = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. __snake_case : Dict = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_rescale: __snake_case : str = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_pad: __snake_case : Tuple = [self.pad(UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images] __snake_case : Tuple = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] __snake_case : Union[str, Any] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
326
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A__ ( unittest.TestCase ): lowercase = MODEL_FOR_MASKED_LM_MAPPING lowercase = TF_MODEL_FOR_MASKED_LM_MAPPING def snake_case_ ( self ) -> str: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) A_ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-0_5, """token""": 38015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-0_5, """token""": 25506, """token_str""": """ accuser"""}, ] , ) A_ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-0_5, """token""": 38015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-0_5, """token""": 25506, """token_str""": """ accuser""", }, ] , ) A_ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-0_5, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-0_5, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-0_5, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) A_ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-0_5, """token""": 35676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-0_5, """token""": 16416, """token_str""": """ELS"""}, ] , ) A_ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-0_5, """token""": 35676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-0_5, """token""": 16416, """token_str""": """ELS"""}, ] , ) A_ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-0_5, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-0_5, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-0_5, """token""": 13606, """token_str""": """ Clara"""}, ] , ) A_ = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6 ) , [ [ { """score""": 2.2e-0_5, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-0_5, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-0_5, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-0_5, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def snake_case_ ( self ) -> str: '''simple docstring''' A_ = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() A_ = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow @require_torch def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(UpperCAmelCase_ ) @slow @require_tf def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(UpperCAmelCase_ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) A_ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12790, """token_str""": """ Lyon""", }, ] , ) A_ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) A_ = None A_ = None self.run_pipeline_test(UpperCAmelCase_ , [] ) @require_tf def snake_case_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) A_ = None A_ = None self.run_pipeline_test(UpperCAmelCase_ , [] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) A_ = FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) A_ = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = fill_masker.tokenizer A_ = fill_masker.model A_ = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( UpperCAmelCase_ , [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ] , ) A_ = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( UpperCAmelCase_ , [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ] , ) A_ = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( UpperCAmelCase_ , [ [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ], [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ], ] , ) with self.assertRaises(UpperCAmelCase_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(UpperCAmelCase_ ): fill_masker("""This is""" ) self.run_test_top_k(UpperCAmelCase_ , UpperCAmelCase_ ) self.run_test_targets(UpperCAmelCase_ , UpperCAmelCase_ ) self.run_test_top_k_targets(UpperCAmelCase_ , UpperCAmelCase_ ) self.fill_mask_with_duplicate_targets_and_top_k(UpperCAmelCase_ , UpperCAmelCase_ ) self.fill_mask_with_multiple_masks(UpperCAmelCase_ , UpperCAmelCase_ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = sorted(vocab.keys() )[:2] # Pipeline argument A_ = FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , targets=UpperCAmelCase_ ) A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( UpperCAmelCase_ , [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , UpperCAmelCase_ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(UpperCAmelCase_ ) ) # Call argument A_ = FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=UpperCAmelCase_ ) self.assertEqual( UpperCAmelCase_ , [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , UpperCAmelCase_ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(UpperCAmelCase_ ) ) # Score equivalence A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=UpperCAmelCase_ ) A_ = [top_mask["token_str"] for top_mask in outputs] A_ = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCAmelCase_ ) == set(UpperCAmelCase_ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=UpperCAmelCase_ ) A_ = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(UpperCAmelCase_ ) , nested_simplify(UpperCAmelCase_ ) ) # Raises with invalid with self.assertRaises(UpperCAmelCase_ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(UpperCAmelCase_ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(UpperCAmelCase_ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="""""" ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , top_k=2 ) A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( UpperCAmelCase_ , [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ] , ) A_ = FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( UpperCAmelCase_ , [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ] , ) self.assertEqual(nested_simplify(UpperCAmelCase_ ) , nested_simplify(UpperCAmelCase_ ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) # top_k=2, ntargets=3 A_ = sorted(vocab.keys() )[:3] A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=UpperCAmelCase_ ) # If we use the most probably targets, and filter differently, we should still # have the same results A_ = [el["token_str"] for el in sorted(UpperCAmelCase_ , key=lambda UpperCamelCase__ : x["score"] , reverse=UpperCAmelCase_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCAmelCase_ ).issubset(UpperCAmelCase_ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=UpperCAmelCase_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(UpperCAmelCase_ ) , nested_simplify(UpperCAmelCase_ ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) A_ = tokenizer.get_vocab() # String duplicates + id duplicates A_ = sorted(vocab.keys() )[:3] A_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] A_ = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=UpperCAmelCase_ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(UpperCAmelCase_ ) , 3 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) A_ = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( UpperCAmelCase_ , [ [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ], [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ], [ {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, {"""sequence""": ANY(UpperCAmelCase_ ), """score""": ANY(UpperCAmelCase_ ), """token""": ANY(UpperCAmelCase_ ), """token_str""": ANY(UpperCAmelCase_ )}, ], ] , )
162
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase : Tuple = logging.get_logger(__name__) class A( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , *A_ : int , **A_ : Union[str, Any] ) -> None: """simple docstring""" warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
204
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
0
import logging from transformers.configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE__ : Any = logging.getLogger(__name__) class UpperCamelCase__ (__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase_ : int = """masked_bert""" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__="topK" , UpperCamelCase__="constant" , UpperCamelCase__=0.0 , **UpperCamelCase__ , ) -> List[Any]: super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : Dict = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Any = num_attention_heads lowerCamelCase : List[Any] = hidden_act lowerCamelCase : str = intermediate_size lowerCamelCase : Dict = hidden_dropout_prob lowerCamelCase : str = attention_probs_dropout_prob lowerCamelCase : int = max_position_embeddings lowerCamelCase : Tuple = type_vocab_size lowerCamelCase : str = initializer_range lowerCamelCase : List[Any] = layer_norm_eps lowerCamelCase : str = pruning_method lowerCamelCase : Union[str, Any] = mask_init lowerCamelCase : Optional[Any] = mask_scale
48
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
0
from typing import Any def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :Any , lowerCAmelCase_ :int , lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Dict , )->list: '''simple docstring''' _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step snake_case_ = {} snake_case_ = {} for state in states_space: snake_case_ = observations_space[0] snake_case_ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case_ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): snake_case_ = observations_space[o] snake_case_ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case_ = "" snake_case_ = -1 for k_state in states_space: snake_case_ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case_ = probability snake_case_ = k_state # Update probabilities and pointers dicts snake_case_ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case_ = arg_max # The final observation snake_case_ = observations_space[len(__a ) - 1] # argmax for given final observation snake_case_ = "" snake_case_ = -1 for k_state in states_space: snake_case_ = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case_ = probability snake_case_ = k_state snake_case_ = arg_max # Process pointers backwards snake_case_ = last_state snake_case_ = [] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) snake_case_ = pointers[previous, observations_space[o]] result.reverse() return result def _lowerCAmelCase ( lowerCAmelCase_ :Tuple , lowerCAmelCase_ :int , lowerCAmelCase_ :Optional[Any] , lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Dict , )->None: '''simple docstring''' _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Tuple , lowerCAmelCase_ :Any , lowerCAmelCase_ :int , lowerCAmelCase_ :str , )->None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :Union[str, Any] )->None: '''simple docstring''' _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :Any )->None: '''simple docstring''' if not isinstance(_object , __a ): snake_case_ = F'''{var_name} must be a list''' raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): snake_case_ = F'''{var_name} must be a list of strings''' raise ValueError(__a ) def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Dict , )->None: '''simple docstring''' _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :Any )->None: '''simple docstring''' _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :Dict , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Any = False )->None: '''simple docstring''' if not isinstance(_object , __a ): snake_case_ = F'''{var_name} must be a dict''' raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): snake_case_ = F'''{var_name} all keys must be strings''' raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): snake_case_ = "nested dictionary " if nested else "" snake_case_ = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
159
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
0
class lowerCamelCase__ : def __init__(self , UpperCAmelCase = "" , UpperCAmelCase = False ) -> None: _lowercase ={} # A node will be a leaf if the tree contains its word _lowercase =is_leaf _lowercase =prefix def __A (self , UpperCAmelCase ) -> tuple[str, str, str]: _lowercase =0 for q, w in zip(self.prefix , UpperCAmelCase_ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __A (self , UpperCAmelCase ) -> None: for word in words: self.insert(UpperCAmelCase_ ) def __A (self , UpperCAmelCase ) -> None: if self.prefix == word: _lowercase =True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _lowercase =RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_ ) else: _lowercase =self.nodes[word[0]] _lowercase =incoming_node.match( UpperCAmelCase_ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _lowercase =remaining_prefix _lowercase =self.nodes[matching_string[0]] _lowercase =RadixNode(UpperCAmelCase_ , UpperCAmelCase_ ) _lowercase =aux_node if remaining_word == "": _lowercase =True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_ ) def __A (self , UpperCAmelCase ) -> bool: _lowercase =self.nodes.get(word[0] , UpperCAmelCase_ ) if not incoming_node: return False else: _lowercase =incoming_node.match( UpperCAmelCase_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_ ) def __A (self , UpperCAmelCase ) -> bool: _lowercase =self.nodes.get(word[0] , UpperCAmelCase_ ) if not incoming_node: return False else: _lowercase =incoming_node.match( UpperCAmelCase_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _lowercase =list(self.nodes.values() )[0] _lowercase =merging_node.is_leaf self.prefix += merging_node.prefix _lowercase =merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _lowercase =False # If there is 1 edge, we merge it with its child else: _lowercase =list(incoming_node.nodes.values() )[0] _lowercase =merging_node.is_leaf incoming_node.prefix += merging_node.prefix _lowercase =merging_node.nodes return True def __A (self , UpperCAmelCase = 0 ) -> None: if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCAmelCase_ ( ) -> bool: """simple docstring""" _lowercase ="banana bananas bandana band apple all beast".split() _lowercase =RadixNode() root.insert_many(__a ) assert all(root.find(__a ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def UpperCAmelCase_ ( ) -> None: """simple docstring""" assert test_trie() def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase =RadixNode() _lowercase ="banana bananas bandanas bandana band apple all beast".split() root.insert_many(__a ) print('''Words:''' , __a ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
5
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Dict ): return (-y * np.log(__a ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Any ): __UpperCAmelCase : Union[str, Any] = np.dot(__a , __a ) return np.sum(y * scores - np.log(1 + np.exp(__a ) ) ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=70000 ): __UpperCAmelCase : Optional[Any] = np.zeros(x.shape[1] ) for iterations in range(__a ): __UpperCAmelCase : Tuple = np.dot(__a , __a ) __UpperCAmelCase : Union[str, Any] = sigmoid_function(__a ) __UpperCAmelCase : Union[str, Any] = np.dot(x.T , h - y ) / y.size __UpperCAmelCase : Optional[Any] = theta - alpha * gradient # updating the weights __UpperCAmelCase : List[str] = np.dot(__a , __a ) __UpperCAmelCase : List[str] = sigmoid_function(__a ) __UpperCAmelCase : str = cost_function(__a , __a ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a : List[str] = datasets.load_iris() a : Any = iris.data[:, :2] a : Dict = (iris.target != 0) * 1 a : Tuple = 0.1 a : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print("theta: ", theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __lowerCamelCase : int ): return sigmoid_function( np.dot(__a , __a ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((a) ,(a)) : Dict = (x[:, 0].min(), x[:, 0].max()) ((a) ,(a)) : int = (x[:, 1].min(), x[:, 1].max()) ((a) ,(a)) : str = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()] a : List[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
114
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''nielsr/canine-s''': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase_ = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase_ = 0 lowerCAmelCase_ = 0xe0_00 lowerCAmelCase_ = 0xe0_01 lowerCAmelCase_ = 0xe0_02 lowerCAmelCase_ = 0xe0_03 lowerCAmelCase_ = 0xe0_04 # Maps special codepoints to human-readable names. lowerCAmelCase_ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '''[CLS]''', SEP: '''[SEP]''', BOS: '''[BOS]''', MASK: '''[MASK]''', PAD: '''[PAD]''', RESERVED: '''[RESERVED]''', } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowerCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , __magic_name__=chr(UpperCAmelCase_ ) , __magic_name__=chr(UpperCAmelCase_ ) , __magic_name__=chr(UpperCAmelCase_ ) , __magic_name__=chr(UpperCAmelCase_ ) , __magic_name__=chr(UpperCAmelCase_ ) , __magic_name__=chr(UpperCAmelCase_ ) , __magic_name__=False , __magic_name__=2048 , **__magic_name__ , ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else bos_token snake_case_ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else eos_token snake_case_ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else sep_token snake_case_ : List[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cls_token snake_case_ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Dict = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , model_max_length=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. snake_case_ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): snake_case_ : Any = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. snake_case_ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } snake_case_ : Dict = UNICODE_VOCAB_SIZE snake_case_ : Optional[Any] = len(self._special_codepoints ) @property def lowerCamelCase (self ) -> int: '''simple docstring''' return self._unicode_vocab_size def lowerCamelCase (self , __magic_name__ ) -> List[str]: '''simple docstring''' return list(UpperCAmelCase_ ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' try: return ord(UpperCAmelCase_ ) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''' ) def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCAmelCase_ ) except TypeError: raise ValueError(F'''invalid id: {index}''' ) def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' return "".join(UpperCAmelCase_ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : Union[str, Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] snake_case_ : List[str] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCamelCase (self , __magic_name__ , __magic_name__ = None , __magic_name__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) snake_case_ : Any = [1] + ([0] * len(UpperCAmelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCAmelCase_ )) + [1] return result def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : str = [self.sep_token_id] snake_case_ : int = [self.cls_token_id] snake_case_ : List[str] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' return ()
279
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : Union[str, Any] = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): UpperCamelCase = """gpt_neox_japanese""" def __init__( self : Dict, __A : List[Any]=3_2_0_0_0, __A : str=2_5_6_0, __A : Optional[int]=3_2, __A : Dict=3_2, __A : Any=4, __A : List[Any]="gelu", __A : Any=1.0_0, __A : List[Any]=1_0_0_0_0, __A : int=2_0_4_8, __A : Tuple=0.0_2, __A : str=1E-5, __A : Dict=True, __A : Any=3_1_9_9_6, __A : Optional[int]=3_1_9_9_9, __A : Any=0.1, __A : Tuple=0.0, **__A : Optional[int], ): super().__init__(bos_token_id=UpperCAmelCase_, eos_token_id=UpperCAmelCase_, **UpperCAmelCase_ ) UpperCAmelCase : int = vocab_size UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : str = intermediate_multiple_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : List[Any] = rotary_pct UpperCAmelCase : Union[str, Any] = rotary_emb_base UpperCAmelCase : Any = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : Any = use_cache UpperCAmelCase : Any = attention_dropout UpperCAmelCase : Union[str, Any] = hidden_dropout
336
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCAmelCase = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __UpperCAmelCase = { """yjernite/retribert-base-uncased""": 512, } __UpperCAmelCase = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = RetriBertTokenizer SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Union[str, Any]="[UNK]" , lowerCamelCase_ : Any="[SEP]" , lowerCamelCase_ : List[str]="[PAD]" , lowerCamelCase_ : Optional[Any]="[CLS]" , lowerCamelCase_ : Optional[Any]="[MASK]" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Dict = getattr(UpperCAmelCase_ , normalizer_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE : int = do_lower_case SCREAMING_SNAKE_CASE : int = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Tuple = normalizer_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = do_lower_case def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
323
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = '''▁''' _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''facebook/xglm-564M''': 2048, } class _lowerCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : str =VOCAB_FILES_NAMES UpperCAmelCase_ : List[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Optional[Any] =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __snake_case : Tuple = 7 __snake_case : int = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] __snake_case : str = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) __snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) __snake_case : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __snake_case : Union[str, Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token __snake_case : Union[str, Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} __snake_case : Any = len(self.sp_model ) __snake_case : Tuple = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCAmelCase_ ) __snake_case : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[str]: '''simple docstring''' __snake_case : List[Any] = self.__dict__.copy() __snake_case : str = None __snake_case : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : int = {} __snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __snake_case : Any = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : str = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : Optional[int] = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' __snake_case : str = "".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , " " ).strip() return out_string def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , "wb" ) as fi: __snake_case : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
326
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: while second != 0: A_ = first & second first ^= second A_ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = int(input('''Enter the first number: ''').strip()) __lowerCamelCase = int(input('''Enter the second number: ''').strip()) print(f"""{add(first, second) = }""")
162
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCamelCase : Optional[Any] = None lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Tuple = "▁" lowerCamelCase : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Dict = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } lowerCamelCase : Any = { "google/pegasus-xsum": 512, } class A( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PegasusTokenizer UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , A_ : List[Any]=None , A_ : int=None , A_ : Optional[int]="<pad>" , A_ : str="</s>" , A_ : str="<unk>" , A_ : int="<mask_2>" , A_ : Any="<mask_1>" , A_ : int=None , A_ : int=103 , **A_ : Dict , ) -> Any: """simple docstring""" lowerCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is""" f""" {type(UpperCAmelCase_ )}""" ) lowerCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowerCamelCase_ = additional_special_tokens_extended else: lowerCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True def a__ ( self : Tuple , A_ : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def a__ ( self : str , A_ : List , A_ : Optional[List] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def a__ ( self : int , A_ : List[Any] , A_ : str=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self : List[str] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
204
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> List[Any]: lowerCamelCase : Any = "ZinengTang/tvlt-base" lowerCamelCase : Dict = tempfile.mkdtemp() def _lowercase ( self , **UpperCamelCase__ ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def _lowercase ( self , **UpperCamelCase__ ) -> Any: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def _lowercase ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Any = self.get_feature_extractor() lowerCamelCase : Tuple = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def _lowercase ( self ) -> Dict: lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Tuple = self.get_feature_extractor() lowerCamelCase : int = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) lowerCamelCase : List[Any] = np.ones([1_2000] ) lowerCamelCase : Optional[Any] = feature_extractor(UpperCAmelCase_ , return_tensors="np" ) lowerCamelCase : Dict = processor(audio=UpperCAmelCase_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : Dict = self.get_image_processor() lowerCamelCase : List[Any] = self.get_feature_extractor() lowerCamelCase : Any = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) lowerCamelCase : str = np.ones([3, 224, 224] ) lowerCamelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors="np" ) lowerCamelCase : Union[str, Any] = processor(images=UpperCAmelCase_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ) -> Any: lowerCamelCase : Dict = self.get_image_processor() lowerCamelCase : Union[str, Any] = self.get_feature_extractor() lowerCamelCase : Union[str, Any] = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) lowerCamelCase : Any = np.ones([1_2000] ) lowerCamelCase : Any = np.ones([3, 224, 224] ) lowerCamelCase : Union[str, Any] = processor(audio=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def _lowercase ( self ) -> Tuple: lowerCamelCase : Dict = self.get_image_processor() lowerCamelCase : Any = self.get_feature_extractor() lowerCamelCase : Tuple = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
48
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
0
def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :List[Any] )->Dict: '''simple docstring''' snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
159
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE): def __init__(self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<sep>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<eop>", "<eod>"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: _lowercase =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) _lowercase =3 _lowercase =do_lower_case _lowercase =remove_space _lowercase =keep_accents _lowercase =vocab_file _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) _lowercase =jieba _lowercase =str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __A (self ) -> Optional[int]: return len(self.sp_model ) def __A (self ) -> Union[str, Any]: _lowercase ={self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Optional[Any]: _lowercase =self.__dict__.copy() _lowercase =None return state def __setstate__(self , UpperCAmelCase ) -> int: _lowercase =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowercase ={} _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A (self , UpperCAmelCase ) -> Union[str, Any]: if self.remove_space: _lowercase =" ".join(inputs.strip().split() ) else: _lowercase =inputs _lowercase =outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: _lowercase =unicodedata.normalize('''NFKD''' , UpperCAmelCase_ ) _lowercase ="".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: _lowercase =outputs.lower() return outputs def __A (self , UpperCAmelCase ) -> List[str]: _lowercase =self.preprocess_text(UpperCAmelCase_ ) _lowercase =self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) _lowercase =[] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _lowercase =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowercase =cur_pieces[1:] else: _lowercase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def __A (self , UpperCAmelCase ) -> Tuple: return self.sp_model.PieceToId(UpperCAmelCase_ ) def __A (self , UpperCAmelCase ) -> List[Any]: return self.sp_model.IdToPiece(UpperCAmelCase_ ) def __A (self , UpperCAmelCase ) -> Tuple: _lowercase ="".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ''' ''' ).strip() return out_string def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] _lowercase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowercase =os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , '''wb''' ) as fi: _lowercase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def __A (self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =super()._decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) _lowercase =text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
5
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
0
from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Any = [] __UpperCAmelCase : Any = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __UpperCAmelCase : str = result + left + right return input_list def lowerCamelCase__ ( __lowerCamelCase : str ): if len(__a ) <= 1: return input_list __UpperCAmelCase : Any = list(__a ) # iteration for two-way merging __UpperCAmelCase : str = 2 while p <= len(__a ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__a ) , __a ): __UpperCAmelCase : Dict = i __UpperCAmelCase : List[str] = i + p - 1 __UpperCAmelCase : int = (low + high + 1) // 2 __UpperCAmelCase : Optional[int] = merge(__a , __a , __a , __a ) # final merge of last two parts if p * 2 >= len(__a ): __UpperCAmelCase : List[Any] = i __UpperCAmelCase : Optional[int] = merge(__a , 0 , __a , len(__a ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": a : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() if user_input == "": a : Optional[int] = [] else: a : List[Any] = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
114
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
0
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> None: """simple docstring""" snake_case_ : List[Any] = len(__a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __a , __a , ) def lowerCamelCase_ ( _UpperCamelCase ) -> None: """simple docstring""" snake_case_ : list[list[str]] = [] depth_first_search([] , [] , [] , __a , __a ) # Print all the boards for board in boards: for column in board: print(__a ) print('''''' ) print(len(__a ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
279
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod @abstractmethod def A_ ( snake_case ): '''simple docstring''' raise NotImplementedError() @abstractmethod def A_ ( self ): '''simple docstring''' raise NotImplementedError()
311
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _lowerCamelCase : Optional[Any] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def a__ ( UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ) -> Optional[Any]: for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCAmelCase : Optional[int] = "lm_head" UpperCAmelCase : Dict = getattr(__a , __a ) if weight_type is not None: UpperCAmelCase : str = getattr(__a , __a ).shape else: UpperCAmelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase : Dict = value elif weight_type == "weight_g": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_v": UpperCAmelCase : int = value elif weight_type == "bias": UpperCAmelCase : List[str] = value else: UpperCAmelCase : Union[str, Any] = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ) -> Any: UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[str] = fairseq_model.state_dict() UpperCAmelCase : Optional[int] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : int = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase : List[str] = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Optional[Any] = name.split(__a )[0].split('''.''' )[-2] UpperCAmelCase : List[str] = mapped_key.replace('''*''' , __a ) if "weight_g" in name: UpperCAmelCase : List[str] = "weight_g" elif "weight_v" in name: UpperCAmelCase : Union[str, Any] = "weight_v" elif "bias" in name: UpperCAmelCase : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : Tuple = "weight" else: UpperCAmelCase : List[Any] = None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f'''Unused weights: {unused_weights}''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ) -> Union[str, Any]: UpperCAmelCase : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : List[str] = name.split('''.''' ) UpperCAmelCase : str = int(items[0] ) UpperCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__a ) @torch.no_grad() def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Union[str, Any]=True ) -> int: if config_path is not None: UpperCAmelCase : str = UniSpeechConfig.from_pretrained(__a ) else: UpperCAmelCase : List[Any] = UniSpeechConfig() if is_finetuned: if dict_path: UpperCAmelCase : str = Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : int = target_dict.bos_index UpperCAmelCase : Any = target_dict.eos_index UpperCAmelCase : Dict = len(target_dict.symbols ) UpperCAmelCase : Optional[int] = os.path.join(__a , '''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) UpperCAmelCase : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : Optional[Any] = 42 UpperCAmelCase : List[Any] = 43 with open(__a , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__a , __a ) UpperCAmelCase : List[str] = WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__a , ) UpperCAmelCase : Dict = True if config.feat_extract_norm == "layer" else False UpperCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) UpperCAmelCase : List[Any] = WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) UpperCAmelCase : int = UniSpeechForCTC(__a ) else: UpperCAmelCase : int = UniSpeechForPreTraining(__a ) if is_finetuned: UpperCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: UpperCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase : List[str] = model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowerCamelCase : Any = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
336
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1_00 , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = x_start SCREAMING_SNAKE_CASE : List[str] = fnc(__a ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 for _ in range(__a ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Tuple = fnc(__a ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : Optional[Any] = xa SCREAMING_SNAKE_CASE : List[str] = fxa return length if __name__ == "__main__": def __A ( lowerCamelCase_ ): """simple docstring""" return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") __UpperCAmelCase = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
323
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _lowerCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : List[Any] =BartphoTokenizer UpperCAmelCase_ : str =False UpperCAmelCase_ : str =True def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().setUp() __snake_case : int = ["▁This", "▁is", "▁a", "▁t", "est"] __snake_case : Tuple = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) __snake_case : List[Any] = {"unk_token": "<unk>"} __snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) __snake_case : Dict = BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' __snake_case : Optional[int] = "This is a là test" __snake_case : Optional[Any] = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : str = BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case : List[Any] = "This is a là test" __snake_case : Optional[int] = "▁This ▁is ▁a ▁l à ▁t est".split() __snake_case : Optional[int] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : Tuple = tokens + [tokenizer.unk_token] __snake_case : List[Any] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ )
326
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: A_ = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("""steps_offset!=1""" , """1.0.0""" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_ ) A_ = dict(scheduler.config ) A_ = 1 A_ = FrozenDict(UpperCAmelCase_ ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: A_ = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_ ) A_ = dict(scheduler.config ) A_ = True A_ = FrozenDict(UpperCAmelCase_ ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=UpperCAmelCase_ , segmentation_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , ) def snake_case_ ( self , UpperCamelCase__ = "auto" ) -> List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' self.enable_attention_slicing(UpperCAmelCase_ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A_ = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_ ( self ) -> str: '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' A_ = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) A_ = self.segmentation_model(**UpperCAmelCase_ ) A_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() A_ = self.numpy_to_pil(UpperCAmelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask A_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , )
162
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
0
def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : List[str] ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
204
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Optional[int] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _SCREAMING_SNAKE_CASE = 'blip_2_vision_model' def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[Any]=1_4_0_8 , _lowerCAmelCase : int=6_1_4_4 , _lowerCAmelCase : Any=3_9 , _lowerCAmelCase : Optional[int]=1_6 , _lowerCAmelCase : Union[str, Any]=2_2_4 , _lowerCAmelCase : Union[str, Any]=1_4 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Any=0.00_001 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Dict=1e-10 , _lowerCAmelCase : List[Any]=True , **_lowerCAmelCase : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) snake_case_ = hidden_size snake_case_ = intermediate_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = patch_size snake_case_ = image_size snake_case_ = initializer_range snake_case_ = attention_dropout snake_case_ = layer_norm_eps snake_case_ = hidden_act snake_case_ = qkv_bias @classmethod def lowerCAmelCase__ ( cls : List[Any] , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCAmelCase_ ) snake_case_ = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": snake_case_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _SCREAMING_SNAKE_CASE = 'blip_2_qformer' def __init__( self : Union[str, Any] , _lowerCAmelCase : str=3_0_5_2_2 , _lowerCAmelCase : Tuple=7_6_8 , _lowerCAmelCase : str=1_2 , _lowerCAmelCase : Optional[Any]=1_2 , _lowerCAmelCase : Optional[Any]=3_0_7_2 , _lowerCAmelCase : Union[str, Any]="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Tuple=5_1_2 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : Optional[int]=1e-12 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[int]="absolute" , _lowerCAmelCase : str=2 , _lowerCAmelCase : Optional[Any]=1_4_0_8 , **_lowerCAmelCase : Any , ) -> str: """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = cross_attention_frequency snake_case_ = encoder_hidden_size @classmethod def lowerCAmelCase__ ( cls : Optional[int] , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCAmelCase_ ) snake_case_ = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": snake_case_ = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _SCREAMING_SNAKE_CASE = 'blip-2' _SCREAMING_SNAKE_CASE = True def __init__( self : Dict , _lowerCAmelCase : Any=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Any=3_2 , **_lowerCAmelCase : str ) -> int: """simple docstring""" super().__init__(**UpperCAmelCase_ ) if vision_config is None: snake_case_ = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: snake_case_ = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: snake_case_ = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case_ = BlipaVisionConfig(**UpperCAmelCase_ ) snake_case_ = BlipaQFormerConfig(**UpperCAmelCase_ ) snake_case_ = text_config["model_type"] if "model_type" in text_config else "opt" snake_case_ = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) snake_case_ = self.text_config.tie_word_embeddings snake_case_ = self.text_config.is_encoder_decoder snake_case_ = num_query_tokens snake_case_ = self.vision_config.hidden_size snake_case_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case_ = 1.0 snake_case_ = 0.02 @classmethod def lowerCAmelCase__ ( cls : List[str] , _lowerCAmelCase : BlipaVisionConfig , _lowerCAmelCase : BlipaQFormerConfig , _lowerCAmelCase : PretrainedConfig , **_lowerCAmelCase : Dict , ) -> int: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase_ , ) def lowerCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.vision_config.to_dict() snake_case_ = self.qformer_config.to_dict() snake_case_ = self.text_config.to_dict() snake_case_ = self.__class__.model_type return output
159
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
0
import os import string import sys UpperCAmelCase__ = 1 << 8 UpperCAmelCase__ = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } UpperCAmelCase__ = KEYMAP['''up'''] UpperCAmelCase__ = KEYMAP['''left'''] if sys.platform == "win32": UpperCAmelCase__ = [] UpperCAmelCase__ = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): UpperCAmelCase__ = ord(str(i)) def UpperCAmelCase_ ( ) -> Dict: """simple docstring""" if os.name == "nt": import msvcrt _lowercase ="mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__a ) == 0: # Read the keystroke _lowercase =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowercase =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowercase =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(__a ) if ord(__a ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowercase =chr(KEYMAP['''esc'''] ) except KeyError: _lowercase =cha[1] else: _lowercase =ch.decode(__a ) else: _lowercase =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowercase =sys.stdin.fileno() _lowercase =termios.tcgetattr(__a ) try: tty.setraw(__a ) _lowercase =sys.stdin.read(1 ) finally: termios.tcsetattr(__a , termios.TCSADRAIN , __a ) return ch def UpperCAmelCase_ ( ) -> List[Any]: """simple docstring""" _lowercase =get_raw_chars() if ord(__a ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__a ) == KEYMAP["esc"]: _lowercase =get_raw_chars() if ord(__a ) == KEYMAP["mod_int"]: _lowercase =get_raw_chars() if ord(__a ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__a ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__a ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
5
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 a : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls : Optional[Any] ) -> str: __UpperCAmelCase : Tuple = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def UpperCAmelCase ( cls : List[str] ) -> str: try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) __UpperCAmelCase : Dict = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="""test-config""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) __UpperCAmelCase : Optional[int] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCAmelCase ( self : Any ) -> Tuple: __UpperCAmelCase : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) __UpperCAmelCase : Optional[int] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="""valid_org/test-config-org""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) __UpperCAmelCase : List[str] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: CustomConfig.register_for_auto_class() __UpperCAmelCase : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) __UpperCAmelCase : List[str] = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : List[Any] ) -> Dict: __UpperCAmelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __UpperCAmelCase : Tuple = c.n_embd + 1 # int __UpperCAmelCase : Optional[int] = c.resid_pdrop + 1.0 # float __UpperCAmelCase : Dict = not c.scale_attn_weights # bool __UpperCAmelCase : Any = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(UpperCAmelCase_ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(UpperCAmelCase_ , c.summary_type , """mismatch for key: summary_type""" ) def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = PretrainedConfig() __UpperCAmelCase : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) __UpperCAmelCase : int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" f""" {", ".join(UpperCAmelCase_ )}.""" ) def UpperCAmelCase ( self : List[Any] ) -> Any: with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder __UpperCAmelCase : Tuple = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) __UpperCAmelCase : Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase : Tuple = mock.Mock() __UpperCAmelCase : Tuple = 500 __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : str = HTTPError __UpperCAmelCase : Tuple = {} # Download this model to make sure it's in the cache. __UpperCAmelCase : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCAmelCase_ ) as mock_head: __UpperCAmelCase : List[str] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def UpperCAmelCase ( self : Tuple ) -> int: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : Any = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __UpperCAmelCase : Any = ["config.42.0.0.json"] __UpperCAmelCase : List[Any] = 768 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , """config.4.0.0.json""" ) , os.path.join(UpperCAmelCase_ , """config.42.0.0.json""" ) ) __UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __UpperCAmelCase : List[str] = "hf-internal-testing/test-two-configs" import transformers as new_transformers __UpperCAmelCase : Dict = "v4.0.0" __UpperCAmelCase : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __UpperCAmelCase : str = "v3.0.0" __UpperCAmelCase : Tuple = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
114
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''Hello, World!''' lowerCAmelCase_ = '''en_XX''' def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : List[str] = Path('''data_bin''' ) snake_case_ : List[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__a ).parent ) , checkpoint_file=Path(__a ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(__a ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(__a ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(__a ) snake_case_ : List[str] = xmod.model.encoder.sentence_encoder snake_case_ : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: snake_case_ : int = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print('''Our X-MOD config:''' , __a ) snake_case_ : Optional[int] = XmodForSequenceClassification(__a ) if classification_head else XmodForMaskedLM(__a ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[str] = xmod_sent_encoder.embed_tokens.weight snake_case_ : str = xmod_sent_encoder.embed_positions.weight snake_case_ : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. snake_case_ : str = xmod_sent_encoder.layernorm_embedding.weight snake_case_ : List[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : List[Any] = model.roberta.encoder.layer[i] snake_case_ : int = xmod_sent_encoder.layers[i] # self attention snake_case_ : Any = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) snake_case_ : Optional[Any] = xmod_layer.self_attn.q_proj.weight snake_case_ : Dict = xmod_layer.self_attn.q_proj.bias snake_case_ : Any = xmod_layer.self_attn.k_proj.weight snake_case_ : str = xmod_layer.self_attn.k_proj.bias snake_case_ : Any = xmod_layer.self_attn.v_proj.weight snake_case_ : int = xmod_layer.self_attn.v_proj.bias # self-attention output snake_case_ : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) snake_case_ : Any = xmod_layer.self_attn.out_proj.weight snake_case_ : Union[str, Any] = xmod_layer.self_attn.out_proj.bias snake_case_ : List[Any] = xmod_layer.self_attn_layer_norm.weight snake_case_ : Any = xmod_layer.self_attn_layer_norm.bias # intermediate snake_case_ : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) snake_case_ : int = xmod_layer.fca.weight snake_case_ : Optional[Any] = xmod_layer.fca.bias # output snake_case_ : Optional[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) snake_case_ : Dict = xmod_layer.fca.weight snake_case_ : Any = xmod_layer.fca.bias snake_case_ : Union[str, Any] = xmod_layer.final_layer_norm.weight snake_case_ : List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: snake_case_ : Any = xmod_layer.adapter_layer_norm.weight snake_case_ : Optional[Any] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): snake_case_ : Optional[int] = bert_output.adapter_modules[lang_code] snake_case_ : str = xmod_layer.adapter_modules[lang_code] snake_case_ : Optional[int] = from_adapter.fca.weight snake_case_ : Dict = from_adapter.fca.bias snake_case_ : Tuple = from_adapter.fca.weight snake_case_ : List[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: snake_case_ : Optional[Any] = xmod_sent_encoder.layer_norm.weight snake_case_ : Optional[int] = xmod_sent_encoder.layer_norm.bias if classification_head: snake_case_ : Optional[int] = xmod.model.classification_heads["mnli"].dense.weight snake_case_ : List[str] = xmod.model.classification_heads["mnli"].dense.bias snake_case_ : List[Any] = xmod.model.classification_heads["mnli"].out_proj.weight snake_case_ : List[Any] = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : int = xmod.model.encoder.lm_head.dense.weight snake_case_ : Union[str, Any] = xmod.model.encoder.lm_head.dense.bias snake_case_ : int = xmod.model.encoder.lm_head.layer_norm.weight snake_case_ : Any = xmod.model.encoder.lm_head.layer_norm.bias snake_case_ : Tuple = xmod.model.encoder.lm_head.weight snake_case_ : Tuple = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : Optional[int] = xmod.encode(__a ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__a ) snake_case_ : str = model(__a )[0] if classification_head: snake_case_ : Dict = xmod.model.classification_heads["mnli"](xmod.extract_features(__a ) ) else: snake_case_ : Any = xmod.model(__a , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) snake_case_ : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Optional[int] = torch.allclose(__a , __a , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(__a ).mkdir(parents=__a , exist_ok=__a ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) lowerCAmelCase_ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
279
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionDiffEditPipeline SCREAMING_SNAKE_CASE__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} SCREAMING_SNAKE_CASE__ : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ : Optional[int] = frozenset([] ) def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCAmelCase : Optional[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_zero=UpperCAmelCase_ , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) UpperCAmelCase : Dict = CLIPTextModel(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase : str = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A_ ( self , snake_case , snake_case=0 ): '''simple docstring''' UpperCAmelCase : Optional[Any] = floats_tensor((1, 1_6, 1_6) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) UpperCAmelCase : Tuple = floats_tensor((1, 2, 4, 1_6, 1_6) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("mps" ): UpperCAmelCase : List[Any] = torch.manual_seed(UpperCAmelCase_ ) else: UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A_ ( self , snake_case , snake_case=0 ): '''simple docstring''' UpperCAmelCase : List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("RGB" ) if str(UpperCAmelCase_ ).startswith("mps" ): UpperCAmelCase : Union[str, Any] = torch.manual_seed(UpperCAmelCase_ ) else: UpperCAmelCase : Union[str, Any] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) UpperCAmelCase : List[str] = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A_ ( self , snake_case , snake_case=0 ): '''simple docstring''' UpperCAmelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Any = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("RGB" ) if str(UpperCAmelCase_ ).startswith("mps" ): UpperCAmelCase : Dict = torch.manual_seed(UpperCAmelCase_ ) else: UpperCAmelCase : int = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) UpperCAmelCase : Dict = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def A_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class , "_optional_components" ): return UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = pipe(**UpperCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_ ) UpperCAmelCase : int = self.pipeline_class.from_pretrained(UpperCAmelCase_ ) pipe_loaded.to(UpperCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_ ) is None , f"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ ) UpperCAmelCase : int = pipe_loaded(**UpperCAmelCase_ )[0] UpperCAmelCase : int = np.abs(output - output_loaded ).max() self.assertLess(UpperCAmelCase_ , 1e-4 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = "cpu" UpperCAmelCase : List[Any] = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = self.get_dummy_mask_inputs(UpperCAmelCase_ ) UpperCAmelCase : Dict = pipe.generate_mask(**UpperCAmelCase_ ) UpperCAmelCase : List[Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 1_6, 1_6) ) UpperCAmelCase : int = np.array([0] * 9 ) UpperCAmelCase : Tuple = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase_ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = "cpu" UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) UpperCAmelCase : Tuple = self.get_dummy_inversion_inputs(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = pipe.invert(**UpperCAmelCase_ ).images UpperCAmelCase : Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) UpperCAmelCase : int = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) UpperCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase_ , 1e-3 ) def A_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = "cpu" UpperCAmelCase : Any = self.get_dummy_components() UpperCAmelCase : List[Any] = {"beta_start": 0.0_0085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} UpperCAmelCase : List[Any] = DPMSolverMultistepScheduler(**UpperCAmelCase_ ) UpperCAmelCase : Any = DPMSolverMultistepInverseScheduler(**UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) UpperCAmelCase : Dict = self.get_dummy_inversion_inputs(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = pipe.invert(**UpperCAmelCase_ ).images UpperCAmelCase : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) UpperCAmelCase : Optional[int] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) UpperCAmelCase : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase_ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A_ ( cls ): '''simple docstring''' UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) UpperCAmelCase : Optional[int] = raw_image.convert("RGB" ).resize((7_6_8, 7_6_8) ) UpperCAmelCase : Any = raw_image def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa ) UpperCAmelCase : int = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = "a bowl of fruit" UpperCAmelCase : List[str] = "a bowl of pears" UpperCAmelCase : Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase_ , target_prompt=UpperCAmelCase_ , generator=UpperCAmelCase_ , ) UpperCAmelCase : Optional[Any] = pipe.invert( prompt=UpperCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase_ ).latents UpperCAmelCase : Optional[int] = pipe( prompt=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_latents=UpperCAmelCase_ , generator=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] UpperCAmelCase : int = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) UpperCAmelCase : Dict = "a bowl of fruit" UpperCAmelCase : Optional[Any] = "a bowl of pears" UpperCAmelCase : int = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase_ , target_prompt=UpperCAmelCase_ , generator=UpperCAmelCase_ , ) UpperCAmelCase : List[str] = pipe.invert( prompt=UpperCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase_ , num_inference_steps=2_5 , ).latents UpperCAmelCase : List[Any] = pipe( prompt=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_latents=UpperCAmelCase_ , generator=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , inpaint_strength=0.7 , num_inference_steps=2_5 , output_type="numpy" , ).images[0] UpperCAmelCase : List[Any] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5e-1
311
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
0
import numpy as np def a__ ( UpperCAmelCase : Optional[int] ) -> np.array: return 1 / (1 + np.exp(-vector )) def a__ ( UpperCAmelCase : Tuple ) -> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
336
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''new-model''' if is_tf_available(): class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = NewModelConfig @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "bert-base-cased" SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = TFAutoModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "bert-base-cased" SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @slow @require_tensorflow_probability def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained( UpperCAmelCase_ , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_ ) , 1_44_10 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_ ) , 1_44_10 ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE : Dict = ["FunnelBaseModel"] SCREAMING_SNAKE_CASE : List[Any] = TFAutoModel.from_config(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = TFAutoModel.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register("""new-model""" , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(UpperCAmelCase_ ): auto_class.register(UpperCAmelCase_ , UpperCAmelCase_ ) auto_class.register(UpperCAmelCase_ , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): auto_class.register(UpperCAmelCase_ , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Tuple = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE : List[str] = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE : List[Any] = auto_class.from_config(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = auto_class.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModel.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModel.from_pretrained(UpperCAmelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): SCREAMING_SNAKE_CASE : Union[str, Any] = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , """Use `from_pt=True` to load this model""" ): SCREAMING_SNAKE_CASE : List[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE : List[str] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE : List[Any] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
323
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _lowerCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Any =["image_processor"] UpperCAmelCase_ : Optional[Any] ="SamImageProcessor" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__(UpperCAmelCase_ ) __snake_case : Union[str, Any] = self.image_processor __snake_case : str = -10 __snake_case : Tuple = self.image_processor.size["longest_edge"] def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = None , **UpperCAmelCase , ) -> BatchEncoding: '''simple docstring''' __snake_case : Any = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # pop arguments that are not used in the foward but used nevertheless __snake_case : Tuple = encoding_image_processor["original_sizes"] if hasattr(UpperCAmelCase_ , "numpy" ): # Checks if Torch or TF tensor __snake_case : Optional[Any] = original_sizes.numpy() __snake_case : Any = self._check_and_preprocess_points( input_points=UpperCAmelCase_ , input_labels=UpperCAmelCase_ , input_boxes=UpperCAmelCase_ , ) __snake_case : Optional[int] = self._normalize_and_convert( UpperCAmelCase_ , UpperCAmelCase_ , input_points=UpperCAmelCase_ , input_labels=UpperCAmelCase_ , input_boxes=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , ) return encoding_image_processor def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , ) -> List[str]: '''simple docstring''' if input_points is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): __snake_case : int = [ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , original_sizes[0] ) for point in input_points ] else: __snake_case : Tuple = [ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , UpperCAmelCase_ ) for point, original_size in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __snake_case : Union[str, Any] = self._pad_points_and_labels(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : Optional[Any] = np.array(UpperCAmelCase_ ) if input_labels is not None: __snake_case : Tuple = np.array(UpperCAmelCase_ ) if input_boxes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): __snake_case : Union[str, Any] = [ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , original_sizes[0] , is_bounding_box=UpperCAmelCase_ ) for box in input_boxes ] else: __snake_case : List[Any] = [ self._normalize_coordinates(self.target_size , UpperCAmelCase_ , UpperCAmelCase_ , is_bounding_box=UpperCAmelCase_ ) for box, original_size in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] __snake_case : Optional[int] = np.array(UpperCAmelCase_ ) if input_boxes is not None: if return_tensors == "pt": __snake_case : int = torch.from_numpy(UpperCAmelCase_ ) # boxes batch size of 1 by default __snake_case : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __snake_case : Tuple = tf.convert_to_tensor(UpperCAmelCase_ ) # boxes batch size of 1 by default __snake_case : Optional[int] = tf.expand_dims(UpperCAmelCase_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": __snake_case : Optional[Any] = torch.from_numpy(UpperCAmelCase_ ) # point batch size of 1 by default __snake_case : List[str] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __snake_case : Tuple = tf.convert_to_tensor(UpperCAmelCase_ ) # point batch size of 1 by default __snake_case : Union[str, Any] = tf.expand_dims(UpperCAmelCase_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": __snake_case : Optional[int] = torch.from_numpy(UpperCAmelCase_ ) # point batch size of 1 by default __snake_case : Dict = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __snake_case : Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase_ ) # point batch size of 1 by default __snake_case : Optional[int] = tf.expand_dims(UpperCAmelCase_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' __snake_case : int = max([point.shape[0] for point in input_points] ) __snake_case : Optional[int] = [] for i, point in enumerate(UpperCAmelCase_ ): if point.shape[0] != expected_nb_points: __snake_case : int = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __snake_case : Dict = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(UpperCAmelCase_ ) __snake_case : Union[str, Any] = processed_input_points return input_points, input_labels def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> np.ndarray: '''simple docstring''' __snake_case : str = original_size __snake_case : str = self.image_processor._get_preprocess_shape(UpperCAmelCase_ , longest_edge=UpperCAmelCase_ ) __snake_case : Optional[int] = deepcopy(UpperCAmelCase_ ).astype(UpperCAmelCase_ ) if is_bounding_box: __snake_case : Optional[int] = coords.reshape(-1 , 2 , 2 ) __snake_case : Any = coords[..., 0] * (new_w / old_w) __snake_case : Any = coords[..., 1] * (new_h / old_h) if is_bounding_box: __snake_case : str = coords.reshape(-1 , 4 ) return coords def UpperCAmelCase ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if input_points is not None: if hasattr(UpperCAmelCase_ , "numpy" ): # Checks for TF or Torch tensor __snake_case : List[str] = input_points.numpy().tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not isinstance(input_points[0] , UpperCAmelCase_ ): raise ValueError("Input points must be a list of list of floating points." ) __snake_case : Dict = [np.array(UpperCAmelCase_ ) for input_point in input_points] else: __snake_case : List[str] = None if input_labels is not None: if hasattr(UpperCAmelCase_ , "numpy" ): __snake_case : str = input_labels.numpy().tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not isinstance(input_labels[0] , UpperCAmelCase_ ): raise ValueError("Input labels must be a list of list integers." ) __snake_case : Tuple = [np.array(UpperCAmelCase_ ) for label in input_labels] else: __snake_case : Optional[Any] = None if input_boxes is not None: if hasattr(UpperCAmelCase_ , "numpy" ): __snake_case : str = input_boxes.numpy().tolist() if ( not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not isinstance(input_boxes[0] , UpperCAmelCase_ ) or not isinstance(input_boxes[0][0] , UpperCAmelCase_ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) __snake_case : int = [np.array(UpperCAmelCase_ ).astype(np.floataa ) for box in input_boxes] else: __snake_case : Any = None return input_points, input_labels, input_boxes @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(UpperCAmelCase_ ) ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.image_processor.post_process_masks(*UpperCAmelCase_ , **UpperCAmelCase_ )
326
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __lowerCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __lowerCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> VectorOut: return np.sqrt(np.sum((np.asarray(__a ) - np.asarray(__a )) ** 2 ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(__a, __a ) ) ** (1 / 2) if __name__ == "__main__": def UpperCAmelCase__ ( ) -> None: from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""", number=1_00_00, globals=globals(), ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""", number=1_00_00, globals=globals(), ) ) benchmark()
162
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Dict = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Union[str, Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase : int = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase : Union[str, Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase : Union[str, Any] = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase : Optional[int] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase : Union[str, Any] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class A( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class A( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase : List[Any] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase : List[str] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__SCREAMING_SNAKE_CASE ) class A: '''simple docstring''' def __call__( self : Optional[int] , A_ : str , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Union[bool, str] = False , A_ : Union[bool, str] = False , A_ : Optional[int] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : Optional[bool] = None , **A_ : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) elif titles is None or texts is None: lowerCamelCase_ = titles if texts is None else texts return super().__call__( UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase_ = titles if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [titles] lowerCamelCase_ = texts if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [texts] lowerCamelCase_ = len(UpperCAmelCase_ ) lowerCamelCase_ = questions if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [questions] * n_passages if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( f"""There should be as many titles than texts but got {len(UpperCAmelCase_ )} titles and {len(UpperCAmelCase_ )} texts.""" ) lowerCamelCase_ = super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["input_ids"] lowerCamelCase_ = super().__call__(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["input_ids"] lowerCamelCase_ = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] } if return_attention_mask is not False: lowerCamelCase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ = attention_mask return self.pad(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) def a__ ( self : List[Any] , A_ : BatchEncoding , A_ : DPRReaderOutput , A_ : int = 16 , A_ : int = 64 , A_ : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowerCamelCase_ = reader_input["input_ids"] lowerCamelCase_ = reader_output[:3] lowerCamelCase_ = len(UpperCAmelCase_ ) lowerCamelCase_ = sorted(range(UpperCAmelCase_ ) , reverse=UpperCAmelCase_ , key=relevance_logits.__getitem__ ) lowerCamelCase_ = [] for doc_id in sorted_docs: lowerCamelCase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ = sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ = len(UpperCAmelCase_ ) lowerCamelCase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase_ , top_spans=UpperCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase_ , start_index=UpperCAmelCase_ , end_index=UpperCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self : Union[str, Any] , A_ : List[int] , A_ : List[int] , A_ : int , A_ : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowerCamelCase_ = [] for start_index, start_score in enumerate(UpperCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ = sorted(UpperCAmelCase_ , key=lambda A_ : x[1] , reverse=UpperCAmelCase_ ) lowerCamelCase_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) lowerCamelCase_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ['''input_ids''', '''attention_mask''']
204
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = [R"""h\.\d+\.attn\.bias""", R"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = 5_0257 , UpperCamelCase__ = 1024 , UpperCamelCase__ = 768 , UpperCamelCase__ = 12 , UpperCamelCase__ = 12 , UpperCamelCase__ = None , UpperCamelCase__ = "gelu_new" , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 1e-5 , UpperCamelCase__ = 0.02 , UpperCamelCase__ = True , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = False , ) -> str: super().__init__() lowerCamelCase : List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) lowerCamelCase : List[str] = prefix_inner_dim lowerCamelCase : Union[str, Any] = prefix_hidden_dim lowerCamelCase : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase : Any = ( nn.Linear(self.prefix_hidden_dim , UpperCAmelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase : Dict = GPTaConfig( vocab_size=UpperCAmelCase_ , n_positions=UpperCAmelCase_ , n_embd=UpperCAmelCase_ , n_layer=UpperCAmelCase_ , n_head=UpperCAmelCase_ , n_inner=UpperCAmelCase_ , activation_function=UpperCAmelCase_ , resid_pdrop=UpperCAmelCase_ , embd_pdrop=UpperCAmelCase_ , attn_pdrop=UpperCAmelCase_ , layer_norm_epsilon=UpperCAmelCase_ , initializer_range=UpperCAmelCase_ , scale_attn_weights=UpperCAmelCase_ , use_cache=UpperCAmelCase_ , scale_attn_by_inverse_layer_idx=UpperCAmelCase_ , reorder_and_upcast_attn=UpperCAmelCase_ , ) lowerCamelCase : int = GPTaLMHeadModel(UpperCAmelCase_ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , ) -> Optional[Any]: lowerCamelCase : str = self.transformer.transformer.wte(UpperCAmelCase_ ) lowerCamelCase : List[str] = self.encode_prefix(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = self.decode_prefix(UpperCAmelCase_ ) lowerCamelCase : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCamelCase : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCamelCase : List[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCamelCase : Tuple = self.transformer(inputs_embeds=UpperCAmelCase_ , labels=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> torch.Tensor: return torch.zeros(UpperCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCAmelCase_ ) def _lowercase ( self , UpperCamelCase__ ) -> Any: return self.encode_prefix(UpperCAmelCase_ ) @torch.no_grad() def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : Optional[Any] = torch.split(UpperCAmelCase_ , 1 , dim=0 ) lowerCamelCase : Dict = [] lowerCamelCase : List[Any] = [] for feature in features: lowerCamelCase : Tuple = self.decode_prefix(feature.to(UpperCAmelCase_ ) ) # back to the clip feature # Only support beam search for now lowerCamelCase : Tuple = self.generate_beam( input_embeds=UpperCAmelCase_ , device=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCamelCase : Union[str, Any] = torch.stack(UpperCAmelCase_ ) lowerCamelCase : List[Any] = torch.stack(UpperCAmelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _lowercase ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = 5 , UpperCamelCase__ = 67 , UpperCamelCase__ = 1.0 , UpperCamelCase__ = None , ) -> List[Any]: lowerCamelCase : List[str] = eos_token_id lowerCamelCase : str = None lowerCamelCase : Optional[Any] = None lowerCamelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.int ) lowerCamelCase : Any = torch.zeros(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.bool ) if input_embeds is not None: lowerCamelCase : Union[str, Any] = input_embeds else: lowerCamelCase : Optional[int] = self.transformer.transformer.wte(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ): lowerCamelCase : Dict = self.transformer(inputs_embeds=UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = outputs.logits lowerCamelCase : Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCamelCase : Dict = logits.softmax(-1 ).log() if scores is None: lowerCamelCase : str = logits.topk(UpperCAmelCase_ , -1 ) lowerCamelCase : List[str] = generated.expand(UpperCAmelCase_ , *generated.shape[1:] ) lowerCamelCase : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCamelCase : Optional[int] = next_tokens else: lowerCamelCase : Optional[Any] = tokens.expand(UpperCAmelCase_ , *tokens.shape[1:] ) lowerCamelCase : List[str] = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCamelCase : Any = -float(np.inf ) lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCamelCase : int = scores_sum / seq_lengths[:, None] lowerCamelCase : Any = scores_sum_average.view(-1 ).topk(UpperCAmelCase_ , -1 ) lowerCamelCase : List[Any] = next_tokens // scores_sum.shape[1] lowerCamelCase : str = seq_lengths[next_tokens_source] lowerCamelCase : Optional[int] = next_tokens % scores_sum.shape[1] lowerCamelCase : Optional[Any] = next_tokens.unsqueeze(1 ) lowerCamelCase : Dict = tokens[next_tokens_source] lowerCamelCase : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) lowerCamelCase : List[Any] = generated[next_tokens_source] lowerCamelCase : List[str] = scores_sum_average * seq_lengths lowerCamelCase : Tuple = is_stopped[next_tokens_source] lowerCamelCase : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCamelCase : List[str] = torch.cat((generated, next_token_embed) , dim=1 ) lowerCamelCase : List[Any] = is_stopped + next_tokens.eq(UpperCAmelCase_ ).squeeze() if is_stopped.all(): break lowerCamelCase : Dict = scores / seq_lengths lowerCamelCase : Dict = scores.argsort(descending=UpperCAmelCase_ ) # tokens tensors are already padded to max_seq_length lowerCamelCase : Tuple = [tokens[i] for i in order] lowerCamelCase : List[Any] = torch.stack(UpperCAmelCase_ , dim=0 ) lowerCamelCase : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
48
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
0
def _lowerCAmelCase ( lowerCAmelCase_ :Tuple )->int: '''simple docstring''' if n == 1 or not isinstance(__a , __a ): return 0 elif n == 2: return 1 else: snake_case_ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _lowerCAmelCase ( lowerCAmelCase_ :Union[str, Any] )->int: '''simple docstring''' snake_case_ = 0 snake_case_ = 2 while digits < n: index += 1 snake_case_ = len(str(fibonacci(__a ) ) ) return index def _lowerCAmelCase ( lowerCAmelCase_ :str = 1_000 )->int: '''simple docstring''' return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
159
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification UpperCAmelCase__ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co UpperCAmelCase__ = '''main''' # Default branch name UpperCAmelCase__ = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) UpperCAmelCase__ = '''aaaaaaa''' # This commit does not exist, so we should 404. UpperCAmelCase__ = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes UpperCAmelCase__ = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def UpperCAmelCase_ ( ) -> List[Any]: """simple docstring""" print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def UpperCAmelCase_ ( ) -> int: """simple docstring""" print('''Bonjour!''' ) yield print('''Au revoir!''' ) class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Optional[int]: assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class lowerCamelCase__ ( unittest.TestCase): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __A (self , UpperCAmelCase ) -> Dict: with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __A (self , UpperCAmelCase ) -> Any: with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __A (self , UpperCAmelCase ) -> List[Any]: with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def __A (self ) -> Union[str, Any]: self.assertEqual(find_labels(UpperCAmelCase_ ) , ['''labels'''] ) self.assertEqual(find_labels(UpperCAmelCase_ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(UpperCAmelCase_ ) , ['''start_positions''', '''end_positions'''] ) class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE): pass self.assertEqual(find_labels(UpperCAmelCase_ ) , ['''labels'''] ) @require_tf def __A (self ) -> Optional[Any]: self.assertEqual(find_labels(UpperCAmelCase_ ) , ['''labels'''] ) self.assertEqual(find_labels(UpperCAmelCase_ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(UpperCAmelCase_ ) , ['''start_positions''', '''end_positions'''] ) class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE): pass self.assertEqual(find_labels(UpperCAmelCase_ ) , ['''labels'''] ) @require_flax def __A (self ) -> Any: self.assertEqual(find_labels(UpperCAmelCase_ ) , [] ) self.assertEqual(find_labels(UpperCAmelCase_ ) , [] ) self.assertEqual(find_labels(UpperCAmelCase_ ) , [] ) class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE): pass self.assertEqual(find_labels(UpperCAmelCase_ ) , [] )
5
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase__ ( __lowerCamelCase : Dict ): __UpperCAmelCase : Optional[int] = tmp_path / "file.csv" __UpperCAmelCase : Optional[int] = textwrap.dedent( """\\n header1,header2\n 1,2\n 10,20\n """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : str = tmp_path / "malformed_file.csv" __UpperCAmelCase : List[Any] = textwrap.dedent( """\\n header1,header2\n 1,2\n 10,20,\n """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int ): __UpperCAmelCase : Tuple = tmp_path / "csv_with_image.csv" __UpperCAmelCase : str = textwrap.dedent( f"""\ image {image_file} """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Tuple = tmp_path / "csv_with_label.csv" __UpperCAmelCase : Optional[Any] = textwrap.dedent( """\\n label\n good\n bad\n good\n """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) @pytest.fixture def lowerCamelCase__ ( __lowerCamelCase : int ): __UpperCAmelCase : Dict = tmp_path / "csv_with_int_list.csv" __UpperCAmelCase : str = textwrap.dedent( """\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n """ ) with open(__a , """w""" ) as f: f.write(__a ) return str(__a ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : List[Any] = Csv() __UpperCAmelCase : Union[str, Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__a , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__a ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase__ ( __lowerCamelCase : str ): with open(__a , encoding="""utf-8""" ) as f: __UpperCAmelCase : Optional[Any] = f.read().splitlines()[1] __UpperCAmelCase : Any = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) __UpperCAmelCase : int = csv._generate_tables([[csv_file_with_image]] ) __UpperCAmelCase : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() __UpperCAmelCase : List[str] = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase__ ( __lowerCamelCase : List[str] ): with open(__a , encoding="""utf-8""" ) as f: __UpperCAmelCase : str = f.read().splitlines()[1:] __UpperCAmelCase : Any = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) __UpperCAmelCase : Optional[int] = csv._generate_tables([[csv_file_with_label]] ) __UpperCAmelCase : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() __UpperCAmelCase : Optional[int] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__a ) for label in labels] def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : List[Any] = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __lowerCamelCase : [int(__a ) for i in x.split()]} ) __UpperCAmelCase : Tuple = csv._generate_tables([[csv_file_with_int_list]] ) __UpperCAmelCase : Dict = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) __UpperCAmelCase : Any = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
114
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): snake_case_ : str = [image] if isinstance(image[0] , PIL.Image.Image ): snake_case_ : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] snake_case_ : Any = np.concatenate(__a , axis=0 ) snake_case_ : str = np.array(__a ).astype(np.floataa ) / 255.0 snake_case_ : Tuple = image.transpose(0 , 3 , 1 , 2 ) snake_case_ : Union[str, Any] = 2.0 * image - 1.0 snake_case_ : Any = torch.from_numpy(__a ) elif isinstance(image[0] , torch.Tensor ): snake_case_ : Dict = torch.cat(__a , dim=0 ) return image def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=0.9_995 ) -> str: """simple docstring""" if not isinstance(__a , np.ndarray ): snake_case_ : int = True snake_case_ : Dict = va.device snake_case_ : List[Any] = va.cpu().numpy() snake_case_ : List[str] = va.cpu().numpy() snake_case_ : Optional[int] = np.sum(va * va / (np.linalg.norm(__a ) * np.linalg.norm(__a )) ) if np.abs(__a ) > DOT_THRESHOLD: snake_case_ : str = (1 - t) * va + t * va else: snake_case_ : List[str] = np.arccos(__a ) snake_case_ : Tuple = np.sin(__a ) snake_case_ : str = theta_a * t snake_case_ : List[Any] = np.sin(__a ) snake_case_ : Tuple = np.sin(theta_a - theta_t ) / sin_theta_a snake_case_ : int = sin_theta_t / sin_theta_a snake_case_ : List[Any] = sa * va + sa * va if inputs_are_torch: snake_case_ : int = torch.from_numpy(__a ).to(__a ) return va def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : str = F.normalize(__a , dim=-1 ) snake_case_ : Union[str, Any] = F.normalize(__a , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" for param in model.parameters(): snake_case_ : Any = value class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=None , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules( vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , clip_model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , coca_model=UpperCAmelCase_ , coca_tokenizer=UpperCAmelCase_ , coca_transform=UpperCAmelCase_ , ) snake_case_ : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size , UpperCAmelCase_ ) else feature_extractor.size["shortest_edge"] ) snake_case_ : int = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , UpperCAmelCase_ ) set_requires_grad(self.clip_model , UpperCAmelCase_ ) def lowerCamelCase (self , __magic_name__ = "auto" ) -> Union[str, Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case_ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_ ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' self.enable_attention_slicing(UpperCAmelCase_ ) def lowerCamelCase (self ) -> Any: '''simple docstring''' set_requires_grad(self.vae , UpperCAmelCase_ ) def lowerCamelCase (self ) -> str: '''simple docstring''' set_requires_grad(self.vae , UpperCAmelCase_ ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' set_requires_grad(self.unet , UpperCAmelCase_ ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' set_requires_grad(self.unet , UpperCAmelCase_ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : str = min(int(num_inference_steps * strength ) , UpperCAmelCase_ ) snake_case_ : Tuple = max(num_inference_steps - init_timestep , 0 ) snake_case_ : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ) -> Union[str, Any]: '''simple docstring''' if not isinstance(UpperCAmelCase_ , torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase_ )}''' ) snake_case_ : Optional[int] = image.to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ : Any = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase_ ) ] snake_case_ : List[Any] = torch.cat(UpperCAmelCase_ , dim=0 ) else: snake_case_ : Tuple = self.vae.encode(UpperCAmelCase_ ).latent_dist.sample(UpperCAmelCase_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case_ : List[str] = 0.18_215 * init_latents snake_case_ : Optional[int] = init_latents.repeat_interleave(UpperCAmelCase_ , dim=0 ) snake_case_ : List[Any] = randn_tensor(init_latents.shape , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) # get latents snake_case_ : str = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ : Optional[int] = init_latents return latents def lowerCamelCase (self , __magic_name__ ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.coca_transform(UpperCAmelCase_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): snake_case_ : str = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) snake_case_ : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = self.feature_extractor.preprocess(UpperCAmelCase_ ) snake_case_ : Optional[Any] = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() snake_case_ : Any = self.clip_model.get_image_features(UpperCAmelCase_ ) snake_case_ : int = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCAmelCase_ ) snake_case_ : Union[str, Any] = image_embeddings_clip.repeat_interleave(UpperCAmelCase_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> Any: '''simple docstring''' snake_case_ : str = latents.detach().requires_grad_() snake_case_ : int = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual snake_case_ : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): snake_case_ : List[Any] = self.scheduler.alphas_cumprod[timestep] snake_case_ : Tuple = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ : int = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 snake_case_ : Any = torch.sqrt(UpperCAmelCase_ ) snake_case_ : Optional[int] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , UpperCAmelCase_ ): snake_case_ : Any = self.scheduler.sigmas[index] snake_case_ : List[str] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case_ : Any = 1 / 0.18_215 * sample snake_case_ : Any = self.vae.decode(UpperCAmelCase_ ).sample snake_case_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : List[Any] = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase_ ) snake_case_ : Dict = self.normalize(UpperCAmelCase_ ).to(latents.dtype ) snake_case_ : Union[str, Any] = self.clip_model.get_image_features(UpperCAmelCase_ ) snake_case_ : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCAmelCase_ ) snake_case_ : List[Any] = spherical_dist_loss(UpperCAmelCase_ , UpperCAmelCase_ ).mean() * clip_guidance_scale snake_case_ : Dict = -torch.autograd.grad(UpperCAmelCase_ , UpperCAmelCase_ )[0] if isinstance(self.scheduler , UpperCAmelCase_ ): snake_case_ : Dict = latents.detach() + grads * (sigma**2) snake_case_ : List[str] = noise_pred_original else: snake_case_ : int = noise_pred_original - torch.sqrt(UpperCAmelCase_ ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 512 , __magic_name__ = 512 , __magic_name__ = 0.6 , __magic_name__ = 50 , __magic_name__ = 7.5 , __magic_name__ = 1 , __magic_name__ = 0.0 , __magic_name__ = 100 , __magic_name__ = None , __magic_name__ = "pil" , __magic_name__ = True , __magic_name__ = 0.8 , __magic_name__ = 0.1 , __magic_name__ = 0.1 , ) -> Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(UpperCAmelCase_ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(UpperCAmelCase_ , torch.Generator ) and batch_size > 1: snake_case_ : Optional[Any] = [generator] + [None] * (batch_size - 1) snake_case_ : Optional[Any] = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] snake_case_ : str = [x[0] for x in coca_is_none if x[1]] snake_case_ : Optional[int] = ", ".join(UpperCAmelCase_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase_ ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) snake_case_ : List[str] = self.get_image_description(UpperCAmelCase_ ) if style_prompt is None: if len(UpperCAmelCase_ ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) snake_case_ : Optional[int] = self.get_image_description(UpperCAmelCase_ ) # get prompt text embeddings for content and style snake_case_ : int = self.tokenizer( UpperCAmelCase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors='''pt''' , ) snake_case_ : Optional[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] snake_case_ : Tuple = self.tokenizer( UpperCAmelCase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors='''pt''' , ) snake_case_ : Any = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] snake_case_ : Tuple = slerp(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # duplicate text embeddings for each generation per prompt snake_case_ : Dict = text_embeddings.repeat_interleave(UpperCAmelCase_ , dim=0 ) # set timesteps snake_case_ : Dict = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) snake_case_ : str = {} if accepts_offset: snake_case_ : Tuple = 1 self.scheduler.set_timesteps(UpperCAmelCase_ , **UpperCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) snake_case_ : Optional[Any] = self.get_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , self.device ) snake_case_ : Optional[Any] = timesteps[:1].repeat(UpperCAmelCase_ ) # Preprocess image snake_case_ : List[Any] = preprocess(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ : List[str] = self.prepare_latents( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , text_embeddings.dtype , self.device , UpperCAmelCase_ ) snake_case_ : Tuple = preprocess(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ : int = self.prepare_latents( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , text_embeddings.dtype , self.device , UpperCAmelCase_ ) snake_case_ : Tuple = slerp(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if clip_guidance_scale > 0: snake_case_ : Optional[int] = self.get_clip_image_embeddings(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ : List[Any] = self.get_clip_image_embeddings(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ : Optional[Any] = slerp( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case_ : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case_ : Optional[Any] = content_text_input.input_ids.shape[-1] snake_case_ : int = self.tokenizer([''''''] , padding='''max_length''' , max_length=UpperCAmelCase_ , return_tensors='''pt''' ) snake_case_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt snake_case_ : Optional[Any] = uncond_embeddings.repeat_interleave(UpperCAmelCase_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case_ : Any = (batch_size, self.unet.config.in_channels, height // 8, width // 8) snake_case_ : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps snake_case_ : int = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device='''cpu''' , dtype=UpperCAmelCase_ ).to( self.device ) else: snake_case_ : Any = torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) snake_case_ : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case_ : Optional[Any] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case_ : Dict = {} if accepts_eta: snake_case_ : Optional[Any] = eta # check if the scheduler accepts generator snake_case_ : str = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: snake_case_ : Optional[int] = generator with self.progress_bar(total=UpperCAmelCase_ ): for i, t in enumerate(UpperCAmelCase_ ): # expand the latents if we are doing classifier free guidance snake_case_ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ : Dict = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual snake_case_ : int = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ).sample # perform classifier free guidance if do_classifier_free_guidance: snake_case_ : Any = noise_pred.chunk(2 ) snake_case_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: snake_case_ : str = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) snake_case_ : Tuple = self.cond_fn( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ : Optional[int] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case_ : int = 1 / 0.18_215 * latents snake_case_ : str = self.vae.decode(UpperCAmelCase_ ).sample snake_case_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Union[str, Any] = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase_ , nsfw_content_detected=UpperCAmelCase_ )
279
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : List[str] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = "canine" def __init__( self , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_6_3_8_4 , snake_case=1_6 , snake_case=0.02 , snake_case=1e-12 , snake_case=0 , snake_case=0xE_000 , snake_case=0xE_001 , snake_case=4 , snake_case=4 , snake_case=8 , snake_case=1_6_3_8_4 , snake_case=1_2_8 , **snake_case , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : str = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Tuple = type_vocab_size UpperCAmelCase : Dict = layer_norm_eps # Character config: UpperCAmelCase : str = downsampling_rate UpperCAmelCase : Optional[int] = upsampling_kernel_size UpperCAmelCase : Union[str, Any] = num_hash_functions UpperCAmelCase : List[str] = num_hash_buckets UpperCAmelCase : List[Any] = local_transformer_stride
311
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase : Optional[Any] = k.replace(__a , __a ) if k.startswith('''encoder''' ): UpperCAmelCase : Optional[Any] = k.replace('''.attn''' , '''.self_attn''' ) UpperCAmelCase : Union[str, Any] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase : Any = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): UpperCAmelCase : List[str] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase : Dict = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) UpperCAmelCase : Union[str, Any] = k.replace('''norm3''' , '''final_layer_norm''' ) return k def a__ ( UpperCAmelCase : Union[str, Any] ) -> List[str]: UpperCAmelCase : Any = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: UpperCAmelCase : List[Any] = sd.pop(__a ) UpperCAmelCase : Union[str, Any] = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd UpperCAmelCase : Optional[Any] = v _lowerCamelCase : str = ["START"] @torch.no_grad() def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ) -> int: UpperCAmelCase : List[Any] = torch.load(__a , map_location='''cpu''' ) UpperCAmelCase : int = model["model"] UpperCAmelCase : int = BlenderbotConfig.from_json_file(__a ) UpperCAmelCase : List[Any] = BlenderbotForConditionalGeneration(__a ) UpperCAmelCase : List[str] = m.model.state_dict().keys() UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase : Union[str, Any] = rename_state_dict_key(__a ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase : Any = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__a ) m.model.load_state_dict(__a , strict=__a ) m.half() m.save_pretrained(__a ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _lowerCamelCase : Union[str, Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
336
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Union[str, Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Dict ): '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : str , **lowerCamelCase_ : str ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Dict ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : str , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
323
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _UpperCamelCase = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCAmelCase__( lowercase : Optional[int] ) -> Tuple: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCAmelCase__( lowercase : int , lowercase : int ) -> List[str]: if args.student_type == "roberta": __snake_case : int = False elif args.student_type == "gpt2": __snake_case : Optional[int] = False def lowerCAmelCase__( lowercase : str , lowercase : Union[str, Any] ) -> Tuple: if args.student_type == "roberta": __snake_case : str = False def lowerCAmelCase__( ) -> int: __snake_case : int = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=__a , required=__a , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=__a , required=__a , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=__a , choices=["distilbert", "roberta", "gpt2"] , required=__a , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=__a , required=__a , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=__a , type=__a , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__a , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=__a , required=__a , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=__a , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=__a , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=__a , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=__a , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=__a , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=__a , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.1_5 , type=__a , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=__a , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=__a , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=__a , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=__a , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=__a , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=__a , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=__a , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=__a , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.0_5 , type=__a , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=__a , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5E-4 , type=__a , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1E-6 , type=__a , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=__a , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.0_2 , type=__a , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__a , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=__a , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=__a , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=__a , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=__a , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=__a , default=4000 , help="Checkpoint interval." ) __snake_case : int = parser.parse_args() sanity_checks(__a ) # ARGS # init_gpu_params(__a ) set_seed(__a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(__a ) , __a , indent=4 ) git_log(args.dump_path ) __snake_case : int = MODEL_CLASSES[args.student_type] __snake_case : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __snake_case : Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __snake_case : int = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __snake_case : str = tokenizer.all_special_tokens.index(__a ) __snake_case : Optional[int] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) __snake_case : Tuple = special_tok_ids __snake_case : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , "rb" ) as fp: __snake_case : int = pickle.load(__a ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , "rb" ) as fp: __snake_case : Union[str, Any] = pickle.load(__a ) __snake_case : List[Any] = np.maximum(__a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __snake_case : Optional[Any] = 0.0 # do not predict special tokens __snake_case : Optional[Any] = torch.from_numpy(__a ) else: __snake_case : int = None __snake_case : Tuple = LmSeqsDataset(params=__a , data=__a ) logger.info("Data loader created." ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) __snake_case : Optional[Any] = student_config_class.from_pretrained(args.student_config ) __snake_case : Any = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) __snake_case : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=__a ) else: __snake_case : int = student_model_class(__a ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info("Student loaded." ) # TEACHER # __snake_case : Tuple = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__a , __a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__a , __a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __snake_case : List[Any] = Distiller( params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
326
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import doctest from collections import deque import numpy as np class A__ : def __init__( self ) -> None: '''simple docstring''' A_ = [2, 1, 2, -1] A_ = [1, 2, 3, 4] def snake_case_ ( self ) -> list[float]: '''simple docstring''' A_ = len(self.first_signal ) A_ = len(self.second_signal ) A_ = max(UpperCAmelCase_ , UpperCAmelCase_ ) # create a zero matrix of max_length x max_length A_ = [[0] * max_length for i in range(UpperCAmelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCAmelCase_ ): A_ = deque(self.second_signal ) rotated_signal.rotate(UpperCAmelCase_ ) for j, item in enumerate(UpperCAmelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal A_ = np.matmul(np.transpose(UpperCAmelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCAmelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
162
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
0
import fire from utils import calculate_rouge, save_json def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : List[Any]=None , **lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = [x.strip() for x in open(__a ).readlines()] lowerCamelCase_ = [x.strip() for x in open(__a ).readlines()][: len(__a )] lowerCamelCase_ = calculate_rouge(__a , __a , **__a ) if save_path is not None: save_json(__a , __a , indent=__a ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
204
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
0
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] )->Union[str, Any]: '''simple docstring''' if "model" in orig_key: snake_case_ = orig_key.replace("model." , "" ) if "norm1" in orig_key: snake_case_ = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: snake_case_ = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: snake_case_ = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: snake_case_ = orig_key.split("." )[0].split("_" )[-1] snake_case_ = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: snake_case_ = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: snake_case_ = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: snake_case_ = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: snake_case_ = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: snake_case_ = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: snake_case_ = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: snake_case_ = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: snake_case_ = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: snake_case_ = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: snake_case_ = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: snake_case_ = "yoso." + orig_key return orig_key def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :Dict )->Optional[int]: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(__a ) if ("pooler" in key) or ("sen_class" in key): continue else: snake_case_ = val snake_case_ = orig_state_dict["cls.predictions.decoder.bias"] snake_case_ = torch.arange(__a ).expand((1, -1) ) + 2 return orig_state_dict def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :List[str] , lowerCAmelCase_ :List[str] )->List[Any]: '''simple docstring''' snake_case_ = torch.load(__a , map_location="cpu" )["model_state_dict"] snake_case_ = YosoConfig.from_json_file(__a ) snake_case_ = YosoForMaskedLM(__a ) snake_case_ = convert_checkpoint_helper(config.max_position_embeddings , __a ) print(model.load_state_dict(__a ) ) model.eval() model.save_pretrained(__a ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE :str = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
159
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" _lowercase =R"\w+[.]\d+" _lowercase =re.findall(__a , __a ) for pat in pats: _lowercase =key.replace(__a , '''_'''.join(pat.split('''.''' ) ) ) return key def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Any: """simple docstring""" _lowercase =pt_tuple_key[:-1] + ("scale",) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _lowercase =pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _lowercase =pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _lowercase =pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer _lowercase =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _lowercase =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowercase =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": _lowercase =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowercase =pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowercase =pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=42 ) -> Tuple: """simple docstring""" _lowercase ={k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _lowercase =flax_model.init_weights(PRNGKey(__a ) ) _lowercase =flatten_dict(__a ) _lowercase ={} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowercase =rename_key(__a ) _lowercase =tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters _lowercase =rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown _lowercase =jnp.asarray(__a ) return unflatten_dict(__a )
5
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
0
from __future__ import annotations from collections.abc import Iterator class a : """simple docstring""" def __init__( self : Dict , __lowercase : int ) -> None: __UpperCAmelCase : int = value __UpperCAmelCase : Node | None = None __UpperCAmelCase : Node | None = None class a : """simple docstring""" def __init__( self : Dict , __lowercase : Node ) -> None: __UpperCAmelCase : Union[str, Any] = tree def UpperCAmelCase ( self : Optional[int] , __lowercase : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
114
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__(self , __magic_name__ , __magic_name__=None , __magic_name__=True , __magic_name__=None , **__magic_name__ ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = parent snake_case_ : int = config_class snake_case_ : List[str] = has_text_modality snake_case_ : str = kwargs snake_case_ : Any = common_properties def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.config_class(**self.inputs_dict ) snake_case_ : int = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) , msg=F'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase_ ): try: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.parent.assertEqual( getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , msg=F'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase_ , UpperCAmelCase_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase_ ): try: snake_case_ : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , msg=F'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase_ , UpperCAmelCase_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = self.config_class(**self.inputs_dict ) snake_case_ : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase_ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[str] = os.path.join(UpperCAmelCase_ , '''config.json''' ) config_first.to_json_file(UpperCAmelCase_ ) snake_case_ : Tuple = self.config_class.from_json_file(UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase_ ) snake_case_ : Any = self.config_class.from_pretrained(UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = self.config_class(**self.inputs_dict ) snake_case_ : List[str] = "test" with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[str] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) config_first.save_pretrained(UpperCAmelCase_ ) snake_case_ : Any = self.config_class.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) snake_case_ : Any = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowerCamelCase (self ) -> int: '''simple docstring''' if self.config_class.is_composition: return snake_case_ : Tuple = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = copy.deepcopy(UpperCAmelCase_ ) snake_case_ : str = self.config_class(**UpperCAmelCase_ ) snake_case_ : Optional[int] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase_ , UpperCAmelCase_ ) != value: wrong_values.append((key, getattr(UpperCAmelCase_ , UpperCAmelCase_ ), value) ) if len(UpperCAmelCase_ ) > 0: snake_case_ : List[Any] = "\n".join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
279
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable a : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ["DPTFeatureExtractor"] a : int = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[Any] ) -> List[Any]: UpperCAmelCase : Dict = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) UpperCAmelCase : Dict = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , __a ) if matches: UpperCAmelCase : Optional[int] = float(matches[1] ) UpperCAmelCase : str = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCAmelCase : List[str] = 1_001 UpperCAmelCase : str = "imagenet-1k-id2label.json" UpperCAmelCase : List[Any] = "huggingface/label-files" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : List[str] = {int(__a ) + 1: v for k, v in idalabel.items()} UpperCAmelCase : str = "background" UpperCAmelCase : int = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} return config def a__ ( ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any]=False ) -> str: UpperCAmelCase : Optional[Any] = get_mobilenet_va_config(__a ) # Load 🤗 model UpperCAmelCase : Optional[int] = MobileNetVaForImageClassification(__a ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__a , __a , __a ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCAmelCase : Optional[int] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) UpperCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__a ) UpperCAmelCase : List[str] = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": UpperCAmelCase : Tuple = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": UpperCAmelCase : Tuple = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: UpperCAmelCase : Optional[int] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __a , atol=1E-4 ) Path(__a ).mkdir(exist_ok=__a ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__a ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing to the hub...''' ) UpperCAmelCase : Optional[Any] = "google/" + model_name image_processor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCamelCase : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
336
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''deberta-v2''' def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[Any]=12_81_00 , lowerCamelCase_ : Optional[int]=15_36 , lowerCamelCase_ : Union[str, Any]=24 , lowerCamelCase_ : int=24 , lowerCamelCase_ : Dict=61_44 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : Optional[Any]=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=5_12 , lowerCamelCase_ : str=0 , lowerCamelCase_ : Tuple=0.02 , lowerCamelCase_ : List[Any]=1e-7 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=-1 , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Any=None , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : List[str]="gelu" , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = relative_attention SCREAMING_SNAKE_CASE : List[str] = max_relative_positions SCREAMING_SNAKE_CASE : str = pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: SCREAMING_SNAKE_CASE : Any = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE : Tuple = pos_att_type SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = pooler_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = pooler_hidden_act class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Dict = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return 12 def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional["TensorType"] = None , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : "PreTrainedTokenizerBase" = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowerCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : List[str] =["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase_ ) __snake_case : Optional[Any] = size if size is not None else {"shortest_edge": 224} __snake_case : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) __snake_case : Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} __snake_case : Tuple = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ , param_name="crop_size" ) __snake_case : Union[str, Any] = do_resize __snake_case : Union[str, Any] = size __snake_case : Any = resample __snake_case : List[str] = do_center_crop __snake_case : List[Any] = crop_size __snake_case : List[str] = do_rescale __snake_case : List[str] = rescale_factor __snake_case : str = do_normalize __snake_case : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : int = do_convert_rgb def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __snake_case : List[str] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __snake_case : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase_ ) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __snake_case : int = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(UpperCAmelCase_ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> int: '''simple docstring''' return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __snake_case : Tuple = do_resize if do_resize is not None else self.do_resize __snake_case : List[Any] = size if size is not None else self.size __snake_case : List[Any] = get_size_dict(UpperCAmelCase_ , param_name="size" , default_to_square=UpperCAmelCase_ ) __snake_case : Any = resample if resample is not None else self.resample __snake_case : Any = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Any = crop_size if crop_size is not None else self.crop_size __snake_case : Union[str, Any] = get_size_dict(UpperCAmelCase_ , param_name="crop_size" , default_to_square=UpperCAmelCase_ ) __snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : int = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Optional[Any] = image_mean if image_mean is not None else self.image_mean __snake_case : Optional[int] = image_std if image_std is not None else self.image_std __snake_case : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Dict = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : List[Any] = [convert_to_rgb(UpperCAmelCase_ ) for image in images] # All transformations expect numpy arrays. __snake_case : str = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: __snake_case : Union[str, Any] = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_center_crop: __snake_case : Optional[Any] = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images] if do_rescale: __snake_case : Any = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_normalize: __snake_case : List[str] = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images] __snake_case : List[str] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] __snake_case : str = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
326
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = [[1, 2, 4], [1, 2, 3, 4]] A_ = DisjunctiveConstraint(UpperCAmelCase_ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase_ ) ) with self.assertRaises(UpperCAmelCase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase_ ): DisjunctiveConstraint(UpperCAmelCase_ ) # fails here def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = [[1, 2, 3], [1, 2, 4]] A_ = DisjunctiveConstraint(UpperCAmelCase_ ) A_ = dc.update(1 ) A_ = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A_ = dc.update(2 ) A_ = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A_ = dc.update(3 ) A_ = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] A_ = DisjunctiveConstraint(UpperCAmelCase_ ) A_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) A_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() A_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) A_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) A_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
162
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase : List[Any] = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): lowerCamelCase_ = [image] lowerCamelCase_ = [trans(img.convert('RGB' ) ) for img in image] lowerCamelCase_ = torch.stack(__a ) return image class A( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Any , A_ : Optional[Any] , A_ : str ) -> Any: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) def a__ ( self : str , A_ : Tuple ) -> Any: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def a__ ( self : List[Any] , A_ : int , A_ : Optional[Any] , A_ : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = min(int(num_inference_steps * strength ) , UpperCAmelCase_ ) lowerCamelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ ( self : Optional[Any] , A_ : Optional[int] , A_ : Any , A_ : List[Any] , A_ : Dict , A_ : Union[str, Any] , A_ : int=None ) -> str: """simple docstring""" if not isinstance(UpperCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase_ )}""" ) lowerCamelCase_ = image.to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowerCamelCase_ = init_latents.shape lowerCamelCase_ = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) # get latents print('add noise to latents at timestep' , UpperCAmelCase_ ) lowerCamelCase_ = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self : str , A_ : Union[torch.FloatTensor, PIL.Image.Image] = None , A_ : float = 0.8 , A_ : int = 1 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : float = 0.0 , A_ : int = 50 , A_ : Optional[bool] = None , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(UpperCAmelCase_ ) # 2. Preprocess image lowerCamelCase_ = preprocess(UpperCAmelCase_ ) # 3. set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device ) lowerCamelCase_ = self.get_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , self.device ) lowerCamelCase_ = timesteps[:1].repeat(UpperCAmelCase_ ) # 4. Prepare latent variables lowerCamelCase_ = self.prepare_latents(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.unet.dtype , self.device , UpperCAmelCase_ ) lowerCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(UpperCAmelCase_ ): # 1. predict noise model_output lowerCamelCase_ = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , eta=UpperCAmelCase_ , use_clipped_model_output=UpperCAmelCase_ , generator=UpperCAmelCase_ , ).prev_sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCAmelCase_ )
204
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
0